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1. Introduction. The role of Hilbert polynomials in commutative algebra and alge-

braic geometry is well known. A similar role in differential algebra is played by differ-

ential dimension polynomials. The notion of a differential dimension polynomial was

introduced by Kolchin in [6], but the problems and ideas that had led to this concept

have essentially more long history. Actually, the differential dimension polynomial

describes in exact terms the freedom degree of a dynamic system as well as the num-

ber of arbitrary constants in the general solution of a system of algebraic differential

equations. The first attempts of such a description were made in the 19th century

by Jacobi [3] who estimated the number of algebraically independent constants in the

general solution of a system of ordinary linear differential equations. Later on, Jacobi’s

results were extended to some nonlinear systems, but in the general case the problem

of such estimation (known as the problem of Jacobi’s bound) remains open.

Differential algebra as a separate area of mathematics is largely due to its founder

Ritt (1893–1951) and Kolchin (1916–1991). In 1964 Kolchin proved his famous theo-

rem on differential dimension polynomial (see Theorem 2.1 below) that lies in the

foundation of the theory of differential dimension. At the International Congress of

Mathematicians in Moscow (1966) Kolchin formulated the main problems and outlined

the most perspective directions of research connected with the differential dimension

polynomial. Later on the results obtained in this area were included into his famous

monograph [7] that hitherto remains the most fundamental work on differential

algebra.

Discussing the history of creation of the differential dimension theory, one should

note that in 1953 Einstein [2] introduced a concept of strength of a system of differen-

tial equations as a certain function of integer argument associated with the system. In

1980 Mikhalëv and Pankrat’ev [12] showed that this function actually coincides with

the appropriate differential dimension polynomial and found the strength of some

well-known systems of partial differential equations using methods of differential

algebra.
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The intensive study of Kolchin’s differential dimension polynomials began at the

end of the sixties with the series of works by Johnson [4, 5, 15] who developed the

technique of dimension polynomials for differential modules and applied it to the

study of some classical problems of differential algebra. In particular, he character-

ized the Krull dimension of finitely generated differential algebras, developed the

theory of local differential algebras, and proved a special case of Janet conjecture.

A number of interesting properties and applications of differential dimension poly-

nomials were found by Kondrat’eva, Levin, Mikhalëv, Pankrat’ev, Sit, and some other

mathematicians (see [9, 10, 11, 12, 13, 14]). One of the most important directions

of this study was the search for new differential birational invariants connected with

the differential dimension polynomials. Here we should mention the results of Sit [13]

who showed that the set of all differential dimension polynomials is well ordered with

respect to some natural ordering and introduced the notion of the minimal differential

dimension polynomial associated with a differential field extension.

In this paper, we introduce a special type of reduction in a ring of differential poly-

nomials over a differential field of zero characteristic whose basic set is represented

as a disjoint union of its subsets. Using the idea of the Gröbner basis method intro-

duced in [1], we develop the appropriate technique of characteristic sets that allows to

prove the existence and outline a method of computation of multivariable dimension

polynomials associated with a finitely generated differential field extension. In par-

ticular, we obtain a generalization of the Kolchin’s theorem and find new differential

birational invariants.

2. Preliminaries. Throughout the paper Z, N, andQ denote the sets of all integers,

all nonnegative integers, and all rational numbers, respectively. By a ring we always

mean an associative ring with a unit. Every ring homomorphism is unitary (maps unit

onto unit), every subring of a ring contains the unit of the ring, and every algebra over

a commutative ring is unitary. Unless otherwise indicated, every field is supposed to

have zero characteristic.

A differential ring is a commutative ring R considered together with a finite set ∆
of mutually commuting derivations of the ring R into itself. The set ∆ is called a basic

set of the differential ring R that is also called a ∆-ring. A subring (ideal) R0 of a ∆-ring

R is called a differential or ∆-subring of R (respectively, differential or ∆-ideal of R) if

R0 is closed with respect to the action of any operator δ∈∆. If a differential (∆-)ring

is a field, it is called a differential (or ∆-)field.

Let R and S be two differential rings with the same basic set∆= {δ1, . . . ,δm}, so that

elements of the set ∆ act on each of the rings as mutually commuting derivations. A

ring homomorphism φ : R→ S is called a differential or ∆-homomorphism if φ(δa)=
δφ(a) for any δ∈∆, a∈ R.

In what follows, K denotes a differential field whose basic set of derivation oper-

ators ∆ is a union of p disjoint finite sets (p ≥ 1) : ∆ = ∆1
⋃···⋃∆p , where ∆i =

{δi1, . . . ,δimi} (i = 1, . . . ,p and m1, . . . ,mp are positive integers whose sum is equal

to m, the number of elements of the set ∆). In other words, we fix a partition of

the basic set ∆. Let Θi be the free commutative semigroup generated by the ele-

ments of the set ∆i (i = 1, . . . ,p) and Θ the free commutative semigroup generated
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by the whole set ∆. For any element θ = δk11
11 ···δ

k1m1
1m1

δk21
21 ···δ

kpmp
pmp ∈Θ, the numbers

ordi θ =
∑mi
j=1kij (i = 1, . . . ,p) and ordθ = ∑p

i=1 ordi θ will be called the order of θ
with respect to ∆i and the order of θ, respectively. As usual, if θ,θ′ ∈ Θ, we say that

θ′ divides θ if θ = θ′′θ′ for some element θ′′ ∈ Θ. By the least common multiple of

the elements θ1 =
∏p
i=1

∏mi
j=1δ

kij1
ij , . . . ,θq =

∏p
i=1

∏mi
j=1δ

kijq
ij ∈ Θ we mean the element

θ = ∏p
i=1

∏mi
j=1δ

kij
ij , where kij = max{kijl | 1 ≤ l ≤ q} (1 ≤ i ≤ p,1 ≤ j ≤ mi). This

element will be denoted by lcm(θ1, . . . ,θq).
For any r1, . . . ,rp , r ∈ N, the sets {θ ∈ Θ | ordi θ ≤ ri for i = 1, . . . ,p} and {θ ∈ Θ |

ordθ ≤ r} will be denoted by Θ(r1, . . . ,rp) and Θ(r), respectively. Furthermore, we set

Tξ = {θ(ξ) | θ ∈ T} for any ξ ∈K, T ⊆Θ.

Below we will consider p orderings <1, . . . ,<p on Θ defined as follows:

θ = δk11
11 ···δ

k1m1
1m1

δk21
21 ···δ

kpmp
pmp <i θ′ = δl11

11 ···δ
l1m1
1m1

δl21
21 ···δ

lpmp
pmp (2.1)

if and only if the vector (ordi θ,ordθ,ord1θ,. . . ,ordi−1θ,ordi+1θ,. . . ,ordp θ,ki1, . . . ,
kim,k11, . . . ,k1m1 ,k21, . . . ,ki−1,mi−1 ,ki+1,1, . . . ,kpmp) is less than the vector (ordi θ′,
ordθ′,ord1θ′, . . . ,ordi−1θ′,ordi+1θ′, . . . ,ordp θ′, li1, . . . , lim,l11, . . . , l1m1 , l21, . . . , li−1,mi−1 ,
li+1,1, . . . , lpmp) with respect to the lexicographic order on Nm+p+1.

If R is a differential ring with a basic set ∆ and Σ ⊆ R, then the intersection of all

∆-ideals of R containing the set Σ is, obviously, the smallest ∆-ideal of R containing

Σ. This ideal is denoted by [Σ]. (It is clear that [Σ] is generated, as an ideal, by the

set {Θξ | ξ ∈ Σ}.) If the set Σ is finite, Σ = {ξ1, . . . ,ξq}, we say that the ∆-ideal I = [Σ]
is finitely generated (we write this as I = [ξ1, . . . ,ξq]) and call ξ1, . . . ,ξq differential or

∆-generators of I.
A subfield K0 of the ∆-field K is said to be a differential (or ∆-) subfield of K if

δ(K0) ⊆ K0 for any δ ∈ ∆. If K0 is a ∆-subfield of the ∆-field K and Σ ⊆ K, then the

intersection of all ∆-subfields of K containing K0 and Σ is the unique ∆-subfield of K
containing K0 and Σ and contained in every ∆-subfield of K containing K0 and Σ. It is

denoted by K0〈Σ〉. If K = K0〈Σ〉 and the set Σ is finite, Σ= {η1, . . . ,ηn}, then K is said

to be a finitely generated ∆-extension of K0 with the set of ∆-generators {η1, . . . ,ηn}.
In this case we write K = K0〈η1, . . . ,ηn〉. It is easy to see that the field K0〈η1, . . . ,ηn〉
coincides with the field K0({θηi | θ ∈Θ, 1≤ i≤n}).

Now we can formulate the Kolchin’s theorem on differential dimension polynomial

(see [7, Chapter 2, Theorem 6]). As usual,
(
t
k

)
(k ∈ Z, k ≥ 1) denotes the polynomial

t(t−1)···(t−k+1)/k! in one variable t,
(
t
0

)
= 1, and

(
t
k

)
= 0 if k < 0.

Theorem 2.1. Let K be a differential field with a basic set ∆ = {δ1, . . . ,δm} and

L a differential field extension of K generated by a finite set η = {η1, . . . ,ηn}. Then

there exists a polynomial ωη|K(t) in one variable t with rational coefficients (called a

differential dimension polynomial of the extension) such that

(i) ωη|K(r) = trdegK K({θηj | θ ∈ Θ(r), 1 ≤ j ≤ n}) for all sufficiently large inte-

gers r ;

(ii) degωη|K ≤ m and the polynomial ωη|K(t) can be written as ωη|K(t) =∑m
i=1ai

(
t+i
i

)
, where a0, . . . ,am are some integers;
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(iii) the degree d of the polynomial ωη|K and the coefficients am and ad do not

depend on the choice of the system of ∆-generators η of the extension L/K
(clearly, ad ≠ am if and only if d < m, that is, am = 0). In other words, d,

am, and ad are differential birational invariants of the extension. Moreover,

the coefficient am is equal to the differential transcendence degree of L over

K, that is, to the maximal number of elements ξ1, . . . ,ξk ∈ L such that the set

{θξi | θ ∈Θ, 1≤ i≤ k} is algebraically independent over K.

If Y = {y1, . . . ,yn} is a finite set of symbols, then one can consider the countable set

of symbols ΘY = {θyj | θ ∈Θ, 1≤ j ≤n} (called terms) and the polynomial ring R =
K[{θyj | θ ∈Θ,1≤ j ≤n}] in the set of indeterminates ΘY over the differential field

K. This polynomial ring is naturally viewed as a ∆-ring where δ(θyj)= (δθ)yj (δ∈∆,

θ ∈Θ, 1≤ j ≤n) and the elements of ∆ act on the coefficients of the polynomials of R
as they act in the field K. The ring R is called the ring of differential (or ∆-)polynomials

in the set of differential (∆-)indeterminates y1, . . . ,yn over the ∆-field K. This ring is

denoted by K{y1, . . . ,yn} and its elements are called differential (or ∆-) polynomials.

The set of all terms ΘY will be considered together with p orderings that corre-

spond to the orderings of the semigroup Θ and that are denoted by the same symbols

<1, . . . ,<p . These orderings of ΘY are defined as follows: θyj <i θ′yk (θ,θ′ ∈ Θ,1 ≤
j,k≤n,1≤ i≤ p) if and only if θ <i θ′ or θ = θ′ and j < k.

By the ith order of a termu= θyj we mean the number ordi u= ordi θ. The number

ordu= ord θ is called the order of the term u.

We say that a term u= θyi is divisible by a term v = θ′yj (or u is a multiple of v)

and write v | u, if i= j and θ′ | θ. For any terms u1 = θ1yj, . . . ,uq = θqyj containing

the same ∆-indeterminate yj (1≤ j ≤n), the term lcm(θ1, . . . ,θq)yj is called the least

common multiple of u1, . . . ,uq, it is denoted by lcm(u1, . . . ,uq).
If A ∈ K{y1, . . . ,yn}, A ∉ K, and 1 ≤ i ≤ p, then the highest with respect to the

ordering <i term that appears in A is called the i-leader of the ∆-polynomial A. It is

denoted by u(i)A . If A is written as a polynomial in one variable u(1)A , A = Id(u(1)A )
d+

Id−1(u
(1)
A )

d−1 + ··· + I0 (the ∆-polynomials Id,Id−1, . . . , I0 do not contain u(1)A ), then

Id is called the leading coefficient of the ∆-polynomial A and the partial derivative

∂A/∂u(1)A = dId(u(1)A )
d−1+ (d−1)Id−1(u

(1)
A )

d−2+···+ I1 is called the separant of A.

The leading coefficient and the separant of a ∆-polynomial A are denoted by IA and

SA, respectively.

Definition 2.2. Let A and B be two ∆-polynomials from K{y1, . . . ,yn}. We say that

A has a lower rank than B and write rkA < rkB if either A ∈ K, B ∉ K, or the vector(
u(1)A ,degu(1)A

A,ord2u
(2)
A , . . . ,ordp u

(p)
A
)

is less than the vector
(
u(1)B ,degu(1)B

B,ord2u
(2)
B ,

. . . ,ordp u
(p)
B
)

with respect to the lexicographic order (where u(1)A and u(1)B are com-

pared with respect to <1 and all other coordinates of the vectors are compared with

respect to the natural order on N). If the two vectors are equal (or A ∈ K and B ∈ K)

we say that the ∆-polynomials A and B are of the same rank and write rkA= rkB.

Let K be a ∆-field and G = K〈η1, . . . ,ηn〉 a finitely generated ∆-extension of K with

a set of generators η = {η1, . . . ,ηn}. Then there exists a natural ∆-homomorphism

Φη from the ring of ∆-polynomials K{y1, . . . ,yn} to G such that Φη(a) = a for any
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a ∈ K and Φη(yj) = ηj for j = 1, . . . ,n. If A ∈ K{y1, . . . ,yn}, then the element Φη(A)
is called the value of the ∆-polynomial A at η, it is denoted by A(η). Obviously, the

kernel P of the mapping Φη is a prime ∆-ideal of the ring K{y1, . . . ,yn}. This ideal

is called the defining ideal of η over K or the defining ideal of the ∆-field extension

G = K〈η1, . . . ,ηn〉. It is easy to see that if the quotient field Q of the factor ring R̄ =
K{y1, . . . ,yn}/P is considered as a ∆-field (where δ(u/v) = (vδ(u)−uδ(v))/v2 for

any u,v ∈ R̄), then Q is naturally ∆-isomorphic to the field G. (The appropriate ∆-

isomorphism is identical onK and maps the images of the∆-indeterminatesy1, . . . ,yn
in the factor ring R̄ onto the elements η1, . . . ,ηn, respectively.)

3. Numerical polynomials. A polynomial f(t1, . . . , tp) inp variables t1, . . . , tp (p∈N,

p ≥ 1) with rational coefficients is called numerical if f(t1, . . . , tp) ∈ Z for all suffi-

ciently large (t1, . . . , tp)∈ Zp , that is, there exist s1, . . . ,sp ∈ Z such that f(r1, . . . ,rp)∈ Z
as soon as (r1, . . . ,rp)∈ Zp and ri ≥ si for all i= 1, . . . ,p.

It is clear that any polynomial with integer coefficients is numerical. As an example

of a numerical polynomial with noninteger coefficients one can consider a polynomial

of the form
∏p
i=1

(
ti
mi

)
where m1, . . . ,mp ∈N (p ∈N, p ≥ 1).

If f(t1, . . . , tp) is a numerical polynomial, then deg f and degti f (1 ≤ i ≤ p) will

denote the total degree of f and the degree of f relative to the variable ti, respec-

tively. The following theorem proved in [8] gives the “canonical” representation of a

numerical polynomial in several variables.

Theorem 3.1. Let f(t1, . . . , tp) be a numerical polynomial in p variables t1, . . . , tp ,

and let degti f =mi (m1, . . . ,mp ∈N). Then the polynomial f(t1, . . . , tp) can be repre-

sented in the form

f
(
t1, . . . , tp

)= m1∑
i1=0

···
mp∑
ip=0

ai1···ip

(
t1+i1
i1

)
···

(
tp+ip
ip

)
(3.1)

with integer coefficients ai1···ip (0≤ ik ≤mk for k= 1, . . . ,p) that are uniquely defined

by the numerical polynomial.

In the rest of the section we deal with subsets of Nm where the positive integer m
is represented as a sum of p nonnegative integers m1, . . . ,mp (p ∈N,p ≥ 1). In other

words, we fix a partition (m1, . . . ,mp) of the number m.

If � ⊆ Nm and r1, . . . ,rp ∈ N, then �(r1, . . . ,rp) will denote the set {(a1, . . . ,am) ∈
� | a1+···+am1 ≤ r1,am1+1+···+am1+m2 ≤ r2, . . . ,am1+···+mp−1+1+···+am ≤ rp}.
Furthermore, V� will denote the set of allm-tuples v = (v1, . . . ,vm)∈Nm that are not

greater than or equal to anym-tuple from � with respect to the product order on Nm.

(Recall that the product order on the set Nk (k ∈ N,k ≥ 1) is a partial order ≤P such

that c = (c1, . . . ,ck)≤P c′ = (c′1, . . . ,c′k) if and only if ci ≤ c′i for all i= 1, . . . ,k. If c ≤P c′
and c ≠ c′, we write c <P c′). Clearly, an element v = (v1, . . . ,vm)∈Nm belongs to V�

if and only if for any (a1, . . . ,am)∈�, there exists i∈N, 1≤ i≤m, such that ai > vi.
The following two theorems proved in [8] generalize the well-known Kolchin’s

result on the numerical polynomials associated with subsets of N (see [7, Chapter 0,

Lemma 17]) and give the explicit formula for the numerical polynomials in p variables

associated with a finite subset of Nm.
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Theorem 3.2. Let � be a subset ofNm wherem=m1+···+mp for some nonnega-

tive integersm1, . . . ,mp (p ≥ 1). Then there exists a numerical polynomialω�(t1, . . . , tp)
with the following properties:

(i) ω�(r1, . . . ,rp)= CardV�(r1, . . . ,rp) for all sufficiently large (r1, . . . ,rp) ∈Np (as

usual, CardM denotes the number of elements of a finite set M).

(ii) degω� ≤m and degti ω� ≤mi for i= 1, . . . ,p.

(iii) degω� =m if and only if �=∅. In this case, ω�(t1, . . . , tp)=
∏p
i=1

(
ti+mi
mi

)
.

(iv) ω� is a zero polynomial if and only if (0, . . . ,0)∈A.

The polynomial ω�(t1, . . . , tp) whose existence is stated by Theorem 3.2 is called

the dimension polynomial of the set �⊆Nm associated with the partition (m1, . . . ,mp)
of m. If p = 1, the polynomial ω� is called the Kolchin polynomial of the set �.

Theorem 3.3. Let �= {a1, . . . ,an} be a finite subset ofNm and (m1, . . . ,mp) (p ≥ 1)
a partition of m. Let ai = (ai1, . . . ,aim) (1 ≤ i ≤ n) and for any l ∈ N, 0 ≤ l ≤ n, let

Γ(l,n) denote the set of all l-element subsets of the set Nn = {1, . . . ,n}. Furthermore,

for any σ ∈ Γ(l,p), let āσj =max{aij | i∈ σ} (1≤ j ≤m) and bσj =
∑
h∈σj āσh. Then

ω�

(
t1, . . . , tp

)= n∑
l=0

(−1)l
∑

σ∈Γ(l,p)

n∏
j=1

(
tj+mj−bσj

mj

)
. (3.2)

It is clear that if � ⊆ Nm and �′ is the set of all minimal elements of the set �

with respect to the product order on Nm, then the set �′ is finite and ω�(t1, . . . , tp)=
ω�′(t1, . . . , tp). Thus, Theorem 3.3 gives an algorithm that allows to find a numeri-

cal polynomial associated with any subset of Nm (and with a given partition of m):

one should first find the set of all minimal points of the subset and then apply

Theorem 3.3.

4. Reduction in the ring of differential polynomials. In what follows we keep the

notation and conventions of Section 2. In particular, K{y1, . . . ,yn} denotes the ring

of ∆-polynomials over a differential field K whose basic set ∆ is a union of p disjoint

sets: ∆=∆1
⋃···⋃∆p , where ∆i = {δi1, . . . ,δimi} (1≤ i≤ p).

Definition 4.1. Let A,B ∈K{y1, . . . ,yn} and A ∉K. The ∆-polynomial B is said to

be reduced with respect to A if the following two conditions hold:

(i) B does not contain any term θu(1)A (θ∈Θ,θ ≠ 1) such that ordi(θu
(i)
A )≤ ordi u

(i)
B

for i= 2, . . . ,p.

(ii) If B contains u(1)A , then either ordj u
(j)
B < ordj u

(j)
A for some j (2 ≤ j ≤ p) or

ordi u
(i)
A ≤ ordi u

(i)
B for all i= 2, . . . ,p and degu(1)A

B < degu(1)A
A.

A ∆-polynomial B is said to be reduced with respect to a set of ∆-polynomials

Σ⊆K{y1, . . . ,yn} if B is reduced with respect to every element of Σ.

Definition 4.2. A set of ∆-polynomials Σ ⊆ K{y1, . . . ,yn} is called autoreduced

if Σ
⋂
K =∅ and every element of Σ is reduced with respect to any other element of

this set.

The proof of the following lemma can be found in [7, Chapter 0, Section 17].



MULTIVARIABLE DIMENSION POLYNOMIALS . . . 207

Lemma 4.3. Let Nn = {1, . . . ,n} and let A be an infinite subset of Nm×Nn (m,n∈N,

n≥ 1). Then there exists an infinite sequence of elements ofA, strictly increasing relative

to the product order, in which every element has the same projection on Nn.

This result implies the following statement that will be used below.

Lemma 4.4. Let S be an infinite set of terms in the ring K{y1, . . . ,yn}. Then there

exists an index j (1≤j≤n) and an infinite sequence of termsθ1yj,θ2yj, . . . ,θkyj, . . .∈ S
such that θk | θk+1 for all k= 1,2, . . . .

Theorem 4.5. Every autoreduced set of ∆-polynomials is finite.

Proof. Suppose that Σ is an infinite autoreduced subset of K{y1, . . . ,yn}. Then

Σ contains an infinite set Σ′ such that all ∆-polynomials from Σ′ have different 1-

leaders. Indeed, if it is not so, then there exists an infinite set Σ1 ⊆ Σ such that

all ∆-polynomials from Σ1 have the same 1-leader u. By Lemma 4.3, the infinite set

{(ord2u
(2)
A , . . . ,ordp u

(p)
A ) | A ∈ Σ1} contains a nondecreasing infinite sequence

(ord2u
(2)
A1
, . . . ,ordp u

(p)
A1
) ≤P (ord2u

(2)
A2
, . . . ,ordp u

(p)
A2
) ≤P ··· (A1,A2, . . . ∈ Σ1 and ≤P

denotes the product order on Np−1). Since the sequence {deguAi | i= 1,2, . . .} cannot

strictly decrease, there exists two indices i and j such that i < j and deguAi ≤ deguAj .
We obtain that Aj is reduced with respect to Ai that contradicts the fact that Σ is an

autoreduced set.

Thus, we can assume that elements of Σ have distinct 1-leaders. By Lemma 4.4,

there exists an infinite sequence B1,B2, . . . of elements of Σ such that u(1)Bi | u
(1)
Bi+1

for

i = 1,2, . . . . Let kij = ordj u
(1)
Bi and lij = ordj u

(j)
Bi (2 ≤ j ≤ p). Obviously, lij ≥ kij (i =

1,2, . . . ; j = 2, . . . ,p), so that {(li2−ki2, . . . , lip−kip) | i= 1,2, . . .} ⊆Np−1. By Lemma 4.3,

there exists an infinite sequence of indices i1 < i2 < ··· such that (li12−ki12, . . . , li1p−
ki1p)≤P (li22−ki22, . . . , li2p−ki2p)≤P . . . . Then for any j = 2, . . . ,p, we have

ordj


u(1)Bi2
u(1)Bi1

u(j)Bi1


= ki2j−ki1j+li1j ≤ ki2j+li2j−ki2j = li2j = ordj u

(j)
Bi2
, (4.1)

so that Bi2 contains a term θu(1)Bi1 = u
(1)
Bi2

such that θ ≠ 1 and ordj(θu
(j)
Bi1
) ≤ ordj u

(j)
Bi2

for j = 2, . . . ,p. Thus, the ∆-polynomial Bi2 is reduced with respect to Bi1 that contra-

dicts the fact that Σ is an autoreduced set. This completes the proof of the theorem.

Below, the elements of an autoreduced set will be always arranged in order of in-

creasing rank. (Therefore, if we consider an autoreduced set of ∆-polynomials Σ =
{A1, . . . ,Ar}, then rkA1 < ···< rkAr .)

The following two theorems can be proven precisely in the same way as their clas-

sical analogs (see [7, Chapter 1, Corollary to Lemma 6 and Proposition 3, page 78]).

Theorem 4.6. Let Σ = {A1, . . . ,Ar} be an autoreduced set in the ring K{y1, . . . ,yn}
and let B be a ∆-polynomial. Then there exist a ∆-polynomial B0 and nonnegative in-

tegers pi,qi (1 ≤ i ≤ r ) such that B0 is reduced with respect to Σ, rkB0 ≤ rkB, and∏r
i=1 I

pi
AiS

qi
AiB ≡ B0 (mod[Σ]).
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Definition 4.7. Let Σ= {A1, . . . ,Ar} and Σ′ = {B1, . . . ,Bs} be two autoreduced sets

in the ring of differential polynomials K{y1, . . . ,yn}. An autoreduced set Σ is said to

have lower rank than Σ′ if one of the following two cases holds:

(1) there exists k∈N such that k≤min{r ,s}, rkAi = rkBi for i= 1, . . . ,k−1 and

rkAk < rkBk;
(2) r > s and rkAi = rkBi for i= 1, . . . ,s.
If r = s and rkAi = rkBi for i= 1, . . . ,r , then Σ is said to have the same rank as Σ′.

Theorem 4.8. In every nonempty family of autoreduced sets of differential polyno-

mials there exists an autoreduced set of lowest rank.

Let J be an ideal of the ringK{y1, . . . ,yn}. Since the family of all autoreduced subsets

of J is not empty (e.g., it contains the empty set), Theorem 4.8 shows that the ideal J
contains an autoreduced subset of lowest rank.

Definition 4.9. Let J be an ideal of the ring of differential polynomials K{y1, . . . ,
yn}. Then an autoreduced subset of J of lowest rank is called a characteristic set of

the ideal J.

Theorem 4.10. Let Σ= {A1, . . . ,Ad} be a characteristic set of an ideal J of the ring

of ∆-polynomials R = K{y1, . . . ,yn}. Then an element B ∈ R is reduced with respect to

the set Σ if and only if B = 0.

Proof. Suppose that B ≠ 0. Then B and elements of Σ whose rank is lower than

the rank of B form an autoreduced set Σ′. It is easy to see that Σ′ has a lower rank

than Σ that contradicts the fact that Σ is a characteristic set of the ideal J.

Theorem 4.11. Let J be a cyclic differential ideal of the ring of ∆-polynomials R =
K{y1, . . . ,yn} generated by a linear ∆-polynomial f . Then {f} is a characteristic set of

the ∆-ideal J = [f ].

Proof. First of all, we show that no nonzero element of J is reduced with respect

to f . Let 0 ≠ h ∈ J, and let k be the smallest positive integer such that h can be

written as

h= g1θ1f +···+gkθkf , (4.2)

for some pairwise distinct elements θ1, . . . ,θk ∈ Θ and some g1, . . . ,gk ∈ R. In what

follows, we suppose that k > 1 (clearly, an element of the form gθf (g ∈ R,θ ∈ Θ) is

not reduced with respect to f ) and θ1 <1 ··· <1 θk. Furthermore, it is obvious that

θkf � gj for j = 1, . . . ,k−1 (otherwise, h is a linear combination of k−1 elements from

Θf ).

Since θkf is linear with respect to θku
(1)
f , one can write each ∆-polynomial gj (1≤

j ≤ k−1) as gj = g′j+g′′j (θkf ), where g′j ,g
′′
j ∈ R and g′j does not contain θku

(1)
f . Then

h= g′1θ1f +···+g′k−1θk−1f +gθkf for some g ∈ R.

Since gθkf contains θku
(1)
f and none of g′jθjf (1 ≤ j ≤ k−1) contains this term,

the ∆-polynomial h contains θku
(1)
f and rkf ≤ rkh. Similarly, if θji is the maximal

element of the set {θ1, . . . ,θk} relative to the order <i on Θ (2≤ i≤ p), then h contains

θjiu
(i)
f , so that ordi(θku

(i)
f )≤ ordi(θjiu

(i)
f )≤ ordi u

(i)
h . It follows thath is reduced with
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respect to f and f is an element of the lowest rank in J. Therefore, if Σ= {h1, . . . ,hl} is

a characteristic set of J, then rkf = rkh1 and l= 1, whence {f} is also a characteristic

set of the ideal J.

5. Multivariable differential dimension polynomials and their invariants. Now

we can prove the main theorem on multivariable differential dimension polynomial

that generalizes the classical Kolchin’s result (see Theorem 2.1).

Theorem 5.1. Let K be a differential field whose basic set of derivation operators ∆
is a union of p disjoint finite sets (p ≥ 1): ∆ = ∆1

⋃···⋃∆p , where ∆i = {δi1, . . . ,δimi}
(m1, . . . ,mp are some positive integers). Furthermore, let G =K〈η1, . . . ,ηn〉 be a ∆-field

extension of K generated by a finite set η= {η1, . . . ,ηn}. Then there exists a polynomial

Φη(t1, . . . , tp) in p variables t1, . . . , tp with rational coefficients such that

(i) Φη(r1, . . . ,rp) = trdegK K(
⋃n
j=1Θ(r1, . . . ,rp)ηj) for all sufficiently large (r1, . . . ,

rp)∈ Zp ;

(ii) degti Φη ≤mi (i= 1, . . . ,p) and the polynomial Φη(t1, . . . , tp) can be written as

Φη
(
t1, . . . , tp

)= m1∑
i1=0

···
mp∑
ip=0

ai1···ip

(
t1+i1
i1

)
···

(
tp+ip
ip

)
, (5.1)

where ai1···ip ∈ Z for all i1, . . . , ip .

Proof. Let P be the defining ∆-ideal of the extension G/K and Σ = {A1, . . . ,Ad}
a characteristic set of P . Furthermore, for any r1, . . . ,rp ∈ N, let Ur1···rp = {u ∈ ΘY |
ordi u≤ ri for i= 1, . . . ,p and either u is not a multiple of any u(1)Ai , or for every θ ∈Θ,

A ∈ Σ such that u = θu(1)A , there exists i ∈ {2, . . . ,p} such that ordi(θu
(i)
A ) > ri}. (If

p = 1, we set Ur1 = {u∈ΘY | ord1u≤ r1 and u is not a multiple of any u(1)Ai }.) We are

going to show that the set Ūr1···rp = {u(η) | u ∈ Ur1···rp} is a transcendence basis of

the field K(
⋃n
j=1Θ(r1, . . . ,rp)ηj) over K.

First of all, we show that the set Ūr1···rp is algebraically independent over K. Let g be

a polynomial in k variables (k ∈N, k ≥ 1) such that g(u1(η), . . . ,uk(η)) = 0 for some

elementsu1, . . . ,uk ∈Ur1···rp . Then the∆-polynomial ḡ = g(u1, . . . ,uk) is reduced with

respect to Σ and ḡ ∈ P . Applying Theorem 4.10 we obtain that ḡ = 0. Thus, the set

Ūr1···rp is algebraically independent over K.

Now, we show that every element θηj (1≤ j ≤n, θ ∈Θ(r1, . . . ,rp)) is algebraic over

the field K(Ūr1,...,rp ). Let θηj ∉ Ūr1,...,rp (if θηj ∈ Ūr1,...,rp , the statement is obvious).

Then θyj ∉ Ur1,...,rp whence θyj is equal to some term of the form θ′u(1)Ai (θ′ ∈ Θ,

1≤ i≤ d) such that ordk(θ′u
(k)
Ai )≤ rk for k= 2, . . . ,p. We represent Ai as a polynomial

in u(1)Ai : Ai = I0(u(1)Ai )
e + I1(u(1)Ai )

e−1+···+ Ie, where I0, I1, . . . , Ie do not contain u(1)Ai
(therefore, all terms in these ∆-polynomials are lower than u(1)Ai with respect to the

order <1). Since Ai ∈ P ,

Ai(η)= I0(η)
(
u(1)Ai (η)

)e
+I1(η)

(
u(1)Ai (η)

)e−1
+···+Ie(η)= 0. (5.2)

It is clear that I0 and SAi = ∂Ai/∂u
(1)
Ai are reduced with respect to the set Σ. By
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Theorem 4.10, I0 ∉ P and SAi ∉ P whence I0(η) ≠ 0 and SAi(η) ≠ 0. If we apply the

operator θ′ to both sides of (5.2), the resulted equation will show that the element

θ′u(1)Ai (η) = θηj is algebraic over the field K({θ̄ηl | ordi θ̄ ≤ ri (1 ≤ i ≤ p, 1 ≤ l ≤ n)
and θ̄yl <1 θ′u

(1)
Ai = θyj}). Now, the induction on the set ΘY ordered by the relation

<1 completes the proof of the fact that Ūr1···rp (η) is a transcendence basis of the field

K(
⋃n
j=1Θ(r1, . . . ,rp)ηj) over K.

Let U(1)r1···rp = {u ∈ ΘY | ordi u ≤ ri for i = 1, . . . ,p and u ≠ θu(1)Aj for any θ ∈ Θ;

j = 1, . . . ,d} and U(2)r1···rp = {u∈ΘY | ordi u≤ ri for i= 1, . . . ,p and there exists at least

one pair i, j (1≤ i≤ p,1≤ j ≤ d) such that u= θu(1)Aj and ordi(θu
(i)
Aj ) > ri}. (If p = 1,

then we setU(2)r1···rp =∅.) Clearly,Ur1···rp =U(1)r1···rp
⋃
U(2)r1···rp andU(1)r1···rp

⋂
U(2)r1···rp =∅.

By Theorem 3.2, there exists a numerical polynomial ω(t1, . . . , tp) in p variables

t1, . . . , tp such thatω(r1, . . . ,rp)= Card U(1)r1···rp for all sufficiently large (r1, . . . ,rp)∈ Zp
and degti ω ≤mi (i = 1, . . . ,p). Thus, in order to complete the proof of the theorem,

we need to show that there exists a numerical polynomial φ(t1, . . . , tp) in p variables

t1, . . . , tp such thatφ(r1, . . . ,rp)= Card U(2)r1···rp for all sufficiently large (r1, . . . ,rp)∈ Zp
and degti φ≤mi (i= 1, . . . ,p).

Let ordi u
(1)
Aj = aij and ordi u

(i)
Aj = bij for i = 1, . . . ,p; j = 1, . . . ,d (clearly, aij ≤ bij

and a1j = b1j for i= 1, . . . ,p; j = 1, . . . ,d). Furthermore, for any q = 1, . . . ,p and for any

integers k1, . . . ,kq such that 1 ≤ k1 < ··· < kq ≤ p, let Vj;k1,...,kq (r1, . . . ,rp) = {θu(1)Aj |
ordi θ ≤ ri−aij for i = 1, . . . ,p and ordk θ > rk−bkj if and only if k is equal to one

of the numbers k1, . . . ,kq}. Then CardVj;k1,...,kq (r1, . . . ,rp)=φj;k1,...,kq (r1, . . . ,rp), where

φj;k1,...,kq (t1, . . . , tp) is a numerical polynomial in p variables t1, . . . , tp defined by the

formula

φj;k1,...,kq
(
t1, . . . , tp

)=
(
t1+m1−a1j

m1

)
···

(
tk1−1+mk1−1−ak1−1,j

mk1−1

)

×
[(
tk1+mk1−ak1,j

mk1

)
−
(
tk1+mk1−bk1,j

mk1

)]

×
(
tk1+1+mk1+1−ak1+1,j

mk1+1

)
···

(
tkq−1+mkq−1−akq−1,j

mkq−1

)

×
[(
tkq +mkq −akq,j

mkq

)
−
(
tkq +mkq −bkq,j

mkq

)]

×···
(
tp+mp−apj

mp

)
.

(5.3)

(By Theorem 3.2(iii), Card{θ ∈ Θ | ord1θ ≤ s1, . . . ,ordp θ ≤ sp} =
∏p
i=1

(
si+mi
mi

)
for any

s1, . . . ,sp ∈N.) Clearly, degti φj;k1,...,kq ≤mi for i= 1, . . . ,p.

Now, for any j = 1, . . . ,d, let Vj(r1, . . . ,rp) = {θu(1)Aj | ordi θ ≤ ri−aij for i = 1, . . . ,p
and there exists k ∈ N, 1 ≤ k ≤ p, such that ordk θ > rk −bkj}. Applying the com-

binatorial principle of inclusion and exclusion we obtain that Card Vj(r1, . . . ,rp) =
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φj(r1, . . . ,rp), where

φj(t1, . . . , tp)=
p∑

k1=1

φj;k1(t1, . . . , tp)−
∑

1≤k1<k2≤p
φj;k1,k2

(
t1, . . . , tp

)+···
+(−1)ν−1

∑
1≤k1<···kν≤p

φj;k1,...,kν
(
t1, . . . , tp

)+···
+(−1)p−1φj;1,2,...,p

(
t1, . . . , tp

)
,

(5.4)

and Card U(2)r1···rp is an alternating sum of the terms Card
⋂s
ν=1Vjν (r1, . . . ,rp) (1≤ s ≤

d, 1 ≤ j1 < ··· < js ≤ d). Thus, it is sufficient to prove that Card
⋂s
ν=1Vjν (r1, . . . ,

rp)=φj1,...,js (r1, . . . ,rp), where φj1,...,js (t1, . . . , tp) is a numerical polynomial such that

degti φj1,...,js ≤ mi for i = 1, . . . ,p. If
⋂s
ν=1Vjν (r1, . . . ,rp) ≠ ∅ (so that u(1)Aj1 , . . . ,u

(1)
Ajs

contain the same ∆-indeterminate yi), then let v(j1, . . . ,js) = lcm(u(1)Aj1 , . . . ,u
(1)
Ajs
) and

let the elements γ1, . . . ,γs ∈ Θ be defined by the conditions v(j1, . . . ,js) = γνuAjν
(ν = 1, . . . ,s). In this case,

⋂s
ν=1Vjν (r1, . . . ,rp)= {u= θv(j1, . . . ,js) | ordi u≤ ri for i=

1, . . . ,p, and for any l= 1, . . . ,s, there exists at least one index k∈ {2, . . . ,p} such that

ordk
(
θγlu

(k)
Ajl

)
> rk}. Setting c(i)j1,...,js = ordi v(j1, . . . ,js) (1≤ i≤ p) and applying the principle of inclu-

sion and exclusion once again, we obtain that Card
⋂s
ν=1Vjν (r1, . . . ,rp) is an alternat-

ing sum of terms of the form CardW(j1, . . . ,js ;k11,k12, . . . ,k1q1 ,k21, . . . ,ksqs ;r1, . . . ,rp),
whereW(j1, . . . ,js ;k11,k12, . . . ,k1q1 ,k21, . . . ,ksqs ;r1, . . . ,rp)= {θ∈Θ | ordi θ ≤ ri−c(i)j1,...,js
for i= 1, . . . ,p, and for any l= 1, . . . ,s,ordk θ > rk−c(k)j1,...,js +akjl−bkjl if and only if k
is equal to one of the numbers kl1, . . . ,klql} (q1, . . . ,qs are some positive integers from

the set {1, . . . ,p} and {kiν | 1 ≤ i ≤ s, 1 ≤ ν ≤ qs} is a family of integers such that

2≤ ki1 < ki2 < ···< kiqi ≤ p for i= 1, . . . ,s).
Thus, it is sufficient to show that CardW(j1, . . . ,js ;k11, . . . ,ksqs ;r1, . . . ,rp) =

ψj1,...,jsk11,...,ksqs
(r1, . . . ,rp)whereψj1,...,jsk11,...,ksqs

(t1, . . . , tp) is a numerical polynomial inp variables

t1, . . . , tp such that degiψ
j1,...,js
k11,...,ksqs

≤mi (i = 1, . . . ,p). But this is almost evident: as in

the process of evaluation of CardVj;k1,...,kq (r1, . . . ,rp) (when we used Theorem 3.2(iii) to

obtain formula (5.3)), we see that CardW(j1, . . . ,js ;k11, . . . ,ksqs ;r1, . . . ,rp) is a product

of terms of the form
(rk+mk−c(k)j1 ,...,js−Sk

mk

)
(such a term corresponds to an integer k such

that 1≤ k≤ p and k≠ kiν for any i= 1, . . . ,s, ν = 1, . . . ,qs ; the number Sk is defined as

max{bkjl−akjl | 1≤ l≤ s}) and terms of the form
[(rk+mk−c(k)j1 ,...,js

mk

)−(rk+mk−c(k)j1 ,...,js−Tk
mk

)]
(such a term appears in the product if k is equal to some kiν (1≤ i≤ s,1≤ ν ≤ qs ). In

this case, if ki1ν1 , . . . ,kieνe are all elements of the set {kiν | 1 ≤ i ≤ s,1 ≤ ν ≤ qs} that

are equal to k (1≤ e≤ s,1≤ i1 < ···< ie ≤ s), then Tk is defined as min{bkjiλ −akjiλ |
1≤ λ≤ l}).

The appropriate numerical polynomial ψj1,...,jsk11,...,ksqs
(t1, . . . , tp) is a product of p “el-

ementary” numerical polynomials f1, . . . ,fp where fk (1 ≤ k ≤ p) is either a poly-

nomial of the form
( tk+mk−c(k)j1 ,...,js−Sk

mk

)
or apolynomial of the form

[( tk+mk−c(k)j1 ,...,js
mk

)−( tk+mk−c(k)j1 ,...,js−Tk
mk

)]
. Since the degree of such a product with respect to any variable ti

(1≤ i≤ p) does not exceed mi, this completes the proof of the theorem.
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Definition 5.2. Numerical polynomial Φη(t1, . . . , tp), whose existence is estab-

lished by Theorem 5.1, is called a dimension polynomial of the differential field exten-

sion G = K〈η1, . . . ,ηn〉 associated with the given system of ∆-generators η = {η1, . . . ,
ηn} and with the given partition of the basic set of derivation operators ∆ into p
disjoint subsets ∆1, . . . ,∆p .

In what follows, we will consider different lexicographic orders on a set Np (p is a

positive integer). For any permutation (j1, . . . ,jp) of the set {1, . . . ,p}, we define the cor-

responding lexicographic order≤j1,...,jp onNp as follows: (r1, . . . ,rp)≤j1,...,jp (s1, . . . ,sp)
if and only if either rj1 < sj1 or there exists k∈N, 1≤ k≤ p−1 such that rjν = sjν for

ν = 1, . . . ,k and rjk+1 < sjk+1 . If Σ is a finite subset of Np , then an element e∈ Σ will be

called a lex-maximal element of this set, if e is the maximal element of Σ with respect

to one of the p! lexicographic orders ≤j1,...,jp (where (j1, . . . ,jp) is a permutation of the

set {1, . . . ,p}). The set of all lex-maximal elements of a finite set Σ⊆Np will be denoted

by Σ′. For example, if Σ = {(3,0,2),(2,1,1),(0,1,4),(1,0,3),(1,1,6),(3,1,0),(1,2,0)}
⊆N3, then Σ′ = {(3,0,2),(3,1,0),(1,1,6),(1,2,0)}.

Theorem 5.3. Let K be a differential field whose basic set ∆ is a union of p disjoint

finite sets: ∆=∆1
⋃···⋃∆p (p ≥ 1). Let G be a ∆-field extension of K with the finite set

of ∆-generators η= {η1, . . . ,ηn} and let

Φη
(
t1, . . . , tp

)= m1∑
i1=0

···
mp∑
ip=0

ai1···ip

(
t1+i1
i1

)
···

(
tp+ip
ip

)
(5.5)

be the corresponding dimension polynomial (mi = Card∆i for i = 1, . . . ,p). Further-

more, let

Eη =
{(
i1 ···ip

)∈Np(m1, . . . ,mp
) | ai1···ip ≠ 0

}
. (5.6)

Then the elements (k1, . . . ,kp) ∈ E′η and the corresponding coefficients ak1···kp do not

depend on the choice of the system of ∆-generators η.

Proof. Let ζ = {ζ1, . . . ,ζq} be another system of ∆-generators of G over K and let

Φζ
(
t1, . . . , tp

)= m1∑
i1=0

···
mp∑
ip=0

bi1 ···ip
(
t1+i1
i1

)
···

(
tp+ip
ip

)
(5.7)

be the dimension polynomial of our ∆-field extension associated with the system

of generators ζ. Then there exist positive integers s1, . . . ,sp such that ηi ∈
K(
⋃q
j=1Θ(s1, . . . ,sp)ζj) and ζk ∈K(

⋃n
j=1Θ(s1, . . . ,sp)ηj) (1≤ i≤n, 1≤ k≤ q), whence

Φη(r1, . . . ,rp) ≤ Φζ(r1+ s1, . . . ,rp + sp) and Φζ(r1, . . . ,rp) ≤ Φη(r1+ s1, . . . ,rp + sp) for

all sufficiently large (r1, . . . ,rp) ∈ Zp . It follows that for any element (k1, . . . ,kp) ∈ E′η,

the term
( t1+k1

k1

)···( tp+kpkp

)
appears in Φη(t1, . . . , tp) and Φζ(t1, . . . , tp) with the same

coefficient ak1···kp . This completes the proof of the theorem.

The following example shows that a dimension polynomial of a finitely generated

differential field extension associated with some partition of the basic set of derivation

operators can carry more differential birational invariants of the extension than the

classical Kolchin differential dimension polynomial.
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Example 5.4. Let K be a differential field with a basic set of derivation operators

∆= {δ1,δ2} and let L be a ∆-field extension of K generated by a single ∆-generator η
with the defining equation

δa1δ
b
2η+δa+b2 η= 0, (5.8)

where a and b are some positive integers. In other words, L = K〈η〉 is ∆-isomorphic

to the quotient field of the factor ring K{y}/P , where P is the ∆-ideal of the ring

of ∆-polynomials K{y} generated by the ∆-polynomial f(y) = δa1δb2y +δa+b2 y . Let

ωη/K(t) be the Kolchin differential dimension polynomial of the extension L/K and let

Φη(t1, t2) be the dimension polynomial of this extension associated with the partition

∆ = {δ1}
⋃{δ2}. By Theorem 4.11, {f(y)} is a characteristic set of the ideal P . Using

the notation of the proof of Theorem 5.1, we obtain that U(1)r1r2 = {u ∈ ΘY | ord1u ≤
r1,ord2u≤ r2 and δa1δ

b
2y �u} (so that Card U(1)r1r2 = (r1+1)(r2+1)−(r1+1−a)(r2+

1−b)= br1+ar2+a+b−ab) and U(2)r1r2 = {u= θδa1δb2y | θ ∈Θ(r1−a,r2−b)\Θ(r1−
a,r2 − (a+b))} (so that Card U(2)r1r2 = a(r1 −a+ 1)). Since Φη(r1,r2) = Card U(1)r1r2 +
Card U(2)r1r2 for all sufficiently large (r1,r2)∈ Z2, we obtain that

Φη
(
t1, t2

)= (a+b)t1+at2+2a+b−ab−a2. (5.9)

The computation of the Kolchin differential dimension polynomial with the help of

the formula in [7, Chapter II, Theorem 6(d)] leads to the following result:

ωη/K(t)=
(
t+2

2

)
−
(
t+2−(a+b)

2

)
= (a+b)t− (a+b)(a+b−3)

2
. (5.10)

Comparing the polynomials ωη/K(t) and Φη(t1, t2), we see that the first polynomial

carries two differential birational invariants, its degree 1 and the leading coefficienta+
b, while Φη(t1, t2) carries three such invariants, its total degree 1, a+b, and a (there-

fore, a and b are uniquely determined by the polynomial Φη). Thus, Φη(t1, t2) gives

both parameters a and b of (5.8) while ωη/K(t) gives just the sum of the parameters.
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