
IJMMS 27:3 (2001) 155–160
PII. S0161171201005919

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

ITERATIVE SOLUTIONS OF K-POSITIVE DEFINITE
OPERATOR EQUATIONS IN REAL UNIFORMLY

SMOOTH BANACH SPACES

ZEQING LIU, SHIN MIN KANG, and JEONG SHEOK UME

(Received 2 October 2000)

Abstract. Let X be a real uniformly smooth Banach space and let T : D(T) ⊆ X → X
be a K-positive definite operator. Under suitable conditions we establish that the iterative
method by Bai (1999) converges strongly to the unique solution of the equation Tx = f , f ∈
X. The results presented in this paper generalize the corresponding results of Bai (1999),
Chidume and Aneke (1993), and Chidume and Osilike (1997).
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1. Introduction and preliminaries. Let X be a real Banach space with a dual space

X∗. The normalized duality mapping J :X → 2X
∗

is defined by

J(x)= {f ∈X∗ : 〈x,f 〉 = ‖x‖2 = ‖f‖2}, x ∈X. (1.1)

It is known that X is uniformly smooth (equivalently, X∗ is uniformly convex) if and

only if J is single-valued and uniformly continuous on any bounded subset of X.

Chidume and Aneke [3] introduced the concept of K-positive definite operators and

established the existence of the unique solution of the equation Tx = f for that oper-

ator in real separable Banach spaces. Meanwhile they constructed, in Lp (or lp) spaces

with p ≥ 2, an iteration method which converges strongly to the unique solution, pro-

vided that T and K commute. Chidume and Osilike [5] gave a new iteration scheme, in

separable q-uniformly smooth Banach spaces, which converges strongly to the unique

solution of the equation Tx = f , f ∈X.

Recently, Bai [1] constructed a more general iteration procedure and improved the

results of [3, 5] to separable uniformly smooth real Banach spaces.

Very recently, Zhou et al. [7] established the following excellent result, which is a

generalization of the main result of Chidume and Aneke [3].

Lemma 1.1 (see [7]). Let X be a real Banach space and let T be a K-positive definite

operator with D(T)=D(K). Then there exists a constant α> 0 such that

‖Tx‖ ≤α‖Kx‖, x ∈D(T). (1.2)

Moreover, the operator T is closed, R(T)=X, and the equation Tx = f for each f ∈X,

has a unique solution.

The purpose of this paper is to study the convergence problem of the iteration pro-

cedure introduced in [1] forK-positive definite operators in real uniformly smooth real
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Banach spaces. Our results extend the corresponding results due to Bai [1], Chidume

and Aneke [3], and Chidume and Osilike [5].

In what follows, we will also need the following concepts and results.

Definition 1.2 (see [3, 7]). Let X be a real Banach space and X1 a subspace of

X. An operator T with domain D(T) ⊇ X1 is called continuously X1-invertible if T ,

as an operator restricted to X1, has a bounded inverse on R(T). A linear unbounded

operator T with domain D(T) in X and range R(T) in X is called K-positive definite if

there exist a continuously D(T)-invertible closed linear operator K with D(A)⊆D(K)
and a constant c > 0 such that

〈
Tu,j(Ku)

〉≥ c‖Ku‖2, u∈D(T), j(Ku)∈ J(Ku). (1.3)

Let X be a real Banach space. Recall that the modulus of smoothness of X is

defined by

ρX(t)= sup
{

1
2

(‖x+y‖+‖x−y‖)−1 : x,y ∈X, ‖x‖ = 1, ‖y‖ ≤ t
}
, t ≥ 0. (1.4)

X is said to be uniformly smooth if limt→0ρX(t)/t = 0. Let p > 1 be a real number. X
is called p-uniformly smooth if there exists a constant r > 0 such that

ρX(t)≤ rtp, t > 0. (1.5)

Hilbert spaces, Lp (or lp) spaces, 1<p <∞, and the Sobolev spacesWm
p , 1<p <∞,

are all p-uniformly smooth. It is well known that the class of p-uniformly smooth real

Banach spaces is a proper subclass of that of uniformly smooth real ones.

Lemma 1.3 (see [4, 6]). Let X be a real uniformly smooth Banach space. Then

(i) there exist some positive constants A and B such that

‖x+y‖2 ≤ ‖x‖2+2
〈
y,J(x)

〉+Amax
{‖x‖+‖y‖,B}ρX(‖y‖), x,y ∈X. (1.6)

(ii) there exists a continuous nondecreasing function b : [0,∞)→ [0,∞) such that

b(0)= 0, b(ct)≤ cb(t), c ≥ 1;

‖x+y‖2 ≤ ‖x‖2+2
〈
y,J(x)

〉+max
{‖x‖,1}‖y‖b(‖y‖), x,y ∈X.

(1.7)

Lemma 1.4 (see [2]). Suppose that {αn}∞n=0, {βn}∞n=0, and {ωn}∞n=0 are nonnegative

sequences such that

αn+1 ≤
(
1−ωn

)
αn+βnωn, n≥ 0, (1.8)

with {ωn}∞n=0 ⊂ [0,1],
∑∞
n=0ωn =∞ and limn→∞βn = 0. Then limn→0αn = 0.

Lemma 1.5 (see [6]). Let X be a real Banach space. Then

(i) ρX(0)= 0, ρX(t)≤ t, t > 0;

(ii) ρX(t) is convex, continuous, and nondecreasing on [0,∞);
(iii) ρX(t)/t is nondecreasing on (0,∞).
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2. Main results

Theorem 2.1. Let X be a real uniformly smooth Banach space and let T : D(T) ⊆
X →X be a K-positive definite operator with D(T)=D(K). Define a sequence {xn}∞n=0

iteratively from any f ∈X and x0 ∈D(T) by

yn = xn+bnvn, xn+1 =yn+anun, n≥ 0; (2.1)

vn =K−1f −K−1Txn, un =K−1f −K−1Tyn, n≥ 0, (2.2)

where {an}∞n=0 and {bn}∞n=0 are arbitrary nonnegative sequences such that

∞∑
n=0

(
an+bn

)=∞; (2.3)

lim
n→∞an = lim

n→∞bn = 0; (2.4)

max
{
an,bn

}≤ 1
2c
, n≥ 0; (2.5)

αAmax
{(

1+αan
)∥∥Kv0

∥∥, (1+αbn)∥∥Kv0

∥∥,B}≤ 2c
∥∥Kv0

∥∥, n≥ 0, (2.6)

where c, α, A and B are the constants appearing in (1.2), (1.3), and (1.6), respectively.

Then the sequence {xn}∞n=0 converges strongly to the unique solution of the equation

Tx = f .

Proof. It follows from Lemma 1.1 that the equation Tx = f has a unique solution

in X. Note that T and K are linear. From (2.1) and (2.2) we have

Kvn+1 = f −Txn+1 =Kun−anTun, n≥ 0; (2.7)

Kun = f −Tyn =Kvn−bnTvn, n≥ 0. (2.8)

In view of (2.8) and (1.2), (1.3), and (1.6), we conclude that

∥∥Kun∥∥2 =
∥∥Kvn−bnTvn∥∥2

≤
∥∥Kvn∥∥2−2bn

〈
Tvn,J

(
Kvn

)〉

+Amax
{∥∥Kvn∥∥+bn∥∥Tvn∥∥,B}ρX(bn∥∥Tvn∥∥)

≤ (1−2cbn
)∥∥Kvn∥∥2

+Amax
{(

1+αbn
)∥∥Kvn∥∥,B}ρX(αbn∥∥Kvn∥∥)

(2.9)

for all n≥ 0. Using (2.7) and (1.2), (1.3), and (1.6), we have

∥∥Kvn+1

∥∥2 =
∥∥Kun−anTun∥∥2

≤
∥∥Kun∥∥2−2an

〈
Tun,J

(
Kun

)〉

+Amax
{∥∥Kun∥∥+an∥∥Tun∥∥,B}ρX(an∥∥Tun∥∥)

≤ (1−2can
)∥∥Kun∥∥2

+Amax
{(

1+αan
)∥∥Kun∥∥,B}ρX(αan∥∥Kun∥∥)

(2.10)
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for all n≥ 0. Set M = ‖Kv0‖. We claim that

max
{∥∥Kvn∥∥,∥∥Kun∥∥}≤M, n≥ 0. (2.11)

By virtue of (2.6), (2.9), and Lemma 1.5, we get that

∥∥Ku0

∥∥2 ≤ (1−2cb0
)∥∥Kv0

∥∥2

+Amax
{(

1+αb0
)∥∥Kv0

∥∥,B}ρX(αb0

∥∥Kv0

∥∥)

≤ (1−2cb0
)
M2+Amax

{(
1+αb0

)
M,B

}
αb0M

≤M2.

(2.12)

That is, (2.11) is true for n= 0. Suppose that (2.11) holds for some n≥ 0. Using (2.10),

(2.6), and Lemma 1.5, we infer that

∥∥Kvn+1

∥∥2 ≤ (1−2can
)∥∥Kun∥∥2

+Amax
{(

1+αan
)∥∥Kun∥∥,B}ρX(αan∥∥Kun∥∥)

≤ (1−2can
)
M2+Amax

{(
1+αan

)
M,B

}
αanM

≤M2.

(2.13)

From (2.6), (2.9), (2.13), and Lemma 1.5, we have

∥∥Kun+1

∥∥2 ≤ (1−2cbn+1
)∥∥Kvn+1

∥∥2

+Amax
{(

1+αbn+1
)∥∥Kvn+1

∥∥,B}ρX(αbn+1

∥∥Kvn+1

∥∥)

≤ (1−2cbn+1
)
M2+Amax

{(
1+αbn+1

)
M,B

}
αbn+1M

≤M2.

(2.14)

Therefore (2.11) holds for all n ≥ 0. Since X is uniformly smooth, by (2.4) and

Lemma 1.5 we conclude that there exist nonnegative sequences {sn}∞n=0 and {tn}∞n=0

such that ρX(αMan)= snan, ρX(αMbn)= tnbn for all n≥ 0 and

lim
n→∞sn = lim

n→∞tn = 0. (2.15)

It follows from (2.5), (2.9), (2.10), and (2.11) that

∥∥Kvn+1

∥∥2 ≤ (1−2can
)(

1−2cbn
)∥∥Kvn∥∥2

+(1−2can
)
Amax

{(
1+αbn

)∥∥Kvn∥∥,B}ρX(αbn∥∥Kvn∥∥)
+Amax

{(
1+αan

)∥∥Kun∥∥,B}ρX(αan∥∥Kun∥∥)

≤ [1−2c
(
an+bn

)+4c2anbn
]∥∥Kvn∥∥2

+Amax{(1+α)M,B}(ρX(αMan)+ρX(αMbn))

≤ [1−c(an+bn)]∥∥Kvn∥∥2+L(ansn+bntn)

(2.16)

for all n≥ 0, where L=Amax{(1+α)M,B}. Let

αn =
∥∥Kvn∥∥2, ωn = c

(
an+bn

)
, βn = Lc rn, n≥ 0, (2.17)
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where

rn =




0, an+bn = 0,
an

an+bn
sn+ bn

an+bn
tn, an+bn 
= 0.

(2.18)

It follows from (2.15) that limn→∞ rn = 0. That is, limn→∞βn = 0. Thus (2.15) can be

rewritten in the form

αn+1 ≤
(
1−ωn

)
αn+ωnβn, n≥ 0. (2.19)

Note that (2.3) and (2.5) mean that
∑∞
n=0ωn=∞,ωn∈[0,1]. Consequently, Lemma 1.4

ensures that αn→ 0 as n→∞. That is,

∥∥Kvn∥∥ �→ 0 as n �→∞. (2.20)

It follows from (2.2) and (2.20) that

∥∥Txn−f∥∥= ∥∥Kvn∥∥ �→ 0 as n �→∞. (2.21)

Note that T has a bounded inverse. Thus (2.21) means that xn → T−1f , the unique

solution of Tx = f . This completes the proof.

Theorem 2.2. Let X, T , K, f , {xn}∞n=0, {yn}∞n=0, {vn}∞n=0 and {un}∞n=0 be as in

Theorem 2.1. Suppose that {an} and {bn}∞n=0 are any nonnegative sequences such

that (2.3), (2.4), and (2.5) and

max
{
b
(
αan

)
,b
(
αbn

)}≤ 2c
max

{
1,
∥∥Kv0

∥∥} , n≥ 0, (2.22)

where b(t) is as in (1.7), α and c are the constants appearing in (1.3) and (1.2), re-

spectively. Then the sequence {xn}∞n=0 converges strongly to the unique solution of the

equation Tx = f .

Proof. Set M =max{1,‖Kv0‖}. As in the proof of Theorem 3 in [1] we have

∥∥Kvn+1

∥∥2 ≤ (1−c(an+bn))∥∥Kvn∥∥2+M3α
(
anb

(
αan

)+bnb(αbn)), n≥ 0. (2.23)

Let

αn =
∥∥Kvn∥∥2, ωn = c

(
an+bn

)
, βn = αc M

3rn, n≥ 0, (2.24)

where

rn =




0, an+bn = 0,

an
an+bn

b
(
αan

)+ bn
an+bn

b
(
αbn

)
, an+bn 
= 0.

(2.25)

It is easily seen that limn→∞βn = 0. The rest of the argument now follows as in

the proof of Theorem 2.1 to yield that xn → T−1f as n → ∞. This completes the

proof.
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Remark 2.3. Theorems 2.1 and 2.2 extend Theorem 3.3 of Bai [1], Theorem 2 of

Chidume and Aneke [3] and Theorem of Chidume and Osilike [5], respectively, in the

following ways:

(a) Condition (2.3) is much weaker than
∑∞
n=0an =∞ of [1].

(b) Lp (or lp) spaces, p ≥ 2, in [3] and q-uniformly smooth Banach space, q > 1, in

[5] are replaced by the more general uniformly smooth Banach spaces.

(c) The commutativity condition of T and K in [3] is dropped.

(d) The iteration methods in [3, 5] are special cases of our iteration method.
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