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Abstract. We study the difference-difference Lotka-Volterra equations in p-adic number
space and its p-adic valuation version. We point out that the structure of the space given
by taking the ultra-discrete limit is the same as that of the p-adic valuation space. Since
ultra-discrete limit can be regarded as a classical limit of a quantum object, it implies
that a correspondence between classical and quantum objects might be associated with
valuation theory.

2000 Mathematics Subject Classification. 35Q53, 12J20, 12H25, 81Sxx.

1. Introduction. In soliton theory, difference-difference equations, whose domain

space-time are given by integers, and the ultra-discrete difference-difference equa-

tions, whose, all, domain and range are given by integers, are currently studied

[12, 24, 25]. In the field, it remains the problem of what is the ultra-discrete.

On the other hand, recently number theory and physics might be considered as a

missing link of each other. For example, a set of geodesics in a compact Riemannian

surface with genus g ≥ 2 are investigated in the framework of chaos because any

geodesics, or orbits, part from each other due to its negative curvature [1, 22] (whereas

the Jacobi varieties of the Riemannian surfaces are completely classified by a soliton

equation [18]). By quantization of the orbits, there appears quantum chaos and, as it is

very mysterious, its partition function has a very similar structure as zeta functions

in number theory [1, 22]. (Level statistics in quantum chaos is also connected with

integrable systems [21].) Using the resemblance of zeta functions, Connes proposed

a kind of unification of number theory and quantum statistical physics in order to

solve the Riemannian conjecture of the zeta-function [2, 5].

Further on the discrimination problem of integrability of Hamiltonian systems,

there appears Galois theory in the category of differential equations [17], which plays

the same role in the category of the number theory.

Thus in order to know what is the integrability or quantization, it is not surprising

that there appears integer theory in physics. In fact, there are many other studies

pointing out that the p-adic number theory and non-archimedean valuation theory

are closely related to statistical and quantum physics [3, 20, 26], even though p-adic

space has a metric which differs from euclidean sense. These correspondences might

imply that there is a deep hidden symmetry behind physics and number theory and

give a novel step to mathematical physics.

Thus I believe that it is very important to interpret such current development of

soliton theory using p-adic number theory and non-archimedean valuation theory. In
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this article, we mainly deal with the Lotka-Volterra equation as a typical difference-

difference soliton equation. We show that even in p-adic space of the number theory,

the difference-difference Lotka-Volterra equation has mathematical meanings and has

nontrivial solutions in Proposition 5.2. It means that in p-adic space, we can deal with

the soliton equation as we do in real number space. In Proposition 5.3, we consider

the p-adic valuation version of the p-adic equation. It is surprising that the formal

structure of the equation is the same as the ultra-discrete difference-difference Lotka-

Volterra equation. We will compare the ultra-discrete soliton system and the p-adic

valuation version of the p-adic soliton system. It is shown that the ultra-discrete limit

is similar to the p-adic valuation and should be regarded as a non-archimedean valu-

ation.

Since the ultra-discrete limit can be considered as a classical limit of a quantized

object or zero temperature limit of statistical mechanical object, the relation between

ultra-discrete limit and p-adic valuation implies that correspondence between classi-

cal and quantum objects might be concerned with valuation theory.

In this article we start with a preliminary of p-adic number theory in Section 2. Sec-

tions 3 and 4 review the recent development of difference-difference soliton theory

and the ultra-discrete soliton theory for the Lotka-Volterra equations, respectively,

[25]. In order to compare the p-adic valuation with the ultra-discrete limit, we will

slightly modify the definitions of the ultra-discrete limit given in [23, 25]. In Section 5,

after we formally construct a p-adic difference-difference Lotka-Volterra equation,

we prove its existence and explicit forms of its solutions. We show the resemblance

between the p-adic valuation of the p-adic difference-difference Lotka-Volterra equa-

tion and the ultra-discrete difference-difference Lotka-Volterra equation. In order to

study the ultra-discrete system from the point of view of valuation theory, we define

the ultrametric induced from the ultra-discrete limit. Section 6 is devoted to investi-

gate the space of ultra-discrete limit. We comment upon physical and mathematical

meanings of the ultra-discrete limit and ultrametric.

2. Preliminary: p-adic space. We review the p-adic valuation and its related topics

for a prime number p [3, 4, 14, 16, 20, 26]. For a rational number u∈Q which is given

by u= (v/w)pm (v and w are coprime to the prime number p and m is an integer),

we define a symbol [[u]]p := pm. Here we define the p-adic valuation.

Definition 2.1. We define a map from Q to a set of integers Z; for u∈Q,

ordp(u) := logp[[u]]p, for u≠ 0, ordp(u) :=∞, for u= 0. (2.1)

We call its image p-adic valuation of u.

This valuation has the following properties (Ip).

Proposition 2.2 (Ip). For u,v ∈Q,

(1) ordp(uv)= ordp(u)+ordp(v).
(2) ordp(u+v)≥min(ordp(u),ordp(v)).
If ordp(u)≠ ordp(v), ordp(u+v)=min(ordp(u),ordp(v)).

Proof. From the definition, they are obvious [3, 4, 14, 20, 26].



p-ADIC DIFFERENCE-DIFFERENCE LOTKA-VOLTERRA EQUATION . . . 253

The property (Ip)(1) means that ordp is a homomorphism from the multiplicative

groupQ× ofQ to the additive group Z. Thep-adic metric is defined by |v|p := p−ordp(v)

which has the following properties (IIp) (see [4, 26]).

Proposition 2.3 (IIp). For u,v ∈Q,

(1) if |v|p = 0 then v = 0.

(2) |v|p ≥ 0.

(3) |vu|p = |v|p|u|p .

(4) |u+v|p ≤max(|u|p,|v|p)≤ |u|p+|v|p .

Proof. From the definition, they are also obvious [3, 4, 14, 20, 26].

Remark 2.4. (1) The p-adic field Qp is given as a completion of Q with respect to

this metric so that properties (Ip) and (IIp) survive for Qp .

(2) The integer part Zp ofQp is a “localized ring” and has only prime ideals {0} and

pZp .

(3) As the properties of p-adic metric, the convergence condition of the series∑
mxm is identified with the vanishing condition of the sequence |xm|p → 0 form→∞

due to the relationship [4, 16, 26],

∣∣∣∣∣
∑

m:finite sum

xm

∣∣∣∣∣
p
=max

∣∣xm∣∣p. (2.2)

Remark 2.5. We define |u|∞ as a natural metric or absolute value over the real field

R, |u|∞ := |u|, and R is regarded as a field over the∞ point of prime numbers; we will

denote R by Q∞. Then we have a relation for any nonzero u∈Q,

∏
p∈A

|u|p = 1, (2.3)

where A is {2,3,5,7,11,13, . . . ,∞}. This is an adelic property of p-adic metric [16, 26].

3. Difference-difference Lotka-Volterra equation. In this section, we deal with the

difference-difference Lotka-Volterra equation [12, 25]. Along the line of the arguments

of [25], it can be regarded as the difference-difference analogue of the Korteweg-de

Vries (KdV) equation,

∂tu+6u∂su+∂3
s u= 0, (3.1)

where ∂t := ∂/∂t and ∂s := ∂/∂s and u=u(s,t) whose domain (t,s) is R2.

Definition 3.1. The difference-difference Lotka-Volterra equation is given as [12],

cm+1
n
cmn

= 1+δcmn−1

1+δcm+1
n+1

, (3.2)

for a real parameter δ∈R and {cmn ∈R |n, m∈Ω}, where Ω is a subset of Z2.

We note that this equation (3.2) has the trivial solutions in which cmn = c for a

constant c and all n and m in Ω.
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Equation (3.2) is related to the bilinear difference-difference equation (3.3) [8, 11,

12, 25].

Lemma 3.2. For the set {τmn } whose elements hold the bilinear relation,

τm+1
n+1 τmn −(1+δ)τmn+1τm+1

n +δτmn−1τ
m+1
n+2 = 0, (3.3)

there is a solution of the difference-difference Lotka-Volterra equation (3.2),

cmn =
τmn−1τ

m+1
n+2

τmn τm+1
n+1

. (3.4)

Proof. The proof is given by direct computations [12, 25].

This lemma is used for the next proposition.

Proposition 3.3. There exist nontrivial solutions of (3.2) for n,m∈ Z.

Proof. This proposition is proved by a construction of a special solution. For

example, the two-soliton solution is expressed as [11, 23],

τmn = 1+eη1(m,n)+eη2(m,n)+Aeη1(m,n)+η2(m,n), (3.5)

where ka, ωa η0
a (a= 1,2) are real numbers satisfying,

ηa(m,n)= kan−ωam+η0
a,

eωa = 1+δ(eka+1
)

1+δ(e−ka+1
) ,

A= sinh2 [(k1−k2
)
/2
]

sinh2 [(k1+k2
)
/2
] .

(3.6)

The direct substitution of (3.5) into (3.3) shows that the left-hand side of (3.3) vanishes.

Using Lemma 3.2, the proposition is proved.

We note that we have more general solutions [8, 11, 25].

4. Ultra-discrete space. Next we introduce the ultra-discrete limit following [25],

which is currently studied in soliton theory. In order to make our argument easy, we

will slightly modify the definition of ultra-discrete limit mentioned in [25].

Let �[β] be a set of nonnegative real-valued functions over {β∈R>0} where R>0 is

a set of positive real numbers.

Definition 4.1. We define a correspondence ordβ : �[β] ∪ {0} → R+∞. We set

ordβ(0)=∞ for zero and for u∈�[β], if exists

ordβ(u) :=− lim
β→+∞

1
β

log(u). (4.1)

We call this value ultra-discrete limit of u.

Choose a subset �[β] of �[β] so that for u ∈ �[β], ordβ(u) has a finite value. We

identify the elements u of �[β] such that ordβ(u) =∞ with the zero element, u ≡ 0.
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Typically the ultra-discrete behaves like,

ordβ
(
e−βA+e−βB)=min(A,B), (4.2)

for positive numbersA and B. Hence we note that this map ordβ has the properties (Iβ).

Proposition 4.2 (Iβ). For u,v ∈�[β]∪{u≡ 0},
(1) ordβ(uv)= ordβ(u)+ordβ(v).
(2) ordβ(u+v)=min(ordβ(u),ordβ(v)).

Proof. They are directly derived from Definition 4.1 (see [25]).

We note that this is a non-archimedean valuation because for A> B, there does not

exist a finite integer n such that ordβ(e−βA) < ordβ(ne−βB) [4, 14, 26]. It should be

noted that this valuation is similar to the property Ip of p-adic valuation in Proposition

2.2. Thus we will refer to it as the ultra-valuation.

By introducing new variables fmn :=−ordβ(cmn ) and d :=−ordβ(δ) [23], we have an

ultra-valuation version of the difference-difference Lotka-Volterra equation (3.2) for

cmn ∈�[β] and δ∈�[β].

Definition 4.3 (see [25]). The ultra-discrete difference-difference Lotka-Volterra

equation is given by

fm+1
n −fmn =max

(
0,fmn−1+d

)−max
(
0,fm+1

n+1 +d
)

(4.3)

for {fmn ∈R |n, m∈Ω} and δ∈R.

This equation also has the trivial solution in which all fmn ’s vanish.

Proposition 4.4. The ultra-discrete difference-difference Lotka-Volterra equation

has a nontrivial solution.

Proof. We scale these variables ka, ωa, and η0
a in (3.6) by β, (i.e., βka, βω, and

βη0
a) and define δ := e−β [23]. Then fmn :=−ordβ(cmn ) and d :=−ordβ(δ) for (3.4) and

(3.5) satisfy

fmn −fm+1
n = ordβ

(
1+δcmn−1

)−ordβ
(
1+δcm+1

n+1

)
. (4.4)

Equation (4.3) is reduced from (4.4). Propositions 3.3 and 4.2 show this proposition.

This is also an integrable equation [25]. Of course, when the f ’s are given by quan-

tities of integers times d, respectively, we can normalize it as d= 1 by dividing by d.

Then the range of these solutions is given by the set of integers Z. However, we also

remark that the set {fmn } does not have the ring structure induced from (4.3); it has

only a structure of additive groups. Thus the set is not directly concerned with integer

theory as a theory of commutative rings.

5. p-adic difference-difference Lotka-Volterra equation. In this section, we show

that even in the p-adic space, difference-difference Lotka-Volterra equation can be

defined.

First we formally introduce a p-adic difference-difference Lotka-Volterra equation

for a p-adic series {cmn ∈Qp} (p ≠ 2).
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Definition 5.1. We define thep-adic difference-difference Lotka-Volterra equation

for a p-adic series {cmn ∈Qp} (p ≠ 2),

cm+1
n
cmn

= 1+δpcmn−1

1+δpcm+1
n+1

, (5.1)

where δp ∈ pZp .

Proposition 5.2. There exist nontrivial solutions of (5.1) for n,m∈ Z, which differs

from a solution of all constant values cmn = c for all n and m.

Proof. This proposition is also proved by a construction of a special solution.

Since the formal function structure (5.1) and (3.2) are the same. Thus it is obvious

that (5.1) is also formally reduced to a bilinear equation; the set {cmn }, whose element

given by

cmn =
τmn−1τ

m+1
n+2

τmn τm+1
n+1

, (5.2)

is a formal solution of (5.1) if τmn ’s satisfy

τm+1
n+1 τmn −(1+δ)τmn+1τm+1

n +δτmn−1τ
m+1
n+2 = 0. (5.3)

Further there formally exists the two-soliton solution

τmn = 1+eη1(m,n)+eη2(m,n)+Aeη1(m,n)+η2(m,n), (5.4)

where
ηa(m,n)= kan−ωam+η0

a,

eωa = 1+δp
(
eka+1

)
1+δp

(
e−ka+1

) ,

A= sinh2 [(k1−k2
)
/2
]

sinh2 [(k1+k2
)
/2
] .

(5.5)

Accordingly, we must check the well-definedness of these formal solutions.

Noting that from Remark 2.4(3), pZp is the domain of the exponential function and

1+pZp is the domain of the logarithm function [26]. Further addition of elements of

pZp belongs to pZp because pZp is an ideal [16, 26].

Let ka and η0
a (a= 1,2) be elements of pZp . Suppose that ωa (a= 1,2) belongs to

pZp . Then ηa(m,n) in (5.5) belongs to pZp by the properties of ideal, and is in a do-

main of exponential function inp-adic space. Hence exp(ηa(m,n)) and exp(η1(m,n)+
η2(m,n)) have values as functions over p-adic field.

Thus consider the value of ωa. On the transcendental equation of ωa for a given

ka in (5.5),

ωa = log
1+δp

(
eka+1

)
1+δp

(
e−ka+1

) , (5.6)

(1+δp(eka +1))/(1+δp(e−ka +1)) can be expanded in p-adic space and belongs to

1+pZp . Since the range of the logarithm function for 1+pZp is pZp , ωa has a value

in pZp . Hence the above assumption that ωa belongs to pZp is correct.

Similarly, using p ≠ 2, (k1±k2)/2 belongs to pZp and sine-hyperbolic function of

pZp has a value in 1+pZp . Thus A in (5.5) can also be computed.
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Hence the p-adic version τmn in (5.4) and cmn has a finite value in p-adic space. In

other words, one- and two-soliton solutions exist in (5.1).

Furthermore, we can construct other soliton solutions for p-adic equation (5.1) fol-

lowing the procedure in [6, 7, 8, 11, 25].

As the p-adic difference-difference Lotka-Volterra equation is well defined, we can

consider the p-adic valuation of the equation.

Proposition 5.3. For the solutions of thep-adic difference-difference Lotka-Volterra

equation cmn (5.1), we let fmn :=−ordp(cmn ) and dp :=−ordp(δp).
(1) (5.1) is reduced to

fmn −fm+1
n = ordp

(
1+δpcmn−1

)−ordp
(
1+δpcm+1

n+1

)
. (5.7)

(2) When fmn ≠−dp , (5.7) becomes

fm+1
n −fmn =max

(
0,fmn−1+dp

)−max
(
0,fm+1

n+1 +dp
)
. (5.8)

Proof. The proof is obvious.

Remark 5.4. (1) It is also surprising that (5.8) has the same form as the ultra-

discrete difference-difference Lotka-Volterra equation (4.3). We conclude that the

structure of the ultra-discrete limit has the same as that in p-adic analysis.

(2) The well-definedness of the p-adic Lotka-Volterra equation is also valid for the

case of p = 2. For the case of p = 2, since 4Z2 is the domain of exponential function,

δ2, ka, and η0
a (a= 1,2) belong to 4Z2. Further, though ka must also be satisfied with

k1±k2 ∈ 8Z2, we can argue it in a similar way.

6. Ultra-discrete metric from the point of view of valuation theory. As we saw

the similarity between ultra valuation and p-adic valuation, we will construct the

ultrametric following the definition of p-adic metric.

Since soliton theory is defined over the field whose characteristic is zero, we might

regard it as a theory over Q∞. However, it should be also noted that since the ultra-

valuation is a natural non-archimedean valuation of �[β], another real-valued metric

is naturally defined in �[β], which differs from the ordinary metric |x|∞ ≡ |x| in Q∞.

By introducing a real number β̄� 1, a quantity is defined for x ∈�[β]∪{u≡ 0} as,

|x|β := (e−β̄)ordβ(x), (6.1)

which is a kind of exponential valuation [14]. We call this ultrametric since it is a

metric.

Proposition 6.1 (IIβ). For u,v ∈�[β]∪{u≡ 0}, the ultrametric |u|β and |v|β have

the following properties:

(1) |u|β depends upon β̄.

(2) If |v|β = 0, v = 0.

(3) |v|β ≥ 0.

(4) |vu|β = |v|β|u|β.

(5) |u+v|β ≤ |u|β+|v|β.



258 SHIGEKI MATSUTANI

Proof. They are obvious from definition (6.1).

Remark 6.2. (1) The ultra-discrete limit and the p-adic valuation are given by

ordβ(u)= lim
β→+∞

loge−β(u), ordp(v)= logp[[v]]p, (6.2)

for u ∈ �[β] and v ∈ Qp , (u ≠ 0, v ≠ 0). Here e−β|β→∞ plays the same role of p.

However it should be noted that since this ultra valuation is defined in R, |x|β is

defined by (e−β̄)ordβ(x) rather than (e−β̄)−ordβ(x) whereas |x|p = p−ordp x .

(2) Since x ∈�[β] has a finite value at β→∞, we have the relation

|x|β|β̄∼∞ ∼ exp
(
− β̄
(
− logx

β

))∣∣∣∣
β̄∼β∼∞

= |x|β̄/β|β̄∼β∼∞. (6.3)

As it is not completely guaranteed, it may be regarded that |x|β ∼ |x|, in essence, by

synchronizing β̄ and β in (6.3). It implies that the ultrametric |x|β might be equivalent

to the natural metric at Q∞.

(3) In this metric, the convergence condition of series is also equivalent with the

vanishing condition of sequences and we have the relation,

∣∣∣∣∣
∑
m
xm

∣∣∣∣∣
β
= e−β̄min(ordβ(xm)). (6.4)

We should note that this metric appears in the low temperature treatment of statis-

tical physics and in the semi-classical treatment of path integral [9, 10]. For the low

temperature limit β̄∼ β= 1/T , T → 0 or the classical limit of deformation parameter

β̄∼ β= 1/�, �→ 0, only the minimal point survives and contributes to zero tempera-

ture or classical phenomena.

Thus although the ultra-discrete limit is sometimes called “quantization,” as a

terminology of discretization in digital picture, in the soliton theory, it should be

regarded as low temperature limit of statistical mechanical phenomena or classical

limit of quantum phenomena. (The reason why the domain of �[β] must be nonnega-

tive might be related to the positiveness of the probability.)

From quantum mechanical point of view, it must be emphasized that the classical

regime appears as a non-archimedean valuation, which is an algebraic manipulation.

It implies that classical limit might be regarded as valuation of a localized ring.

(In this analogy, we might regard that Z is in a classical regime whereasQp ’s (p ∈ A)
are of quantum world in number theory.)

(4) It is known that some of the properties in the q analysis can be regarded as those

in p-adic analysis by setting q = 1/p [26]. We have correspondences among p, q, and

eβ as,

e−β⇐⇒ p (β∼∞), p⇐⇒ 1
q
, q⇐⇒ eβ (β∼ 0). (6.5)

(5) There might arise a question why the ultra-discrete limit is related to integer-

valued solutions for a soliton equation. Function form of finite type solution of (3.1)

including soliton solution is completely determined at the infinity point of the spec-

tral parameters k =∞ [6, 15]. The soliton solution is given by exponential functions
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whose power is polynomial of (k,s,t) owing to the algebraic properties of soliton

solutions. Since polynomial of integer-valued (k,s,t) is also integer, ultra-discrete

limit is associated with integer-valued solutions.

Finally, we hope that the correspondence between p-adic and ultra-discrete struc-

tures might have an effect on the studies of relations between soliton theory and

number theory [13, 19] and more generally between physics and number theory [2, 3,

5, 20, 26].
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