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Abstract. We obtain the structure of finite groups of the form G =AB where B is a group
isomorphic to the symmetric group on n letters Sn, n≥ 5 and A is a group isomorphic to
the alternating group on 6 letters.
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1. Introduction. For a finite group G if there exist subgroups A and B of G such

that G = AB, then G is called a factorizable group. Of course if neither of A nor

B is contained in the other, then the factorization is called nontrivial. A knowledge

of the factorizations of finite simple groups will help to investigate the general the-

ory of factorizing finite groups. All possible factorizations of sporadic simple groups

have been obtained in [4] and those of simple groups of Lie type of Lie rank 1 or 2

in [3].

A factorization G = AB where both A and B are maximal subgroups of G is called

a maximal factorization of G. In [9], all the maximal factorizations of all the finite

simple groups and their automorphism groups have been determined completely.

In another direction some results have been obtained assuming G =AB is a factor-

ization of G with A and B simple subgroups of G. For example, in [8] finite groups

G =AB where both A and B are isomorphic to the simple group of order 60 are clas-

sified, and in [10] finite groups G = AB where A is a non-abelian simple group and

B �A5 are determined. In [5], G =AB where A and B are simple groups of small order

are considered.

In a series of papers, Walls considered groups which are a product of simple groups

[13, 14]. In [15], groups which are product of a symmetric group and a group isomor-

phic to A5 are classified. This result is interesting because in the factorization G =AB
one of the factors is not a simple group. Motivated by this result, in this paper we

classify all groups G which are product of subgroups A and B such that A � A6 and

B � Sn, n ≥ 6. In this paper, An and Sn are the alternating and symmetric groups on

n letters, respectively, and all groups are assumed to be finite.

2. Preliminary results. Now A6 is a simple group of order 360 and it is easy to

verify that the order of any proper subgroup of A6 is one of the numbers 1, 2, 3, 4, 5,

6, 8, 9, 10, 12, 18, 24, 36, or 60. Therefore the size of sets on which A6 acts transitively

and faithfully is one of the numbers 360, 180, 120, 90, 72, 60, 45, 40, 36, 30, 20, 15,

10, or 6. Also sinceA6 � L2(9),A6 has a 2-transitive action on a set of 10 points and by
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consulting [10] one can see that if A6 acts k-transitively, k≥ 2, on a set of cardinality

m, then either m = 10, k = 2 or m = 6 and k = 2,3, or 4. Now by [14, Lemma 7] we

have the following decomposition.

Lemma 2.1. For n a positive integer, Sn+1 = A6Sn and An+1 = A6An if and only if

n= 5,9,14,19,29,35,39,44,59,71,89,119,179, or 359. We can write A10 =AB where

A � A6 and B � A8. Further, we can write S10 = AB and A10×Z2 = AB where A � A6

and B � S8.

The only nontrivial decomposition Am = AB, where A � A6 and B � An, occurs if

and only if m = n+1, where n is one of the numbers mentioned in Lemma 2.1 or

m = 10 and n = 8. To see this one can use [14, Theorem 9]. Because according to

this theorem one of the groups in the decomposition G = AB, say A, must be a k-

transitive permutation group and according to what we said earlier all the k-transitive

permutation representations of A�A6 are known.

For our work it is necessary to know if it is possible to decompose an alternating

group as the product of A6 and Sn.

Lemma 2.2. It is not possible to decompose the alternating group Am, m≥ 7, as the

product of A6 and a symmetric group Sn, n> 1, unless m= 10 and n= 8.

Proof. According to [9, Theorem D], if Am acts naturally on a set Ω of cardinality

m, and Am =A6Sn, then there are two possibilities.

Case (i). Am−k � Sn ≤ Sm−k×Sk for some k, 1 ≤ k ≤ 5, and A6 is k-homogeneous

on Ω. If k = 1, then Am−1 � Sn ≤ Sm−1 and it is easy to deduce n =m−1. Therefore

An+1 =A6Sn and so, Sn ≤An+1 from which it follows that n= 1 which is not the case.

If k≥ 2 then by [7] A6 can only be k-transitive for k= 2,3, or 4. If k= 2, thenm= 6 or

10. Since we have assumed thatm≥ 7, therefore, ifm= 10, thenA10 =A6Sn and from

A8 � Sn ≤ S8×S2 we obtain n ≥ 8 and the order consideration in A10 = A6Sn leads

to A10 = A6S8. If k = 3 or 4, then m = 6 and again A6 = A6Sn, a contradiction. Since

in [9, Theorem D] the role of Sn and A6 may be interchanged, hence we may assume

that Am−k �A6 ≤ Sm−k×Sk and Sn is k-homogeneous for some 1≤ k≤ 5. However, a

contradiction is obtained in this case again.

Case (ii). m = 6,8, or 10. If m = 6 then A6 = A6Sn, a contradiction. If m = 8,

then A8 = A6Sn from which it follows that n ≥ 7, but it is easy to see that A8 has no

subgroup isomorphic to S7. If m = 10, then A10 = A6Sn from which it follows that

n= 7 or 8.

Now to rule out the case n= 7. We will use [16, Result 1.4]. Using the notation used

in [16] the decomposition A10 = A6S7 is exact and we have p = 7 and |∆| = k = 3

and therefore A6 must be 3-homogeneous which is impossible by [7] unless A6 acts

on Ω, |Ω| = 6 in a natural way and this is also a contradiction. However, if n = 8,

then A10 =A6S8 and this possibility holds because by Lemma 2.1 we have A10 =A6A8

and since A10 has a subgroup isomorphic to S8, namely A8〈(1 2)(9 10)〉 we obtain

A10 =A6S8.

In this paper we also use the following result which can be proved using the sub-

group structure of L2(q) given in [6].
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Table 2.1. Primitive groups of degree k≥ 5, k | 360.

k Groups

5 A5, S5

6 A6, S6, A5

8 A8, S8, L3(2), L3(2).2, GA3(2)
9 A9, S9, L2(8), L2(8).3, GA2(3)
10 A10, S10, A5, S5, A6, S6, M10, PGL2(9), PΓL2(9)
12 A12, S12, M11, M12, L2(11), L2(11).2
15 A15, S15, A6, S6, A7, A8

18 A18, S18, L2(17), L2(17).2
20 A20, S20, L2(19), L2(19).2
24 A24, S24, M24, L2(23), L2(23).2
30 A30, S30, L2(29), L2(29).2
36 A36, S36, A9, S9, M10, PGL2(9), PΓL2(9), L2(8), L2(8).3, U3(3), U3(3).2,

U4(2), U4(2).2, S6(2), A5×A5, A6×A6

40 A40, S40, L4(3), PGL4(3), U4(2), U4(2).2
45 A45, S45, M10, PGL2(9), PΓL2(9), A10, S10, U4(2), U4(2).2
60 A60, S60, L2(59), L2(59).2, A5×A5

72 A72, S72, L2(71), L2(71).2
90 A90, S90, L2(89), L2(89).2
120 A120, S120, S7, S8, A9, A10, S10, L2(16), L2(16).2, PΓL2(16), L3(4), L3(4).21

L3(4).22, L3(4).23, L3(4).22, S4(4), S4(4).2, S6(2), S8(2), O+8 (2), O
+
8 (2).2

180 A180, S180, L2(179), L2(179).2
360 A360, S360, L2(359), L2(359).2, A6×A6

Lemma 2.3. It is not possible to decompose the group L2(q) as the product of A6 and

Sn, where n> 4.

Proof. By [6, page 213] if G = L2(q), q = pf , has a subgroup isomorphic to A6,

then this subgroup must be of the form L2(pm) where m | f . But L2(pm)�A6 if and

only if p = 3 and m= 2, hence G = L2(32k), k≥ 1. But again by [6] a symmetric group

Sn can be a subgroup of G if and only if n≤ 4, a contradiction.

[15, Lemma 3] is essential in this paper and so we will reproduce it here. We mention

that it is not necessary to assume that B is a complete group and our rephrasing of

the lemma is as follows.

Lemma 2.4. Suppose G = AB is such that A is a simple group and B has a unique

proper normal subgroup N which is simple. Let G �� A× B and let M be a minimal

normal subgroup of G. Then one of the following holds:

(i) G =AB =M is a simple group

(ii) G =MB, M =A×N , N �A
(iii) G =MB, M �NA is simple

(iv) M =A or N , [G :AN]= [B :N], AN �A×N
(v) M∩X = 1, |M| | [X :A∩B] for X ∈ {A,B}, |M||A∩B = |AM/M∩BM/M|.

Our work also depends on the primitive groups of certain degrees. Primitive groups

of degree up to 20 were obtained in [11] and up to 1000 in [2]. In Table 2.1, the list
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of all primitive groups of degree k ≥ 5 where k is a divisor of |A6| = 360 is given.

Notation for the names of groups in Table 2.1 is taken from [1].

3. Main results. In this section, using Lemma 2.4, we characterize finite groups

G =AB where A�A6 and B � Sn, n≥ 5. But first we deal with the possibilities which

arise as different cases in Lemma 2.4.

Lemma 3.1. There is no simple groupM such thatM =AB where A�A6 and B � Sn,

n≥ 5, unless M �A10 and n= 8.

Proof. We will assume that M is a simple group having subgroups A � A6 and

B � Sn,n≥ 5, such thatM =AB and derive a contradiction. If C is a maximal subgroup

of G containing B, then M = AC and k = [M : C] = [A : A∩C] | 360. Therefore M is a

primitive simple group of degree k, where k is a divisor of 360 and k≥ 5. By Lemmas

2.2 and 2.3, we know that M cannot be isomorphic to an alternating group or a linear

group L2(g), unless M � A10 for which the decomposition A10 = A6S8 is possible by

Lemma 2.2.

Therefore by Table 2.1 we have the following possibilities for M : M11, M12, M24,

U3(3), U4(2), L4(3), L3(4), S4(4), S6(2), S8(2), O+8 (2). Since 5 � |U3(3)|, therefore

M =U3(3) is impossible. If M =M11 or M12 then 11 | |M| and hence n≥ 11 which im-

plies that 7 | |M| a contradiction. IfM =M24, then 23 | |M| and son≥ 23 implying that

17 | |M|, a contradiction. The same reasoning rules outM = L4(3), S4(4) and S8(2) con-

sidering 13 | |M| in the first case and 17 | |M| in the remaining two cases. IfM =U4(2),
then as |U4(2)| = 26 ·34 ·5= |A6Sn| we must have n= 6 and therefore U4(2)=A6S6,

but by [1]U4(2) has only one conjugacy class of subgroups isomorphic to S6 and hence

by [9, Proposition C, page 31] there is g ∈U4(2) such that U4(2)= Sg6 S6 which by [12,

page 26] is impossible. IfM = L3(4)=A6Sn, then n≥ 7 but by [1] the group L3(4) has

no subgroup isomorphic to S7. If M = S6(2) = A6Sn, then as |S6(2)| = 29 ·34 ·5·7 we

obtain 7≤n≤ 10 and since by [1] the group S6(2) has no subgroup isomorphic to S9

hence n = 7 or 8. But order consideration yields n = 8 and so S6(2) = A6S8. By [1],

the group A6 cannot be contained in a maximal subgroup of the form 25 : S6. Again

by [1], the group S6(2) has only one conjugacy class of subgroups isomorphic to S8

and so S6(2)= Sg8 S8 for some g ∈ S6(2) which is impossible by [12, page 26]. Finally,

if M =A6Sn =O+8 (2), then by [1] n≤ 8 and order consideration gives a contradiction.

Lemma 3.2. Let G be a group such that G = AB where A � A6 and B � An, n ≥ 5,

then either G �A×B or one of the following cases holds:

(i) G =An+1, n= 5,9,14,19,29,35,39,44,59,71,89,119,179, or 359

(ii) G =An, n≥ 6, or

(iii) G =A10, n= 8.

Proof. First suppose that G is simple. By Lemma 2.1 the cases (i) and (iii) are

possible and the case (ii) arise from the trivial factorization ofAn. Now assume that the

simple groupG has the desired decompositionG =A6An,n≥ 5 and letC be a maximal

subgroup ofG containingAn. ThereforeG =A6C andm= [G : C]= [A6 :A6∩C] | 360.
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Maximality of C in G implies that G is a simple primitive permutation group of degree

m where m is a divisor of 360. Now by Table 2.1 we know that simple primitive

permutation groups are alternating groups, sporadic simple groups and simple groups

of Lie type with small orders. We consider the following cases:

(a) The group G is isomorphic to an alternating group. In this case by Lemma 2.1

and what follows after that we obtain all the cases (i), (ii), and (iii) of the lemma.

(b) The group G � L2(q) is a 2-dimensional linear group over the finite field GF(q).
In this case by [3] factorization L2(q)=A6An is possible if and only if n= 6 and q = 9

which gives the trivial factorization.

(c) The group G is isomorphic to a sporadic simple group. In this case by Table 2.1

we have the following possibilities for G =M11,M12,M24. But by [4] the factorization

G =A6Sn, n≥ 5, is not possible for G.

(d) The group G is isomorphic to one of the following linear groups:

U3(3), U4(2), L4(3), L3(4), S4(4), S6(2), S8(2), O+8 (2). Since 5 � |U3(3)| therefore

G ≠ U3(3). If G = S4(4) or S8(2), then since 17 | |G| we must have n ≥ 17 and since

13 � |G| we get a contradiction. If G = L4(3), then 13 | |G| and so n ≥ 13 which is

impossible because 11 � |G|. If G = U4(2) = A6An, then order consideration yields

n= 6. But by [1] the maximal subgroup of U4(2) containing one of the A6 subgroups

is conjugate to an S6 subgroup which is maximal in G. Therefore U4(2)=A6S6 which

is impossible by the proof of Lemma 3.1. If G = L3(4) = A6An, then by [1] n = 6, a

contradiction because 7 | |G|. If G = S6(2)=A6An then since 34 | |G| and S6(2) has no

subgroup isomorphic to A9 we must have n= 8. But G =A6A8 and A8 is contained in

a maximal subgroup of S6(2) isomorphic to S8 and so G = A6S8 which is impossible

by Lemma 3.1. Finally if G =O+8 (2)=A6An, then by [1] n≤ 9 and order consideration

gives a contradiction.

Now suppose that G is not isomorphic to A×B and let 1 �=M be a minimal normal

subgroup of G. By [14, Lemma 1] M is elementary abelian, M ∩A = M ∩B = 1, and

|M| divides 360 the order of A6. Thus M is an elementary abelian subgroup of order

2, 22, 23, 3, 32, or 5. By induction, as G/M = (AM/M)(BM/M) with AM/M � A and

BM/M � B, that G/M is simple. Hence, either C(M)G =M or M ≤ Z(G). Now C(M)G =M
implies that A6 ≤Aut(M), contrary to the possibilities forM . NowM = Z(G) and G/M
is an alternating group. It follows that G is a covering group of an alternating group,

contrary to [14, Theorem 10].

Theorem 3.3. Let G be a group such that G =AB, A�A6 and B � Sn, n≥ 5. Then

one of the following cases occurs:

(a) G �A6×Sn
(b) G �A10 �A6S8, n= 8

(c) G � (A6×A6)〈τ〉, τ an automorphism of order 2 and A6×A6 is the minimal

normal subgroup of G, n= 6

(d) G � Sn+1, n= 5,9,14,19,29,35,39,44,59,71,89,119,179,359

(e) G � Sn, n≥ 6

(f) G �A10×Z2, n= 8

(g) G � (A6×An)〈τ〉, n ≥ 5, where τ acts as an automorphism of order 2 on both

factors.
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Proof. Our proof is based on the results of Lemma 2.4 and here we use the same

notation used in this lemma. Therefore, letM be a minimal normal subgroup of G and

note that N �An. If G ��A×B, then one of the following possibilities occurs:

(1) M = G = AB is a simple group. In this case by Lemma 3.1 we have M � A10 and

n= 8 and case (b) occurs.

(2) G =MB, M �A6×N , N �A6.

In this case n = 6 and G � A6S6, S6 acts on A6 by conjugation and A6×A6 is the

minimal normal subgroup of G and this is case (c) in the theorem.

(3) G = MB, M � A6An is simple. In this case by Lemma 3.2 three cases occur.

If M = An+1, n = 5,9,14,19,29,35,39,44,59,71,89,119,179, or 359, then the same

reasoning used in the proof of [15, Theorem 4] yields case (d). IfM =An, then G = Sn,

n ≥ 6 and this is the case (e). If M = A10 and n = 8, then a simple argument forces

G � S10 or A10×Z2. If G � S10 we have case (e) again. If we consider the alternating

group A10 on the set {1,2, . . . ,10}. Then since A6 has a 2-transitive action on 10 letters

we obtain A10 =A6A8 where A8 is the pointwise stabilizer of the set {9,10}. Now the

set stabilizer of {9,10} is isomorphic to S8 and is a subgroup of A10 containing this

A8. Therefore A10〈(9 10)〉 = A6A8〈(9 10)〉 implying A10 × Z2 � A6S8 which is the

case (f).

(4) M = A6 or An,[G : A6An] = 2, A6An � A6×An. In this case G � (A6×An) · 〈τ〉
where τ acts as an outer automorphism of order 2 on both factors and this is the

case (g).

(5) M∩A= 1, M∩B = 1 and |M| divides |A6|.
SinceM is isomorphic to a direct product of simple groups eitherM is isomorphic to

A6,A5 orM is elementary abelian of order 2, 22, 23, 3, 32, or 5. IfM �A6, then asMSn ≤
G and M∩B = 1, G =MB � A6Sn with A6 as a minimal normal subgroup. This is the

case (4) treated above. Consider C(M)G . Suppose thatA∩C(M)G = 1. ThenA is isomorphic

to a subgroup of Aut(M). Considering the possibilities forM , this is impossible. Thus,

A ≤ C(M)G and by the modular law C(M)G = A(B∩C(M)G ). Now since B∩C(M)G is a normal

subgroup of B, we must have either B∩C(M)G = 1, B, or B∩C(M)G � An. If B∩C(M)G = 1,

then as before B is isomorphic to a subgroup of Aut(M), contrary to the possibilities

forM unlessM �A5 andn= 5. NowAM has index 2 inG, soAM = C(M)G ×M is a normal

subgroup of G. This is case (4), above. If B∩C(M)G �An, then C(M)G is as in Lemma 3.2.

However, none of these groups has a nontrivial center, a contradiction. Thus, we must

have B ≤ C(M)G and M ≤ Z(G) and hence, M has prime order. By induction, G/M =
(AM/M)(BM/M) must be in the list, but (AM/M)∩ (BM/M) �= 1 so only the parts

(b), (d), (e), and (f) are possible. If part (e) holds, then we would have G = BM = B×M
contrary to the fact that A has no subgroup of prime index. If part (b) or (d) holds,

then G is the covering group of the symmetric group. Now we can see that BM/M
must contain an involution which is the product of 2-cycles. It is known, see [10], that

such an involution must lift to an element of order 4 in G, contrary to the fact that

M∩B = 1. (Note that BM/M lifts to BM in G, see the argument in [14].) Now suppose

that G/M = A10×Z2 and n = 8. Thus G has a normal subgroup of order 2|M| which

arguing as above must be the center of G. It follows that G is a covering group of A10.

But as the Schur multiplier of A10 has order 2 this is impossible. This completes the

proof.



FACTORIZATION OF GROUPS INVOLVING SYMMETRIC . . . 167

Acknowledgements. We would like to thank Professor Gary L. Walls for his inter-

est and guidance in preparation of this manuscript. We also wish to thank the referee

for his comments concerning improvements in proving Lemma 3.2 and Theorem 3.3.

References

[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite
Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford
University Press, Eynsham, 1985. MR 88g:20025. Zbl 568.20001.

[2] J. D. Dixon and B. Mortimer, The primitive permutation groups of degree less than 1000,
Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 2, 213–238. MR 89b:20014.
Zbl 646.20003.

[3] T. R. Gentchev, Factorizations of the groups of Lie type of Lie rank 1 or 2, Arch. Math.
(Basel) 47 (1986), no. 6, 493–499. MR 87k:20033. Zbl 589.20006.

[4] , Factorizations of the sporadic simple groups, Arch. Math. (Basel) 47 (1986), no. 2,
97–102. MR 88f:20031. Zbl 591.20022.

[5] H. Hanes, K. Olson, and W. R. Scott, Products of simple groups, J. Algebra 36 (1975), no. 2,
167–184. MR 55#10558. Zbl 311.20007.

[6] B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften,
vol. 134, Springer-Verlag, Berlin, 1967 (German). MR 37#302. Zbl 217.07201.

[7] W. M. Kantor, k-homogeneous groups, Math. Z. 124 (1972), 261–265. MR 46#5422.
Zbl 232.20003.

[8] O. H. Kegel and H. Lüneburg, Über die kleine reidemeisterbedingung II, Arch. Math. 14
(1963), 7–10 (German). MR 26#4253. Zbl 108.16302.

[9] M. W. Liebeck, C. E. Praeger, and J. Saxl, The maximal factorizations of the finite simple
groups and their automorphism groups, Mem. Amer. Math. Soc. 86 (1990), no. 432,
iv–151. MR 90k:20048. Zbl 703.20021.

[10] W. R. Scott, Products of A5 and a finite simple group, J. Algebra 37 (1975), no. 1, 165–171.
MR 52#3321. Zbl 317.20012.

[11] C. C. Sims, Computational methods in the study of permutation groups, Computational
Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), Pergamon, Oxford, 1970,
pp. 169–183. MR 41#1856. Zbl 215.10002.

[12] M. Suzuki, Group Theory I, Grundlehren der Mathematischen Wissenschaften, vol.
247, Springer-Verlag, Berlin, 1982, translated from the Japanese by the author.
MR 82k:20001c. Zbl 472.20001.

[13] G. L. Walls, Groups which are products of finite simple groups, Arch. Math. (Basel) 50
(1988), no. 1, 1–4. MR 88k:20049. Zbl 611.20017.

[14] , Nonsimple groups which are the product of simple groups, Arch. Math. (Basel) 53
(1989), no. 3, 209–216. MR 90k:20049. Zbl 672.20011.

[15] , Products of simple groups and symmetric groups, Arch. Math. (Basel) 58 (1992),
no. 4, 313–321. MR 93a:20032. Zbl 764.20015.

[16] J. Wiegold and A. G. Williamson, The factorisation of the alternating and symmetric
groups, Math. Z. 175 (1980), no. 2, 171–179. MR 82a:20008. Zbl 439.20003.

M. R. Darafsheh: Center for Theoretical Physics and Mathematics, AEOI, P.O. Box

11365-8486, Tehran, Iran

Current address: Department of Mathematics and Computer Sciences, Faculty of Sci-

ences, University of Tehran, Tehran, Iran

E-mail address: daraf@khayam.ut.ac.ir

G. R. Rezaeezadeh: Department of Mathematics, Faculty of Basic Sciences, Univer-

sity of Tarbiat Moddares, Tehran, Iran

E-mail address: rezaee@net1cs.modares.ac.ir

http://www.ams.org/mathscinet-getitem?mr=88g:20025
http://www.emis.de/cgi-bin/MATH-item?568.20001
http://www.ams.org/mathscinet-getitem?mr=89b:20014
http://www.emis.de/cgi-bin/MATH-item?646.20003
http://www.ams.org/mathscinet-getitem?mr=87k:20033
http://www.emis.de/cgi-bin/MATH-item?589.20006
http://www.ams.org/mathscinet-getitem?mr=88f:20031
http://www.emis.de/cgi-bin/MATH-item?591.20022
http://www.ams.org/mathscinet-getitem?mr=55:10558
http://www.emis.de/cgi-bin/MATH-item?311.20007
http://www.ams.org/mathscinet-getitem?mr=37:302
http://www.emis.de/cgi-bin/MATH-item?217.07201
http://www.ams.org/mathscinet-getitem?mr=46:5422
http://www.emis.de/cgi-bin/MATH-item?232.20003
http://www.ams.org/mathscinet-getitem?mr=26:4253
http://www.emis.de/cgi-bin/MATH-item?108.16302
http://www.ams.org/mathscinet-getitem?mr=90k:20048
http://www.emis.de/cgi-bin/MATH-item?703.20021
http://www.ams.org/mathscinet-getitem?mr=52:3321
http://www.emis.de/cgi-bin/MATH-item?317.20012
http://www.ams.org/mathscinet-getitem?mr=41:1856
http://www.emis.de/cgi-bin/MATH-item?215.10002
http://www.ams.org/mathscinet-getitem?mr=82k:20001c
http://www.emis.de/cgi-bin/MATH-item?472.20001
http://www.ams.org/mathscinet-getitem?mr=88k:20049
http://www.emis.de/cgi-bin/MATH-item?611.20017
http://www.ams.org/mathscinet-getitem?mr=90k:20049
http://www.emis.de/cgi-bin/MATH-item?672.20011
http://www.ams.org/mathscinet-getitem?mr=93a:20032
http://www.emis.de/cgi-bin/MATH-item?764.20015
http://www.ams.org/mathscinet-getitem?mr=82a:20008
http://www.emis.de/cgi-bin/MATH-item?439.20003
mailto:daraf@khayam.ut.ac.ir
mailto:rezaee@net1cs.modares.ac.ir

