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Abstract. This is a short survey of the main known results concerning annihilating poly-
nomials for the Witt ring of quadratic forms over a field.
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Let F be a field of characteristic different from two. We recall briefly the Witt ring

W(F) of quadratic forms over F . Consider first the set S of isometry classes of non-

singular quadratic forms over F . We write G(F) for the free abelian group generated

by the set S. We factor out by the subgroup generated by all elements of the form

{φ1 ⊥ φ2}− {φ1}− {φ2} where φ1 and φ2 are nonsingular quadratic forms, ⊥ de-

notes the orthogonal sum of forms (defined via the direct sum of the underlying vector

spaces), and {φ} denotes the isometry class of a formφ. The product of two forms (de-

fined via the tensor product of the underlying vector spaces) is used to makeG(F) into

a commutative ring. This is sometimes known as the Witt-Grothendieck ring. The set

of all hyperbolic forms, that is, orthogonal sums of copies of the two-dimensional

hyperbolic plane, is an ideal in this ring and the Witt ring W(F) is the quotient ring

obtained by factoring out this ideal. We will use the terminology and notation of [18]

where further details about quadratic forms and Witt rings may be found.

The Witt ring was invented in 1937 [20] and Witt seemed aware that his ring was an

integral ring in the sense that each element is annihilated by some monic polynomial

with integer coefficients. This integral property was exploited in [10] in 1972 in the

context of quotients of abelian group rings. However it was not until 1987 that the

first examples were given of explicit polynomials which annihilated particular classes

of quadratic forms in W(F). Consider the polynomials pn(x) defined as follows:

for n even, pn(x)= x(x2−22)(x2−42)···(x2−n2);
for n odd, pn(x)= (x2−12)(x2−32)···(x2−n2).
(Note that pn(x) is an odd polynomial for n even, that is, pn(−x) = −pn(x) for

all x, while pn(x) is an even polynomial for n odd, that is, pn(−x)= pn(x) for all x.)

Theorem 1 (see [11]). The polynomials pn(x) have the property that pn(φ)= 0 in

W(F) for any nonsingular quadratic form φ of dimension n over any field F .

There are many different ways to prove this theorem. The quickest proof, sug-

gested by Leung, is via induction on n and using the recurrence relation pn(x) =
(x+n)pn−1(x−1). (See [11].)

(It should be remarked that this theorem holds more generally than just for the Witt

ring of quadratic forms. If R is any commutative ring with identity and t1, t2, . . . , tn are
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elements of R such that t2
i = 1 for each i and if t = t1+ t2+···+ tn then pn(t) = 0

in R. The Witt ring W(F) is generated by the one-dimensional forms each of which

squares to equal the identity in W(F).)
If one imposes other conditions on the quadratic form φ, for example, that φ has

determinant one, or thatφ∈ In, thenth power of the fundamental ideal inW(F), then

one may find a smaller degree polynomial which annihilates φ. (See [11] for details.)

Independently, and at around the same time as Theorem 1 was discovered, Pierre

Conner was considering trace forms of separable extension fields. (These are non-

singular quadratic forms over F .) He looked at the polynomials qn(x) defined

as follows:

for n even, qn(x)= x(x−2)(x−4)···(x−n);
for n odd, qn(x)= (x−1)(x−3)···(x−n).
One may think of qn(x) as the “positive half” of pn(x).

Theorem 2 (see [2]). The polynomials qn(x) have the property that qn(φ) = 0 in

W(F) for any quadratic form φ which is the trace form of a separable field extension

L of degree n of F .

(Recall that the trace form of L over F is the quadratic form q : L→ F,q(x)= tr(x2)
where tr denotes the reduced trace map from L to F .)

The proof of this theorem by Conner used the Burnside ring of permutation rep-

resentations of a group, finding identities in this ring which translate, via a ring ho-

momorphism to the Witt ring, into the annihilating polynomials qn(x). Conner did

not publish this theorem in 1987 because he believed correctly that a better result

was possible. See the Beaulieu-Palfrey theorem later which gives some smaller degree

polynomials annihilating trace forms.

Remark 3. The standard structure theorems for the Witt ring [18] can be deduced

in a quick and elementary way from the fact thatW(F) is integral and from the specific

nature of the polynomials pn(x). (See [12] for full details.)

Remark 4. Hurrelbrink [9] used elementary Fourier analysis on groups to obtain

annihilating polynomials for group rings of abelian torsion groups. The group of

square classes of F is an abelian 2-group and W(F) can be regarded as a quotient

of the integral group ring of this group. Theorem 1, on the annihilating polynomials

pn(x), can then be quickly deduced from Hurrelbrink’s result.

Remark 5. Lewis [13] showed that the polynomials qn(x) annihilate all positive

forms of dimension n in the case when the field F has the property that I3 is torsion-

free. Here I3 denotes the cube of the fundamental ideal I of even-dimensional forms

in W(F). Such fields are precisely the ones for which the standard invariants, (that

is, dimension, determinant, signatures, Hasse invariant), give a complete isometry

classification of nonsingular quadratic forms over F . A positive form is one with a

nonnegative signature at each ordering of F . Trace forms of separable field extensions

are examples of positive forms.

Remark 6. Another approach to annihilating polynomials is via exterior powers

of quadratic forms. This was mentioned first in a talk by Serre at a conference in
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Luminy 1994 although Serre did not subsequently publish his ideas. McGarraghy [15]

has recently investigated this approach in detail. The basic idea is to show that the

exterior powers Λkφ of a quadratic form φ (or strictly speaking the sum of k! copies

of Λkφ) may be expressed as an integer polynomial inφ. Then the fact that Λn+1φ= 0

if φ has dimension n leads to the polynomials pn(x) which annihilate φ.

Remark 7. Sladek [19] has defined, in a formal way, the Witt ring of any skewfield

and a notion of dimension for elements of this ring. He shows that Theorem 1 is valid

for this Witt ring of a skewfield and uses it to show that his Witt ring is an abstract

Witt ring in the sense of [10].

One may define the annihilator ideal A(F) of the field F as an ideal in the polynomial

ring Z[x] given by A(F) = {p(x) ∈ Z[x] : p(φ) = 0 for all φ in W(F)}. This ideal is

finitely generated and one may try to find a set of generators for A(F). In the case

of the field F not being formally real, that is, admitting no orderings, this has been

done by Ongenae and Van Geel [17] in the case that F has level at most 16. To be more

precise Ongenae and Van Geel have defined a sequence of ideals Jr in Z[x]. The first

six of these ideals are as follows:

J1 = (2,x2(x−1)2);
J2 = (4,2x2(x−1)2,x4(x−1)4);
J3 = (8,4x2(x−1)2,x4(x−1)4);
J4 = (16,8x2(x−1)2,2x4(x−1)4,x6(x−1)6);
J5 = (32,16x2(x−1)2,4x4(x−1)4,2x6(x−1)6,x8(x−1)8);
J6 = (64,32x2(x−1)2,8x4(x−1)4,4x6(x−1)6,x8(x−1)8).
We refer the reader to [17] for the definition of the ideals Jr in general. They con-

jectured that A(F) = Jr whenever F has level 2r−1 and they prove the conjecture for

r ≤ 5.

Conner did not publish Theorem 2 on trace forms of finite separable field exten-

sions because he believed that if one had some information about the Galois group of

the field extension then an improvement on Theorem 2 was possible. Following Con-

ner’s ideas Beaulieu and Palfrey [1] introduced the notion of the Galois number of a

separable irreducible polynomial f(t) of degree n over F . This is the smallest natural

number g such that any g roots of the polynomial f(t) generate the splitting field N
of f(t) over F .

They introduce the polynomials

rn,g(x)= (x−n)
g−1∏

k=0
k≡n (mod2)

(x−k) (1)

that is, the product is taken over all integers k between 0 and g−1 and such that

k≡n (mod2).

Theorem 8 (see [1]). The polynomials rn,g(x) have the property that rn,g(φ) = 0

in W(F) for any quadratic form φ which is the trace form of a field extension L = F(θ)
where θ is a single root of the separable irreducible polynomial f(t) over F of degree

n and Galois number g.
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Their proof, like that of the earlier Conner theorem on trace forms, involves obtain-

ing identities in the Burnside ring and translating these to W(F) via a ring homomor-

phism to W(F). The polynomials rn,g(x) improve on the Conner polynomials qn(x)
since they are divisors of the qn(x) but generally will be of lower degree.

Remark 9. For some groups G it is easy to determine the Galois number g. For

example if G is a subgroup of the symmetric group Sn and G contains a transposition

then g = n−1. Also if G is a subgroup of the symmetric group Sn and G contains a

3-cycle but no transposition then g =n−2 . For more on calculating Galois numbers

see [1, 5, 8].

There is another approach [14] which yields even lower degree annihilating poly-

nomials for trace forms. This also involves Burnside rings but uses an alternative

interpretation of the Burnside ring as the Grothendieck ring of étale F -algebras.

Recall that an étale F -algebra is a direct product of finite separable field extensions

of F . We briefly outline this approach.

Let f(t) be a separable irreducible polynomial of degree n over F , let L = F(θ)
where θ is a single root of f(t), and let N be a splitting field of f(t) over F . Then

N will be a normal closure of L over F . For any intermediate field E, that is, where

F ⊆ E ⊆N , we define the integer φE(L) to be the number of monomorphisms from L
to E. Equivalently φE(L) equals the number of roots of the polynomial f(t) which lie

in E. Also one may interpret φE(L) as the number of components of the étale algebra

L⊗F E which are isomorphic to E. It is easy to see that φE(L)= 0 whenever E ⊂ L but

E ≠ L, and also thatφN(L)=n since L⊗F N is a product of n copies ofN . Observe that

L⊗F N = F[t]/(f (t))⊗F N 	N[t]/(f (t))	
∏
N . Let the set SL = {φE(L) : F ⊆ E ⊆N},

that is, the set of integersφE(L) where E runs through all intermediate fields between

F and N . Note that SL ⊆ {0,1,2,3, . . . ,n−1,n}.
Define the polynomial

rL(x)=
∏

k∈sl
k≡n (mod2)

(x−k). (2)

Note that, apart from n, the largest value in the set SL will be g−1 where g is the

Galois number of the polynomial f(t). (This follows from the definition of Galois num-

ber.) Consequently the polynomial rL(x) will be a divisor of the polynomial rn,g(x).

Theorem 10 (see [14]). The polynomials rL(x) have the property that rL(φ)= 0 in

W(F) for any quadratic form φ which is the trace form of a field extension L = F(θ)
where θ is a single root of the separable irreducible polynomial f(t) over F of degree

n and with splitting field N as above.

Remark 11. The proof of this theorem depends on the fact that there is an injec-

tive ring homomorphism from the Burnside ring Ω(F) of étale F -algebras into
∏
Z,

a product of finitely many copies of the ring of integers. The above definition of the

integer-valued mappings φE can easily be extended to étale F -algebras and the col-

lection of all φE will yield the imbedding into
∏
Z. The fact that Ω(F) imbeds into∏

Z was observed in [4]. (It is really a consequence of an old result of Burnside on

permutation representations.) This imbedding will ensure that the polynomial rL(x)
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annihilates the element of the Burnside ring given by the field extension L. The result

for W(F) follows using the ring homomorphism from Ω(F) to W(F) taking L to the

trace form of L.

Remark 12. The polynomials rL(x) will definitely be of lower degree than the

polynomials rn,g(x) in very many cases. See [16] for some examples. In particular it is

shown that for an irreducible polynomial whose Galois group G is a Sylow 3-subgroup

of the symmetric group on 9 letters, and if L is the subfield fixed by a subgroup H of

order 9, then rL(x)= (x−3)(x−9) but that rn,g(x)= (x−1)(x−3)(x−5)(x−7)(x−
9). Note that n= 9 and g = 7 because G contains a 3-cycle but no transpositions. Thus

the polynomials rL(x) improve on the polynomials rn,g(x) since they are divisors of

the rn,g(x) but generally will be of lower degree.

Remark 13. Also, as suggested in [7], we may exploit Springer’s theorem on odd

degree extensions, see [18, pages 46–47], to sometimes replace rL(x) by a smaller

annihilating polynomial. Specifically we take a maximal odd degree extension M of F
where F ⊆ M ⊆ N (here M will correspond to a Sylow 2-subgroup of G). We replace

SL by the set S(2)L = {φE(L) :M ⊆ E ⊆ N}, and replace rL(x) by a polynomial r (2)L (x)
defined like rL(x) except that we sum over S(2)L instead of SL. Springer’s theorem

ensures that the Witt ring W(F) maps injectively to W(M) and one deduces that the

polynomial r (2)L (x) annihilates the trace form of L in W(F).

Some recent work by Epkenhans [5, 6, 7] provides a new variation on the subject of

annihilating polynomials for quadratic forms. We now describe some of this work.

Let M denote some class of quadratic forms, for example, we could have M being

the class of all forms of dimension n for a fixed value of n, orM being the class of all

trace forms of dimension n, or M being the class of all n-fold Pfister forms. Then the

vanishing ideal of M is the ideal denoted IM in Z[x] defined by

IM =
{
f(x)∈ Z[x] : f(φ)= 0∈W(F) ∀φ∈M and all fields F}. (3)

If M is the class of all n-fold Pfister forms then IM is the principal ideal generated

by the polynomial x2−2nx. IfM is the class of all forms of dimension n then IM is the

principal ideal generated by pn(x). If M is the class of all trace forms of dimension

n then IM is the principal ideal generated by qn(x). In view of these examples it is

natural to seek a class M of forms such that IM is the principal ideal generated by

the Beaulieu-Palfrey polynomials rn,g(x). Given a finite group G and subgroup H the

classM(G,H) is defined by Epkenhans as the class of all quadratic formsφ satisfying

the following:

(i) there is a separable irreducible polynomial f(t) in F[t] with Galois group G,

(ii) the action of G on the roots of f(t) is equivalent to the action of G on the

cosets G/H,

(iii) φ is isometric to the trace form of the field extension L= F[t]/(f (t)) of F .

Note that the action of G on G/H is necessarily faithful for (ii) to hold so that we

are implicitly restricting ourselves to faithful actions.

If n is the degree of f(t) and g is the Galois number of G one might hope that

IM(G,H) is generated by the polynomial rn,g(x). However this is not the case in general
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since for any Galois extension of odd degree n the trace form will be n × 〈1〉, see [3],

so that x−n ∈ IM(G,H) but is not a multiple of rn,g(x) unless g = 1.

In order to investigate IM(G,H) Epkenhans introduced the signature polynomials

qG,H(x)=
∏

k∈S
(x−k), (4)

where S is defined as follows: for any element σ ∈ G we let signσχH = number of

fixed points of the subgroup 〈σ〉 acting on G/H, and then S is the set of all values of

signσχH as σ runs through all elements of G of order at most two. One might hope

that IM(G,H) = (qG,H) but this is not the case. In [7] Epkenhans gives an example of a

group G, subgroup H, and field extension L whose trace form is not annihilated by

qG,H(x). The group G in his example is one which has a Sylow 2-subgroup isomorphic

to the quaternion group of order 8. However Epkenhans does show in [5] that, in

general, there exists a natural number l, depending only on G and H, such that

(
2lqG,H(x)

)⊆ IM(G,H) ⊆
(
qG,H

)
. (5)

Let L be the field described earlier in the definition of the classMG,H . It can be shown

that the values of signσχH all occur in the set SL since the integer φE(L) in SL may be

equivalently defined as the number of fixed points of the subgroup U of G acting on

G/H. (Here U is the subgroup of G corresponding to the subfield E under the Galois

correspondence.) Hence the polynomials qG,H(x) will divide the polynomials rL(x).
In the example of Remark 12 it is easy to see that qG,H(x) = x−9. Indeed whenever

the index n of H in G is odd we see that qG,H(x)= x−n.
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