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BIHARMONIC MAPS ON V-MANIFOLDS
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ABSTRACT. We generalize biharmonic maps between Riemannian manifolds into the case
of the domain being V-manifolds. We obtain the first and second variations of bihar-
monic maps on V-manifolds. Since a biharmonic map from a compact V-manifold into
a Riemannian manifold of nonpositive curvature is harmonic, we construct a biharmonic
non-harmonic map into a sphere. We also show that under certain condition the biharmonic
property of f implies the harmonic property of f. We finally discuss the composition of
biharmonic maps on V-manifolds.

2000 Mathematics Subject Classification. 58E20, 35K05.

1. Introduction. Following Eells, Sampson, and Lemaire’s tentative ideas [7, 8, 9],
Jiang first discussed biharmonic (or 2-harmonic) maps between Riemannian manifolds
in his two articles [10, 11] in China in 1986, which gives the conditions for biharmonic
maps. A biharmonic map f : M — N between Riemannian manifolds is the smooth
critical point of the bi-energy functional

Ex(f) = | d+d)fIF 1= | (I e, )

where x1 is the volume form on M, the tension field T (f) = (Dd.f) (es, e:) (= (ﬁeidf) (e)),
{ei} is the local frame of a point p in M. Biharmonic maps are the extensions of har-
monic maps, and their study provides a source in partial differential equations, differ-
ential geometry, and analysis. After Jiang, Chiang, and Sun have studied biharmonic
maps in two papers [6, 14]. Chiang also studied harmonic maps and biharmonic maps
of two different kinds of singular spaces: V-manifolds [3, 4] and spaces with conical
singularities (with Andrea Ratto [5]).

In this paper, we generalize the notion of a biharmonic map to the case that the
domain of f is a V-manifold due to Satake in [1, 12, 13]. A (C®) V-manifold (M,%)
consists of a Hausdorff space M with an atlas &% of V-charts satisfying the following
conditions:

@) If {U,G,m} and {U’,G’, 1’} are two V-charts in % over U, U’, respectively, in M
with U c U’, then there exists an injection A : {U,G,m} — {U,G’,1T'}.

(ii) The supports of V-charts in & form a basis for open sets in M.

Take a chart {U,G,} € F such that p € w(U) and choose p € U such that op = p.
The isotropic subgroup G of G at p is the set of all ¢ € G such that op = p. So
G is called the isotropic group of p. The singular set S of M consists of all singular
points of M, that is, the points of M with nontrivial isotropy groups. (For example,
S2/Z3 is a compact V-manifold with two singular points.) The main difficulties of this
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paper arise from the complicated behavior of the singular locus of V-manifolds, and
therefore a different method than the usual one is required. In fact, this article is the
extension of Chiang’s previous two papers [3, 4].

We derive the first variations of biharmonic maps in Theorem 2.2, and give the defi-
nition for biharmonic maps on V-manifolds. We show that a biharmonic map from a
compact V-manifold into a Riemannian manifold of nonpositive curvature is a har-
monic map in Theorem 2.4. Then we construct a biharmonic non-harmonic map from
a V-manifold into a sphere in Section 2. We obtain the second variations of biharmonic
maps in Theorem 3.1. If d2/dt?E>(f;)|i=o = 0, then f is a stable biharmonic map. In
Theorem 3.3, we show that if a stable biharmonic map from a compact V-manifold
M into a Riemannian manifold N of positive curvature satisfies the conservation law,
then f must be a harmonic map. In Theorem 3.4, we prove the composition of bihar-
monic maps on V-manifolds which generalizes Sun’s result in [14].

2. Biharmonic maps on V-manifolds. Let (M,%) be a (C*) V-manifold, and U be
an open subset of M. By a V-chart on M over U we mean a system {U,G, 1} consisting
of (1) a connected open subset U of R™, (2) a finite group G of diffeomorphisms of U,
with the set of fixed points of codimension = 2, and (3) a continuous map of w: U — U
such that ro o = 7 for o € G and such that 7 induces a homeomorphism of U/G onto
U. The set U is called the support of V-chart, and 7 is called the projection onto U.

Let (M,%) be a V-manifold and p € M. Take a chart {U,G, 7t} € ¥ such that p €
1 (U) and choose p € U such that 1w (p) = p. The isotropic subgroup G of G at p is
the set of all o € G such that op = p, and is uniquely determined by p. Therefore, G
is called the isotropic group of p. The singular set S of M consists of all singular points
of M, that is, the points of M with nontrivial isotropic groups. Let (X1,...,X™) be a
coordinate system around p and consider the system y! = 1/1Gp| Xlij(o‘l)icf o
with

o0,
ox 0] , |Gp | = order of Gj. (2.1)

Lijlor) = [ 9%
Then the {7} are a new coordinate system around p and G; operates linearly in the
¥-system. After this suitable C* change of coordinates around p, G; becomes a finite
group of linear transformations. The fixed point set of any o € G; is the defined
linear equations in the J, and consequently the fixed point set of o € G in U is the
intersection of U with a linear space. Therefore, 7t-!S is locally expressed by a finite
union of linear spaces intersected with U. Hence S is a V-submanifold of codimension
> 2 of M. Clearly, M — S is an ordinary manifold.

We fix a V-manifold M with defining atlas %. A smooth function f : (M,%) — N
from M into an ordinary manifold N is defined as follows: for any {U, G, w} € ¥ there
corresponds an ordinary G-invariant smooth map fg =1/IG|Ygecfyoo:U - N
such that f§ = fom and f§ = fg o A for any injection A : {U,G,m} — {U',G’, 0"}
where f7: U — N is an ordinary smooth map.

Put a Riemannian metric gg = g;; dX'dx/ on U. By taking the G-average if necessary,
we can assume that gy is G-invariant. Thus the transformations o € G are isometries
for gg. By using the standard partition of unity construction, we can patch all such
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local invariant metrics together into a global metric tensor field of type (0,2) on the
V-manifold M, which we call a Riemannian metric on M.

Let M™ be a compact V-manifold of dimension m with C* Riemannian metric g,
and N" a (C*) Riemannian manifold of dimension n. By Satake [12, 13], M admits a
finite triangulation T = Us, such that each s, is contained in the support Uy of a V-
chart {Uy, G, s} € % on M and is the homeomorphic projection of a regular simplex
$x in Uy. For a smooth map f : M — N, the bi-energy functional of f is defined by

Ez(f)=JM|T(f)12*1=ZL {T(f)|2dxa=ZﬁL |T(F) | dxe,  (2.2)

where dx 4 denotes the volume form with respect to the G-invariant metric g;; in Uq,
fo( : Uy — N is the G4 -invariant lift of f. The Green’s divergence theorem on a compact
V-manifold proved in [3] plays an important role in the proofs of both Theorems 2.2
and 3.1.

In order to compute the Euler-Lagrange equation, we consider a one-parameter
family of maps {f;} € C*(M,N), t € I = (—€,€), € > 0 such that in the V-chart
{U,G,mt} € F over the support U on M, the G-invariant lift ft is the endpoint of
the segment starting at G-invariant lift j% determined in length and direction by
the vector field f along f , and such that 0 ft /ot =0 and Déi 0 ft /0t = 0 outside a com-
pact subset of the interior of U. Choose {e;} being the local frame of a point p in U
on M, and {é;} being the local frame of the lifting point  in U. Let D, D’~, D, D be the
Riemannian connections along TM, TN, f 1TN, T*M & f TN, and D, D are the Rie-
mannian connections along TU, T*U ® f TN in each {U,G, 1} € & over the support
U on M. Also, let A = Dg, Dg, _DDe'k &, be the Laplace operator along the cross section
of f71TN in each U, and V = aﬁ/at. We can compute (2.2) directly, and obtain the
following result.

LEMMA 2.1.

76,7 ), (Bebid Je(5) Doy dii (57 ) (s, dfe) () Y
(2.3)
2zm j (R¥(afute).afi(2)) dfi @), (B, df) (@) ) dse.

THEOREM 2.2. Let f : (M,%) — N be a smooth map from a compact V-manifold
(M, %) into a Riemannian manifold N. Set V = 0f; /0t then

E>(ft) =23
-0

| [ (var( R aiE). () df@))dxe @

1Gal Js
PROOF. Foreveryt €I, let
X = (Do dfi( ) Dy afi@) e ¥ =(dfi(=).a(De df) @) @), @5)

in each {U,m,G} € ¥ over the support U on M. By computing the divergence of X
and Y in each U, and applying Green’s divergence theorem to the vector field X — ¥



480 Y.-J. CHIANG AND H. SUN
in each A on the compact manifold M in [3], we have

S ﬁ j ((Bebo,afi)(2) - (Do e, dfi) (5 ). (B, i) @) ) e

(2.6)
=> |Gila\ La <dft (%) D&, D, (5@,- dft) (€))=Dp, z, ((Dé‘i dﬂ) (éj)>>d}%a'

By the assumption, aﬁ/at =0 and Dgiaf}/at = 0 outside of the compact subset of
the interior of each U, and substituting (2.6) into (2.3), we get

% t:oE2 (fr)=2 z ﬁ L}X <dﬁ (%) Da,Day (5% dft) ()
~ Dy a (D dfe) @) Y

\Gla| La <RN (dft (é:),df: (%)) dfi (&), <15e'j dft) (éj)>d5€a-
(2.7)

+2>

Let t = 0, and by the symmetry of the Riemannian curvature tensor, we derive (2.4).
O

DEFINITION 2.3. A smooth map f: (M,%) — N from a compact V-manifold M into
a Riemannian manifold N is biharmonic if and only if

T2(f) = AT(f) +RN(df (&), T(f)) df (&) =0 (2.8)

in each {U,G,} € % over the support U on M.

A harmonic map f: M — N on a V-manifold M is obviously a biharmonic map, but a
harmonic map is not necessarily a biharmonic map. However, we obtain the following
theorem.

THEOREM 2.4. Suppose that M is a compact V-manifold, and N is a Riemannian
manifold of nonpositive curvature. If f : M — N is a biharmonic map, then f is a
harmonic map.

PROOF. In each V-chart {U,G, 1} € F over the support U on M it is calculated by
Aex(f) = %Allr(f)llz = (Da, 7(f).De,7(f)) +(D*DT(f), T(f))
= (Do, T(f), Do, T(F)) = (RN (df (&), T (F)) df (&), T(f)) =0,

(2.9)

because T ( f ) = 0 in each U and the Riemannian curvature of N is nonpositive. By
Bochner’s technique and the assumption 0 ft /ot =0 and Déia ft /ot = 0 outside a com-
pact subset of int(0), we know HT(f) I = const, and then substituting into (2.9) we
have Dék(Tf) =0, forall k=1,2,...,m by [7] which implies T(f) =0 in each U, that
is, f is harmonic on M. O

Since harmonic maps are automatically biharmonic maps when the Riemannian cur-
vature of N is nonpositive, we will find a non-trivial biharmonic map into a sphere. By
the concepts of V-manifolds and the similar techniques as [11], we have the following
theorem.
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THEOREM 2.5. Let f: (M,%) — S™*1 be nonzero parallel mean curvature isometric
embedding, then f is biharmonic if and only if the second fundamental form B(f) of f
~ 2 - ~
with ||B(f)|| = m =dim(U) in each U over the support U on M.

EXAMPLE 2.6. In S™*1 the compact hypersurface of its Gauss map being isometric
embedding is the Clifford surface (see [15]):

M,Z”(l)—Sk<\/g) Smk( ;) 0<k=<m. (2.10)

Let f: M{" (1) — S™"! be the standard embedding. Set

SK(WI/2)  S™EIT2)

Z, Zy

MI(1) = (2.11)
where p, p’ are prime numbers (p and p’ could be the same or different). Since
both the first and the second terms are compact V-manifolds, the product is also
a compact V-manifold. Let f’ : M,Z”(l)' — S™M+1 he a map such that k # m/2, pick
U= {(x%x!,...,xk) e S&/T/2 : x' > 0, iisany of 0,1,...,k} x {(x**1 ... x™*1) e
Sm-k/T/2:x7 >0, jisany of k+1,...,m+1} (if x* and x/ vary, U is different), and
let ' : U — S™*1 (as part of the standard map f : SK/1/2xS™mk/1/2 — §™m+1)in each
{U,G, 1} € F. So f " has parallel second fundamental form, and has parallel mean
curvature and B(f’) =k+m-k=m, IIT(f’)H =|k—(m—-k)| =2k—m =+ 0. That is,
f " is biharmonic in U for each {U,G, 1} € %. Then by Theorem 2.5 f is a nontrivial
biharmonic map on (M, %).

3. The stability and composition of biharmonic maps on V-manifolds. Let M be
a compact V-manifold, and N a Riemannian manifold. We continue to use the nota-
tions as in the previous sections. By applying the Green’s divergence theorem on the
compact V-manifold M [3], the concepts of V-manifolds, and the similar techniques
in [11], we can have the second variations of biharmonic maps as follows.

THEOREM 3.1. If f: (M%) — N is a biharmonic map, then

t=0
= ﬁ L AV +RN(Af (&:),V)df (&) d%a

; ; 3.1)
23 ﬁ La (Vo (D' 400 RN (dF (&6), T (F))V

+ (D' RY)(df (8:), V) df (&) + RN (T (f),V)T(f)
+2RN(d f (&k),V) Do, T(f) +2RN (df (81),7T(F)) De,V ) d%er.

DEFINITION 3.2. Let f : (M,%) — N be a biharmonic map from a compact
V-manifold M into a Riemannian manifold N. If d?/dt?E>(fi)|i—o = O, then f is a
stable biharmonic map.
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If we look at a harmonic map as a biharmonic map, then it must be stable by the
definition of bi-energy since

1 d2
2 arz bl

2t laveran @ viaief a0 62

THEOREM 3.3. Let f: (M,%) — N be a stable biharmonic map from a compact V-
manifold M into a Riemannian manifold N of constant sectional curvature K > 0 and
f satisfies the conservation law, then f must be a harmonic map.

PROOF. Because N has the constant sectional curvature, the term of D’RYN of the
second variation formula disappears and

1 d?
>dr E>(ft)

=S | AV RN @f e V)ds e s

+ZWL (V,RN (T (f), V)T (F)+2RN (df (), V) D, T (f) 33
+ZRN(df(éi),T(f‘))DéiV>d)~C[x.

Take V = 7(f), and notice that f is biharmonic and N has the constant sectional
curvature, then by (3.3) we have

1 a°

pabeU0| | =Si [ (R @F@) (DT (F) T (7))
—4I<Z|Ga [, [{aF (@D f><|T I (34)
<df (F)) (T (F).De, T (f) )] da

In each Uy, f satisfies the conservation law [2], so

(af(@),7(f)) =0,

- - _ . . S (3.5)
(df (@), De,7(F)) = —(De, df (@), 7(F)) = It ()l
in each U. Substitute (3.5) into (3.4), and f is stable, we have
1 a?
5 g2 B2 (ft) =—4K> —— |G | J AIfdzs = 0. (3.6)

Therefore, T(f) =0 in each §y of Uy, that is, f is harmonic on (M, %).

Let f: (M,%) — M’ be a smooth map from a compact V-manifold (M,%) into a
Riemannian manifold and M’, and f} : M’ — M" a smooth map from M’ into another
Riemannian manifold M"’. Then the composition fjo f : M — M’ is a smooth map. Let
D,D’,D,D'D, D', D" be the Riemannian connections on TM, TM’, f'TM, fy'TM",
(fiof) 'TM", T*M & f~ITM', T*M’' ® f{'TM" , T*M & (f1 o f) ' TM", respectively,
and let RM (,), R/T' ™" be the Riemannian curvatures on TM"’, f~'TM"’, respectively.
Forall X,Y e I'(TM), we have

Dyd(fiof)Y = Djypxydfi(Y) +dfioDxdf(Y). (3.7)
O
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THEOREM 3.4. Let (M, %) be a compact V-manifold, and M', M'' Riemannian mani-
folds. If f : M — M’ is a biharmonic map and f, : M’ — M"" is totally geodesic, then the
composition fio f: M — M" is a biharmonic map.

PROOEF. Since f; is totally geodesic, that is, D’df, = 0, so in each U we have
T(friof)=dfioT(f) and

D" DT (fiof) = D" D" (dfi o7 (F))

- - . 3.8)
= D5 Dy (dfioT(f)) =Dp, g (dfroT(f)).

By (3.7) and notice that f; is totally geodesic, then

= (Dh, ajie@f1) (Do dF (@) +dfioDe (Do df (@) (3.9)
=dfioDsT(f)
So
Dg Dj, (dfio T(Jf)) = Dg, (df1°Dg T ~(f)) = dfi°Dg D, T(f), 510,
Dp, o (dfioT(F)) = dfi oDy e, T (F).
Substituting (3.10) into (3.8), we get
D"t (fief) =dfieD*DT(f). @11

On the other hand,

RM'(d(fro f) (&), T(frof))d(fiof) (&)
=RV (df (&), 7(F)) dfi (df () (3.12)
=dfieRM (df (&), T(f))df (&)

By (3.11) and (3.12), we have

D*D" (fio f)+RM (d(fro f) (&), T(fiof))d(fiof) (&) 513
= dfio[D*D7(f)+ R (df (&), (F) df ()] '
in each U. Hence, if f is biharmonic, then f; o f is also biharmonic. O

REMARK 3.5. Theorem 3.4 generalizes the main theorem in [14] into V-manifolds.
The condition of f; being totally geodesic cannot be weakened into harmonic or bi-
harmonic.
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