ON n-FOLD FUZZY IMPLICATIVE/COMMUTATIVE IDEALS OF BCK-ALGEBRAS

YOUNG BAE JUN

(Received 3 November 2000)

ABSTRACT. We consider the fuzzification of the notion of an *n*-fold implicative ideal, an *n*-fold (weak) commutative ideal. We give characterizations of an *n*-fold fuzzy implicative ideal. We establish an extension property for *n*-fold fuzzy commutative ideals.

2000 Mathematics Subject Classification. 06F35, 03G25, 03E72.

1. Introduction. Huang and Chen [1] introduced the notion of n-fold implicative ideals and n-fold (weak) commutative ideals. The aim of this paper is to discuss the fuzzification of n-fold implicative ideals, n-fold commutative ideals and n-fold weak commutative ideals. We show that every n-fold fuzzy implicative ideal is an n-fold fuzzy positive implicative ideal, and so a fuzzy ideal, and give a condition for a fuzzy ideal to be an n-fold fuzzy implicative ideal. Using the level set, we provide a characterization of an n-fold fuzzy (weak) commutative ideal. We also give a condition for a fuzzy positive implicative ideal which is an n-fold fuzzy weak commutative ideal is an n-fold fuzzy commutative ideal. The also property for n-fold fuzzy commutative ideal.

2. Preliminaries. We include some elementary aspects of BCK-algebras that are necessary for this paper, and for more details we refer to [1, 2, 4, 5]. By a *BCK-algebra* we mean an algebra (X; *, 0) of type (2,0) satisfying the axioms:

- (I) ((x * y) * (x * z)) * (z * y) = 0,
- (II) (x * (x * y)) * y = 0,
- (III) x * x = 0,
- (IV) 0 * x = 0,
- (V) x * y = 0 and y * x = 0 imply x = y, for all $x, y, z \in X$.

We can define a partial ordering \leq on *X* by $x \leq y$ if and only if x * y = 0. In any BCK-algebra *X*, the following hold:

- (P1) x * 0 = x,
- (P2) $x * y \le x$,
- (P3) (x * y) * z = (x * z) * y,
- (P4) $(x * z) * (y * z) \le x * y$,
- (P5) $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$.

Throughout, X will always mean a BCK-algebra unless otherwise specified. A nonempty subset I of X is called an *ideal* of X if it satisfies:

(I1) $0 \in I$,

(I2) $x * y \in I$ and $y \in I$ imply $x \in I$.

A nonempty subset *I* of *X* is said to be an *implicative ideal* of *X* if it satisfies:

(I1) $0 \in I$,

(I3) $(x * (y * x)) * z \in I$ and $z \in I$ imply $x \in I$.

A nonempty subset *I* of *X* is said to be a *commutative ideal* of *X* if it satisfies: (I1) $0 \in I$,

(I4) $(x * y) * z \in I$ and $z \in I$ imply $x * (y * (y * x)) \in I$.

We now review some fuzzy logic concepts. A fuzzy set in a set *X* is a function $\mu : X \to [0,1]$. For a fuzzy set μ in *X* and $t \in [0,1]$ define $U(\mu;t)$ to be the set $U(\mu;t) := \{x \in X \mid \mu(x) \ge t\}$.

A fuzzy set μ in *X* is said to be a *fuzzy ideal* of *X* if

(F1) $\mu(0) \ge \mu(x)$ for all $x \in X$,

(F2) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$ for all $x, y \in X$.

Note that every fuzzy ideal μ of *X* is order reversing, that is, if $x \le y$ then $\mu(x) \ge \mu(y)$.

A fuzzy set μ in *X* is called a *fuzzy implicative ideal* of *X* if it satisfies:

(F1) $\mu(0) \ge \mu(x)$ for all $x \in X$,

(F3) $\mu(x) \ge \min\{\mu((x * (y * x)) * z), \mu(z)\}$ for all $x, y, z \in X$.

A fuzzy set μ in *X* is called a *fuzzy commutative ideal* of *X* if it satisfies:

(F1) $\mu(0) \ge \mu(x)$ for all $x \in X$,

(F4) $\mu(x * (y * (y * x))) \ge \min\{\mu((x * y) * z), \mu(z)\}$ for all $x, y, z \in X$.

3. *n***-fold fuzzy implicative ideals.** For any elements *x* and *y* of a BCK-algebra *X*, $x * y^n$ denotes

$$(\cdots((x*y)*y)*\cdots)*y \tag{3.1}$$

in which y occurs n times. Huang and Chen [1] introduced the concept of n-fold implicative ideals as follows.

DEFINITION 3.1 (see [1]). A subset A of X is called an *n*-fold implicative ideal of X if

(I1) $0 \in A$,

(I5) $(x * (y * x^n)) * z \in A$ and $z \in A$ imply $x \in A$ for every $x, y, z \in X$.

We consider the fuzzification of the concept of n-fold implicative ideal.

DEFINITION 3.2. A fuzzy set μ in *X* is called an *n*-fold fuzzy implicative ideal of *X* if

(F1) $\mu(0) \ge \mu(x)$ for all $x \in X$,

(F5) $\mu(x) \ge \min\{\mu((x * (y * x^n)) * z), \mu(z)\}$ for every $x, y, z \in X$.

Notice that the 1-fold fuzzy implicative ideal is a fuzzy implicative ideal.

THEOREM 3.3. Every *n*-fold fuzzy implicative ideal is a fuzzy ideal.

PROOF. The condition (F2) follows from taking y = 0 in (F5).

The following example shows that the converse of Theorem 3.3 may not be true.

EXAMPLE 3.4. Let $X = \mathbb{N} \cup \{0\}$, where \mathbb{N} is the set of natural numbers, in which the operation * is defined by $x * y = \max\{0, x - y\}$ for all $x, y \in X$. Then X is a BCK-algebra (see [1, Example 1.3]). Let μ be a fuzzy set in X given by $\mu(0) = t_0 > t_1 = \mu(x)$ for all $x (\neq 0) \in X$. Then μ is a fuzzy ideal of X. But μ is not a 2-fold fuzzy implicative ideal of X because

$$\mu(3) = t_1 < t_0 = \mu(0) = \min\left\{\mu\left(\left(3 * \left(14 * 3^2\right)\right) * 0\right), \mu(0)\right\}.$$
(3.2)

We give a condition for a fuzzy ideal to be an *n*-fold fuzzy implicative ideal.

THEOREM 3.5. A fuzzy ideal μ of X is n-fold fuzzy implicative if and only if $\mu(x) \ge \mu(x * (y * x^n))$ for all $x, y \in X$.

PROOF. Necessity is by taking z = 0 in (F5). Suppose that a fuzzy ideal μ satisfies the inequality $\mu(x) \ge \mu(x * (y * x^n))$ for all $x, y \in X$. Then

$$\mu(x) \ge \mu(x * (y * x^n)) \ge \min \{\mu((x * (y * x^n)) * z), \mu(z)\}.$$
(3.3)

Hence μ is an *n*-fold fuzzy implicative ideal of *X*.

THEOREM 3.6. A fuzzy set μ in X is an n-fold fuzzy implicative ideal of X if and only if the nonempty level set $U(\mu;t)$ of μ is an n-fold implicative ideal of X for every $t \in [0,1]$.

PROOF. Assume that μ is an *n*-fold fuzzy implicative ideal of *X* and $U(\mu;t) \neq \emptyset$ for every $t \in [0,1]$. Then there exists $x \in U(\mu;t)$. It follows from (F1) that $\mu(0) \ge \mu(x) \ge t$ so that $0 \in U(\mu;t)$. Let $x, y, z \in X$ be such that $(x * (y * x^n)) * z \in U(\mu;t)$ and $z \in U(\mu;t)$. Then $\mu((x * (y * x^n)) * z) \ge t$ and $\mu(z) \ge t$, which imply from (F5) that

$$\mu(x) \ge \min\left\{\mu((x * (y * x^n)) * z), \mu(z)\right\} \ge t$$
(3.4)

so that $x \in U(\mu;t)$. Therefore $U(\mu;t)$ is an *n*-fold implicative ideal of *X*. Conversely, suppose that $U(\mu;t)(\neq \emptyset)$ is an *n*-fold implicative ideal of *X* for every $t \in [0,1]$. For any $x \in X$, let $\mu(x) = t$. Then $x \in U(\mu;t)$. Since $0 \in U(\mu;t)$, we get $\mu(0) \ge t = \mu(x)$ and so $\mu(0) \ge \mu(x)$ for all $x \in X$. Now assume that there exist $a, b, c \in X$ such that

$$\mu(a) < \min\{\mu((a * (b * a^n)) * c), \mu(c)\}.$$
(3.5)

Selecting $s_0 = (1/2)(\mu(a) + \min\{\mu((a * (b * a^n)) * c), \mu(c)\})$, then

$$\mu(a) < s_0 < \min\{\mu((a * (b * a^n)) * c), \mu(c)\}.$$
(3.6)

It follows that $(a * (b * a^n)) * c \in U(\mu; s_0)$, $c \in U(\mu; s_0)$, and $a \notin U(\mu; s_0)$. This is a contradiction. Hence μ is an *n*-fold fuzzy implicative ideal of *X*.

DEFINITION 3.7 (see [3]). A fuzzy set μ in *X* is called an *n*-fold fuzzy positive implicative ideal of *X* if

- (F1) $\mu(0) \ge \mu(x)$ for all $x \in X$,
- (F6) $\mu(x * y^n) \ge \min\{\mu((x * y^{n+1}) * z), \mu(z)\}$ for all $x, y, z \in X$.

YOUNG BAE JUN

LEMMA 3.8 (see [3, Theorem 3.13]). Let μ be a fuzzy set in X. Then μ is an n-fold fuzzy positive implicative ideal of X if and only if the nonempty level set $U(\mu;t)$ of μ is an n-fold positive implicative ideal of X for every $t \in [0,1]$.

LEMMA 3.9 (see [1, Theorem 2.5]). *Every n-fold implicative ideal is an n-fold positive implicative ideal.*

Using Theorem 3.6 and Lemmas 3.8 and 3.9, we have the following theorem.

THEOREM 3.10. Every *n*-fold fuzzy implicative ideal is an *n*-fold fuzzy positive implicative ideal.

4. *n*-fold fuzzy commutative ideals

DEFINITION 4.1 (see [1]). A subset *A* of *X* is called an *n*-fold commutative ideal of *X* if

(I1) $0 \in A$,

(I6) $(x * y) * z \in A$ and $z \in A$ imply $x * (y * (y * x^n)) \in A$ for all $x, y, z \in X$.

A subset *A* of *X* is called an *n*-fold weak commutative ideal of *X* if

(I1) $0 \in A$,

(I7) $(x * (x * y^n)) * z \in A$ and $z \in A$ imply $y * (y * x) \in A$ for all $x, y, z \in X$.

We consider the fuzzification of n-fold (weak) commutative ideals as follows.

DEFINITION 4.2. A fuzzy set μ in *X* is called an *n*-fold fuzzy commutative ideal of *X* if

(F1) $\mu(0) \ge \mu(x)$ for all $x \in X$,

(F7) $\mu(x * (y * (y * x^n))) \ge \min\{\mu((x * y) * z), \mu(z)\}$ for all $x, y, z \in X$.

A fuzzy set μ in *X* is called an *n*-fold fuzzy weak commutative ideal of *X* if (F1) $\mu(0) \ge \mu(x)$ for all $x \in X$,

(F8) $\mu(\gamma * (\gamma * x)) \ge \min\{\mu((x * (x * \gamma^n)) * z), \mu(z)\}$ for all $x, \gamma, z \in X$.

Note that the 1-fold fuzzy commutative ideal is a fuzzy commutative ideal. Putting y = 0 and y = x in (F7) and (F8), respectively, we know that every *n*-fold fuzzy commutative (or fuzzy weak commutative) ideal is a fuzzy ideal.

THEOREM 4.3. Let μ be a fuzzy ideal of X. Then

(i) μ is an *n*-fold fuzzy commutative ideal of *X* if and only if

$$\mu(x * (y * (y * x^n))) \ge \mu(x * y) \quad \forall x, y \in X.$$

$$(4.1)$$

(ii) μ is an *n*-fold fuzzy weak commutative ideal of *X* if and only if

$$\mu(\gamma * (\gamma * x)) \ge \mu(x * (x * \gamma^n)) \quad \forall x, y \in X.$$

$$(4.2)$$

PROOF. The proof is straightforward.

LEMMA 4.4 (see [3, Theorem 3.12]). A fuzzy set μ in X is an n-fold fuzzy positive implicative ideal of X if and only if μ is a fuzzy ideal of X in which the following inequality holds:

(F9) $\mu((x * z^n) * (y * z^n)) \ge \mu((x * y) * z^n) \ \forall x, y, z \in X.$

THEOREM 4.5. If μ is both an *n*-fold fuzzy positive implicative ideal and an *n*-fold fuzzy weak commutative ideal of *X*, then it is an *n*-fold fuzzy implicative ideal of *X*.

PROOF. Let $x, y \in X$. Using Theorem 4.3(ii), Lemma 4.4, (P3), and (III), we have

$$\mu(x * (x * (y * x^{n}))) \ge \mu((y * x^{n}) * ((y * x^{n}) * x^{n}))$$

$$\ge \mu((y * (y * x^{n})) * x^{n})$$

$$= \mu((y * x^{n}) * (y * x^{n}))$$

$$= \mu(0).$$

(4.3)

It follows from (F1) and (F2) that

$$\mu(x) \ge \min \{ \mu(x * (x * (y * x^{n}))), \mu(x * (y * x^{n})) \}$$

$$\ge \min \{ \mu(0), \mu(x * (y * x^{n})) \}$$

$$= \mu(x * (y * x^{n}))$$
(4.4)

so from Theorem 3.5, μ is an *n*-fold fuzzy implicative ideal of *X*.

THEOREM 4.6 (extension property for *n*-fold fuzzy commutative ideals). Let μ and ν be fuzzy ideals of X such that $\mu(0) = \nu(0)$ and $\mu \subseteq \nu$, that is, $\mu(x) \leq \nu(x)$ for all $x \in X$. If μ is an *n*-fold fuzzy commutative ideal of X, then so is ν .

PROOF. Let $x, y \in X$. Taking u = x * (x * y), we have

$$\begin{aligned}
\nu(0) &= \mu(0) = \mu(u * y) \\
&\leq \mu(u * (y * (y * u^{n}))) \\
&\leq \nu(u * (y * (y * u^{n}))) \\
&= \nu((x * (x * y)) * (y * (y * u^{n}))) \\
&= \nu((x * (y * (y * u^{n}))) * (x * y)).
\end{aligned}$$
(4.5)

Since $x * (y * (y * x^n)) \le x * (y * (y * u^n))$ and since v is order reversing, it follows that

$$\begin{aligned}
\nu(x * (y * (y * x^{n}))) &\geq \nu(x * (y * (y * u^{n}))) \\
&\geq \min \{\nu((x * (y * (y * u^{n}))) * (x * y)), \nu(x * y)\} \\
&\geq \min \{\nu(0), \nu(x * y)\} \\
&= \nu(x * y).
\end{aligned}$$
(4.6)

Hence, by Theorem 4.3(i), ν is an *n*-fold fuzzy commutative ideal of *X*.

ACKNOWLEDGEMENT. This work was supported by Korea Research Foundation Grant (KRF-2000-005-D00003).

REFERENCES

- Y. Huang and Z. Chen, *On ideals in BCK-algebras*, Math. Japon. **50** (1999), no. 2, 211–226.
 CMP 1 718 851. Zbl 938.06018.
- K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), no. 1, 1–26. MR 80a:03081. Zbl 385.03051.

YOUNG BAE JUN

- [3] Y. B. Jun and K. H. Kim, On n-fold fuzzy positive implicative ideals of BCK-algebras, Int. J. Math. Math. Sci. 26 (2001), no. 9, 525–537.
- [4] Y. B. Jun and E. H. Roh, *Fuzzy commutative ideals of BCK-algebras*, Fuzzy Sets and Systems 64 (1994), no. 3, 401-405. MR 95e:06051. Zbl 846.06011.
- [5] J. Meng and Y. B. Jun, *BCK-algebras*, Kyung Moon Sa, Seoul, 1994. MR 95m:06041. Zbl 906.06015.

Young Bae Jun: Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

E-mail address: ybjun@nongae.gsnu.ac.kr