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ON CHARACTERIZATIONS OF FIXED POINTS

ZEQING LIU, LILI ZHANG, and SHIN MIN KANG

(Received 16 January 2001 and in revised form 14 March 2001)

Abstract. We give some necessary and sufficient conditions for the existence of fixed
points of a family of self mappings of a metric space and we establish an equivalent condi-
tion for the existence of fixed points of a continuous compact mapping of a metric space.
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1. Introduction. Jungck [2] first gave a necessary and sufficient condition for the

existence of fixed points of a continuous self mapping of a complete metric space.

Afterwards, Park [8], Leader [4], and Khan and Fisher [3] established a few theorems

similar to that of Jungck. Janos [1] and Park [9] proved fixed point theorems for com-

pact self mappings of a metric space. Recently, Liu [5] established criteria for the

existence of fixed points of a family of self mappings of a metric space. The aim

of this paper is to offer some characterizations for the existence of fixed points of

a family of self mappings and a continuous compact mappings of metric spaces,

respectively. We also establish a fixed point theorem for two compact mappings, which

extends properly the results of Janos [1] and Park [9].

Let ω and N denote the sets of nonnegative and positive integers, respectively.

Suppose that (X,d) is a metric space. For x,y ∈X, define

Cf =
{
g | g :X �→X and fg = gf},

Hf =
{
g | g :X �→X and g∩n∈ωfnX ⊆∩n∈ωfnX

}
,

Hf (x)=
{
hx | h∈Hf

}
, Hf (x,y)=Hf (x)∪Hf (y),

O(x,f )= {fnx |n∈ω}, O(x,y,f )=O(x,f )∪O(y,f).

(1.1)

Obviously, Cf ⊆Hf . Let Φ be a family of self mappings of X. A point x ∈ X is said

to be a fixed point of Φ if fx = x for all f ∈ Φ. Let F : X×X → [0,+∞) be continuous

and F(x,y)= 0 if and only if x =y . For A,B ⊂X, define

δ(A,B)= sup
{
F(x,y) | x ∈A, y ∈ B} (1.2)

and δ(A)= δ(A,A). Particularly, d(A)= sup{d(x,y) | x,y ∈A}. LetM(X) denote the

set of all metrics on X that are topologically equivalent to d for a given metric space

(X,d). A self mapping f of a metric space (X,d) is said to be compact if there exists

a compact set Y satisfying fX ⊆ Y ⊆X.
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In order to prove our main results, we need the following lemmas.

Lemma 1.1 (see [6]). Let f be a continuous compact self mapping of a metric space

(X,d). If A=∩n∈ωfnX, then

(a1) A is compact,

(a2) fA=A �= ∅,

(a3) d(fnX)→ d(A) as n→∞,

(a4) {fn |n∈ω} ⊆Hf .

Lemma 1.2 (see [7]). Let f be a continuous self mappings of a metric space (X,d)
with the following properties:

(a5) f has a unique fixed point w in X,

(a6) for every x ∈X, the sequence of iterations {fnx}∞n=0 converges to w,

(a7) there exists an open neighborhood U ofw with the property that given any open

set V containing w, there exists k∈N such that n≥ k implies fnU ⊂ V .

Then for each α ∈ (0,1), there exists a metric d′ ∈ M(X) relative to which f is a

contraction with Lipschitz constant α.

2. Main results

Theorem 2.1. Let Φ be a family of self mappings of a metric space (X,d). Then the

following statements are equivalent:

(b1) Φ has a fixed point;

(b2) there exist m,n∈N and continuous compact self mappings f , g of (X,d) such

that either Φ ⊆ Cf or Φ ⊆ Cg and

F
(
fmx,gny

)
< δ

(
Hf (x),Hg(y)

)
, (2.1)

for all x,y ∈X with fmx �= gny ;

(b3) there exist m,n ∈ N and continuous self mappings f , g of (X,d) such that fg
is compact, f ∈ Cg , Φ ∈ Cfg , and

F
(
fmx,gny

)
< δ

(
Hfg(x,y)

)
, (2.2)

for all x,y ∈X with fmx �= gny ,

(b4) there exists a continuous compact self mapping of (X,d) with Φ ⊆ Cf such that

F(fx,fy) <max
{
F(x,y),F(x,fx),F(y,fy),

F(x,fx)F(y,fy)
F(x,y)

,

F(fx,fy)F(x,fx)
F(x,y)

,
F(x,fy)F(fx,y)

F(x,y)

}
,

(2.3)

for all x,y ∈X with x �=y .

Moreover, if (b2) holds, then f , g, and Φ have a unique common fixed point; if (b3)

holds, then fg and Φ have a unique common fixed point; if (b4) holds, then f and Φ
have a unique common fixed point.
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Proof. Let (b1) hold andw be a fixed point of Φ. Define f ,g :X →X by fx = gx =
w for all x ∈X. It is easy to show that (b2), (b3), and (b4) hold.

Assume that (b2) holds. Let A = ∩n∈ωfnX, B = ∩n∈ωgnX. Since f and g are con-

tinuous compact self mappings of (X,d), it follows from (a1) and (a2) that A and B
are compact and fA = A, gB = B. Consequently, fmA = A, gnB = B. Suppose that

δ(A,B) > 0. Then there exist a∈A, b ∈ B with δ(A,B)= F(a,b) because F is continu-

ous and A×B is compact. Since fmA=A, gnB = B, there exist x ∈A, y ∈ B such that

fmx = a, gny = b. In view of (2.1), we have

δ(A,B)= F(a,b)= F(fmx,gny)< δ(Hf (x),Hg(y))< δ(A,B), (2.4)

which is impossible, and hence δ(A,B) = 0. That is, A = B = {w} for some w ∈ X so

fw = gw = w. If v is another fixed point of f , then v ∈ ∩n∈ωfnX = {w}, that is,

v =w. Hence w is the only fixed point of f . Similarly, w is also the only fixed point

of g.

Without loss of generality, we assume that Φ ⊆ Cf . It follows from Cf ⊆ Hf that

hA⊆A for all h∈ Φ. That is, hw =w for all h∈ Φ. Thus w is the only common fixed

point of f , g, and Φ. Therefore (b1) holds.

Assume that (b3) holds. Put A = ∩n∈ω(fg)nX. Then A is compact and fgA = A.

Since f is continuous and f ∈ Cg , we infer that

fA= f ∩n∈ω(fg)nX ⊆∩n∈ω(fg)nfX ⊆∩n∈ω(fg)nX =A. (2.5)

Similarly, we have

gA⊆A. (2.6)

It follows from fgA=A, (2.5), and (2.6) that

fA⊆A= fgA⊆ fA. (2.7)

That is, fA = A. Similarly, we have gA = A. Suppose that δ(A) > 0. Because F is

continuous and A is compact, then there exist a,b ∈A such that δ(A)= F(a,b). Since

fmA= gnA=A, there exist x,y ∈A with fmx = a, gny = b. Using (2.2), we have

δ(A)= F(a,b)= (fmx,gny)< δ(HFG(x,y))≤ δ(A), (2.8)

which is a contradiction. Hence δ(A) = 0. That is, A = {w} for some w ∈ X. This

implies that fw = gw = fgw =w. As in the proof of above, we can prove that w is

the only fixed point of fg, and w is the unique common fixed point of fg and Φ. So

(b1) holds.

Assume that (b4) holds. As above we infer that A=∩n∈ωfnX is compact and fA=
A. Since F is continuous, the function φ(x) defined by φ(x) = F(x,fx) for x ∈ A is

continuous and attains its minimum value at some w ∈A. Suppose that w �= fw. By
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virtue of (2.3), we get

φ(fw)= F(fw,ffw)

<max
{
F(w,fw),F(w,fw),F(fw,ffw),

F(w,fw)F(fw,ffw)
F(w,fw)

,

F(fw,ffw)F(w,fw)
F(w,fw)

,
F(w,ffw)F(fw,fw)

F(w,fw)

}

= F(w,fw)

=φ(w).

(2.9)

This is a contradiction to the definition of w. So w is a fixed point of f . If f has a

second distinct fixed point v , by (2.3), we obtain that

F(w,v)= F(fw,fv)

<max
{
F(w,v),F(w,w),F(v,v),

F(w,w)F(v,v)
F(w,v)

,

F(w,v)F(w,w)
F(w,v)

,
F(w,v)F(w,v)

F(w,v)

}

= F(w,v),

(2.10)

which is a contradiction. Therefore,w is the only fixed point of f . It is a simple matter

to show that w is the unique common fixed point of f and Φ. Thus (b1) holds. This

completes the proof.

Next, we give a theorem about the equivalent condition for the existence of fixed

points of a continuous compact self mapping on a metric space.

Theorem 2.2. Let s be a continuous compact self mapping of a metric space (X,d).
Then s has a fixed point if and only if there exists a continuous self mapping f of X
such that f ∈ Cs and

F(fx,fy) <max
{
F(sx,sy),F(sx,fx),F(sy,fy),

F(sx,fx)F(sy,fy)
F(sx,sy)

,

F(fx,fy)F(sx,fx)
F(sx,sy)

,
F(sx,fy)F(fx,sy)

F(sx,sy)

}
,

(2.11)

for all x,y ∈X with sx �= sy . Indeed, f and s have a unique common fixed point.

Proof. To see that the stated conditions is necessary, suppose that s has a fixed

point w ∈ X. Define f : X → X by fx =w for all X ∈ X. Then fsx =w = sw = sfx
for all x ∈X, that is, f ∈ Cs . Clearly, (2.11) holds.

On the other hand, suppose that there exists a continuous self mapping f of X such

that f ∈ Cs and (2.11) holds. Let A = ∩n∈ωSnX. From Lemma 1.1, we infer that A is

compact and sA=A. Since f is continuous and s ∈ Cf , we have

fA= f ∩n∈ωsnX ⊆∩n∈ωsnfX ⊆∩n∈ωsnX =A= sA. (2.12)
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Define the function φ(x) by φ(x) = F(sx,fx) for all x ∈ A. It is clear that φ(x)
is continuous on A and attains its minimum value at some w ∈ A. We claim that

sw = fw. If not, from (2.12), there exists p ∈ A satisfying fw = sp. Using (2.11), we

conclude that

φ(p)= F(sp,fp)= F(fw,fp)

<max
{
F(sw,sp),F(sw,fw),F(sp,fp),

F(sw,fw)F(sp,fp)
F(sw,sp)

,

F(fw,fp)F(sw,fw)
F(sw,sp)

,
F(sw,fp)F(fw,sp)

F(sw,sp)

}

=max
{
F(sw,fw),F(sp,fp)

}

= F(sw,fw)

=φ(w),

(2.13)

which is a contradiction to the choice ofw. So sw = fw. By virtue of f ∈ Cs , we have

fsw = sfw = ssw. (2.14)

Now suppose that ssw �= sw. By (2.11) and (2.14), we get

F(ssw,sw)= F(fsw,fw)

<max
{
F(ssw,sw),F(ssw,fsw),F(sw,fw),

F(ssw,fsw)F(sw,fw)
F(ssw,sw)

,

F(fsw,fw)F(ssw,fsw)
F(ssw,sw)

,
F(ssw,fw)F(fsw,sw)

F(ssw,sw)

}

= F(ssw,sw),
(2.15)

which is a contradiction. Thus ssw = sw, that is, sw is a fixed point of s. Therefore,

the set M of fixed points of s is not empty. Now s is continuous, so M is closed.

Since M ⊆ A and A is compact, M is compact. Moreover, since f and s commute,

f(M) ⊆ M . Note also that (2.11) restricted to M reduces to (2.3). We can therefore

apply Theorem 2.1(b4) to fM :M →M to obtain a unique common fixed point u of f
and s in M . Since M contains all the fixed points of s, u is a unique common fixed

point f and s. This completes the proof.

Theorem 2.3. Let f , g be continuous compact self mappings of a metric space (X,d)
satisfying (2.1). Then f and g have a unique fixed point, respectively, and furthermore,

for any α ∈ (0,1), there exist metrics d′ and d′′ ∈ M(X) relative to which f and g
satisfy, respectively,

d′(fx,fy)≤αd′(x,y), d′′(gx,gy)≤αd′′(x,y), (2.16)

for all x,y ∈X.

Proof. Let A=∩n∈ωfnX, B =∩n∈ωgnX, and U = X. As in the proof of Theorem

2.1, we have A = B = {w}. Lemma 1.1 ensures that (a5) and (a6) hold. Note that
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d(fnX),d(gnX)→ 0 as n→∞. Thus fnX and gnX squeeze into any neighborhood of

w. That is (a7) is fulfilled. Thus Theorem 2.3 follows from Lemma 1.2. This completes

the proof.

Corollary 2.4. Let f be a continuous compact self mapping of a metric space (X,d)
satisfying

F(fx,fy) < δ
(
Hf (x),Hf (y)

)
, (2.17)

for all x,y ∈X with x �=y . Then f has a unique fixed point.

Furthermore, for any α∈ (0,1), there exists a metric d′ ∈M(X) relative to which f
satisfies

d′(fx,fy)≤αd′(x,y), (2.18)

for all x,y ∈X.

The following simple example reveals that Corollary 2.4 extends properly Theo-

rem 1.1 of Janos [1] and Theorem 1 of Park [9].

Example 2.5. Let X = {0,2,4,6,9} with the usual metric. Define a mapping f :X →
X by f0 = f4 = f6 = 6, f2 = 0, and f9 = 2. Then f is a continuous compact self

mapping of X. It is easy to check that

d(fx,fy)≤ 6< 9= δ(Hf (x),Hf (y)), (2.19)

for all x,y ∈X with x �=y . So the conditions of Corollary 2.4 are satisfied. But Theo-

rem 1.1 of Janos [1] and Theorem 1 of Park [9] are not applicable since

d(f2,f4)= 6> 2= 1
2

[
d(2,f2)+d(4,f4)

]
,

d(f2,f4)= 6= δ(O(2,4,f )).
(2.20)
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