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BIHARMONIC MAPS ON V-MANIFOLDS

YUAN-JEN CHIANG and HONGAN SUN

(Received 16 February 2001)

Abstract. We generalize biharmonic maps between Riemannian manifolds into the case
of the domain being V-manifolds. We obtain the first and second variations of bihar-
monic maps on V-manifolds. Since a biharmonic map from a compact V-manifold into
a Riemannian manifold of nonpositive curvature is harmonic, we construct a biharmonic
non-harmonic map into a sphere. We also show that under certain condition the biharmonic
property of f implies the harmonic property of f . We finally discuss the composition of
biharmonic maps on V-manifolds.
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1. Introduction. Following Eells, Sampson, and Lemaire’s tentative ideas [7, 8, 9],

Jiang first discussed biharmonic (or 2-harmonic) maps between Riemannian manifolds

in his two articles [10, 11] in China in 1986, which gives the conditions for biharmonic

maps. A biharmonic map f : M → N between Riemannian manifolds is the smooth

critical point of the bi-energy functional

E2(f )=
∫
M

∥∥(d+d∗)f∥∥2∗1=
∫
M

∥∥τ(f)∥∥2∗1, (1.1)

where∗1 is the volume form onM , the tension field τ(f)=(D̂df)(ei,ei)(=(D̂eidf)(ei)),
{ei} is the local frame of a point p in M . Biharmonic maps are the extensions of har-

monic maps, and their study provides a source in partial differential equations, differ-

ential geometry, and analysis. After Jiang, Chiang, and Sun have studied biharmonic

maps in two papers [6, 14]. Chiang also studied harmonic maps and biharmonic maps

of two different kinds of singular spaces: V-manifolds [3, 4] and spaces with conical

singularities (with Andrea Ratto [5]).

In this paper, we generalize the notion of a biharmonic map to the case that the

domain of f is a V-manifold due to Satake in [1, 12, 13]. A (C∞) V-manifold (M,�)
consists of a Hausdorff space M with an atlas � of V-charts satisfying the following

conditions:

(i) If {Ũ ,G,π} and {Ũ ′,G′,π ′} are two V-charts in � over U , U ′, respectively, inM
with U ⊂U ′, then there exists an injection λ : {U,G,π} → {U,G′,π ′}.

(ii) The supports of V-charts in � form a basis for open sets in M .

Take a chart {Ũ ,G,π} ∈� such that p ∈π(Ũ) and choose p̃ ∈ Ũ such that σp̃ = p̃.

The isotropic subgroup GP̃ of G at p̃ is the set of all σ ∈ G such that σp̃ = p̃. So

Gp̃ is called the isotropic group of p. The singular set S of M consists of all singular

points of M , that is, the points of M with nontrivial isotropy groups. (For example,

S2/Z3 is a compact V-manifold with two singular points.) The main difficulties of this
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paper arise from the complicated behavior of the singular locus of V-manifolds, and

therefore a different method than the usual one is required. In fact, this article is the

extension of Chiang’s previous two papers [3, 4].

We derive the first variations of biharmonic maps in Theorem 2.2, and give the defi-

nition for biharmonic maps on V-manifolds. We show that a biharmonic map from a

compact V-manifold into a Riemannian manifold of nonpositive curvature is a har-

monic map in Theorem 2.4. Then we construct a biharmonic non-harmonic map from

a V-manifold into a sphere in Section 2. We obtain the second variations of biharmonic

maps in Theorem 3.1. If d2/dt2E2(ft)|t=0 ≥ 0, then f is a stable biharmonic map. In

Theorem 3.3, we show that if a stable biharmonic map from a compact V-manifold

M into a Riemannian manifold N of positive curvature satisfies the conservation law,

then f must be a harmonic map. In Theorem 3.4, we prove the composition of bihar-

monic maps on V-manifolds which generalizes Sun’s result in [14].

2. Biharmonic maps on V-manifolds. Let (M,�) be a (C∞) V-manifold, and U be

an open subset ofM . By a V -chart onM over U we mean a system {Ũ ,G,π} consisting

of (1) a connected open subset Ũ of Rm, (2) a finite group G of diffeomorphisms of Ũ ,

with the set of fixed points of codimension ≥ 2, and (3) a continuous map of π : Ũ →U
such thatπ ◦σ =π forσ ∈G and such thatπ induces a homeomorphism of Ũ/G onto

U . The set U is called the support of V-chart, and π is called the projection onto U .

Let (M,�) be a V-manifold and p ∈ M . Take a chart {Ũ ,G,π} ∈ � such that p ∈
π(Ũ) and choose p̃ ∈ Ũ such that π(p̃) = p. The isotropic subgroup Gp̃ of G at p̃ is

the set of all σ ∈G such that σp̃ = p̃, and is uniquely determined by p. Therefore, Gp̃
is called the isotropic group of p. The singular set S ofM consists of all singular points

of M , that is, the points of M with nontrivial isotropic groups. Let (x̃1, . . . , x̃m) be a

coordinate system around p̃ and consider the system ỹi = 1/|Gp̃|
∑
lij(σ−1)x̃j ·σ

with

lij(σ)=
[
∂x̃i ◦σ
∂x̃j

]
p̃
,

∣∣Gp̃∣∣= order of Gp̃. (2.1)

Then the {ỹi} are a new coordinate system around p̃ and Gp̃ operates linearly in the

ỹ-system. After this suitable C∞ change of coordinates around p̃, Gp̃ becomes a finite

group of linear transformations. The fixed point set of any σ ∈ Gp̃ is the defined

linear equations in the ỹ , and consequently the fixed point set of σ ∈ Gp̃ in Ũ is the

intersection of Ũ with a linear space. Therefore, π−1S is locally expressed by a finite

union of linear spaces intersected with Ũ . Hence S is a V-submanifold of codimension

≥ 2 of M . Clearly, M−S is an ordinary manifold.

We fix a V-manifold M with defining atlas �. A smooth function f : (M,�) → N
fromM into an ordinary manifold N is defined as follows: for any {Ũ ,G,π} ∈� there

corresponds an ordinary G-invariant smooth map fGŨ = 1/|G|∑σ∈G fŨ ◦σ : Ũ → N
such that fGŨ = f ◦π and fGŨ = fG

′
Ũ′ ◦λ for any injection λ : {Ũ ,G,π} → {Ũ ′,G′,π ′}

where fŨ : Ũ →N is an ordinary smooth map.

Put a Riemannian metricgŨ = gij dx̃i dx̃j on Ũ . By taking theG-average if necessary,

we can assume that gŨ is G-invariant. Thus the transformations σ ∈G are isometries

for gŨ . By using the standard partition of unity construction, we can patch all such
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local invariant metrics together into a global metric tensor field of type (0,2) on the

V-manifold M , which we call a Riemannian metric on M .

Let Mm be a compact V-manifold of dimension m with C∞ Riemannian metric g,

and Nn a (C∞) Riemannian manifold of dimension n. By Satake [12, 13], M admits a

finite triangulation T = ∪sα such that each sα is contained in the support Uα of a V-

chart {Ũα,Gα,πα} ∈� onM and is the homeomorphic projection of a regular simplex

s̃α in Ũα. For a smooth map f :M →N , the bi-energy functional of f is defined by

E2(f )=
∫
M

∣∣τ(f)∣∣2∗1=
∑∫

sα

∣∣τ(f)∣∣2dxα =
∑ 1∣∣Gα∣∣

∫
s̃α

∣∣τ(f̃ )∣∣2dx̃α, (2.2)

where dx̃α denotes the volume form with respect to the Gα-invariant metric gij in Ũα,

f̃α : Ũα→N is theGα -invariant lift of f . The Green’s divergence theorem on a compact

V-manifold proved in [3] plays an important role in the proofs of both Theorems 2.2

and 3.1.

In order to compute the Euler-Lagrange equation, we consider a one-parameter

family of maps {ft} ∈ C∞(M,N), t ∈ Iε = (−ε,ε), ε > 0 such that in the V-chart

{Ũ ,G,π} ∈ � over the support U on M , the G-invariant lift f̃t is the endpoint of

the segment starting at G-invariant lift f̃ (x) determined in length and direction by

the vector field ˙̃f along f̃ , and such that ∂f̃t/∂t = 0 and D̄ẽi∂f̃t/∂t = 0 outside a com-

pact subset of the interior of Ũ . Choose {ei} being the local frame of a point p in U
on M , and {ẽi} being the local frame of the lifting point p̃ in Ũ . Let D, D′, D̄, D̂ be the

Riemannian connections along TM , TN , f−1TN , T∗M⊗f−1TN , and D̃, ˜̂D are the Rie-

mannian connections along TŨ , T∗Ũ⊗f−1TN in each {Ũ ,G,π} ∈� over the support

U on M . Also, let �= D̄ẽk D̄ẽk−D̄Dẽk ẽk be the Laplace operator along the cross section

of f−1TN in each Ũ , and V = ∂f̃t/∂t. We can compute (2.2) directly, and obtain the

following result.

Lemma 2.1.

d
dt
E2
(
ft
)= 2Σ

1∣∣Gα∣∣
∫
s̃α

〈
˜̂Dẽi

˜̂Dẽi df̃t
(
∂
∂t

)
− ˜̂DD̃ẽi ẽi df̃t

(
∂
∂t

)
,
( ˜̂Dẽj df̃t

)(
ẽj
)

dx̃α

+2Σ
1∣∣Gα∣∣

∫
s̃α

〈
RN
(
df̃t

(
ẽi
)
,df̃t

(
∂
∂t

))
df̃t

(
ẽi
)
,
( ˜̂Dẽj df̃t

)(
ẽj
)

dx̃α.

(2.3)

Theorem 2.2. Let f : (M,�) → N be a smooth map from a compact V-manifold

(M,�) into a Riemannian manifold N . Set V = ∂f̃t/∂t then

d
dt

∣∣∣∣
t=0
E2
(
ft
)= 2Σ

1∣∣Gα∣∣
∫
s̃α

〈
V,�τ(f̃ )+RN(df̃ (ẽi),τ(f̃ ))df̃ (ẽi)〉dx̃α. (2.4)

Proof. For every t ∈ Iε, let

X̃ =
〈

˜̂Dẽi df̃t
(
∂
∂t

)
, ˜̂Dẽj df̃t

(
ẽj
)

ẽi, Ỹ =

〈
df̃t

(
∂
∂t

)
, D̄ẽi

( ˜̂Dẽj df̃t
)(
ẽj
)
(

ẽi
)
, (2.5)

in each {Ũ ,π,G} ∈ � over the support U on M . By computing the divergence of X̃
and Ỹ in each Ũ , and applying Green’s divergence theorem to the vector field X̃− Ỹ
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in each �̃ on the compact manifold M in [3], we have

∑ 1∣∣Gα∣∣
∫
s̃α

〈(
˜̂Dẽi

˜̂Dẽi df̃t
)( ∂
∂t

)
−
(

˜̂DD̃ẽi ẽi df̃t
)( ∂
∂t

)
,
(

˜̂Dẽj df̃t
)(
ẽj
)

dx̃α

=
∑ 1∣∣Gα∣∣

∫
s̃α

〈
df̃t

(
∂
∂t

)
, D̄ẽk D̄ẽk

(
˜̂Dẽj df̃t

)(
ẽj
)−D̄D̃ẽk ẽk

((
˜̂Dẽj df̃t

)(
ẽj
))

dx̃α.

(2.6)

By the assumption, ∂f̃t/∂t = 0 and D̄ẽi∂f̃t/∂t = 0 outside of the compact subset of

the interior of each Ũ , and substituting (2.6) into (2.3), we get

d
dt

∣∣∣∣
t=0
E2
(
ft
)=2

∑ 1∣∣Gα∣∣
∫
s̃α

〈
df̃t

(
∂
∂t

)
, D̄ẽk D̄ẽk

(
˜̂Dẽj df̃t

)(
ẽj
)

−D̄D̃ẽk ẽk
((

˜̂Dẽjdf̃t
)(
ẽj
))


dx̃α

+2
∑ 1∣∣Gα∣∣

∫
s̃α

〈
RN
(
df̃t

(
ẽi
)
,df̃t

(
∂
∂t

))
df̃t

(
ẽi
)
,
(

˜̂Dẽj df̃t
)(
ẽj
)

dx̃α.

(2.7)

Let t = 0, and by the symmetry of the Riemannian curvature tensor, we derive (2.4).

Definition 2.3. A smooth map f : (M,�)→N from a compact V-manifold M into

a Riemannian manifold N is biharmonic if and only if

τ2
(
f̃
)=�τ(f̃ )+RN(df̃ (ẽi),τ(f̃ ))df̃ (ẽi)= 0 (2.8)

in each {Ũ ,G,π} ∈� over the support U on M .

A harmonic map f :M →N on a V-manifoldM is obviously a biharmonic map, but a

harmonic map is not necessarily a biharmonic map. However, we obtain the following

theorem.

Theorem 2.4. Suppose that M is a compact V-manifold, and N is a Riemannian

manifold of nonpositive curvature. If f : M → N is a biharmonic map, then f is a

harmonic map.

Proof. In each V-chart {Ũ ,G,π} ∈� over the support U on M it is calculated by

�e2
(
f̃
)= 1

2
�
∥∥τ(f̃ )∥∥2 =

〈
D̃ẽkτ

(
f̃
)
, D̃ẽkτ

(
f̃
)〉+〈D̄∗D̄τ(f̃ ),τ(f̃ )〉

=
〈
D̃ẽkτ

(
f̃
)
, D̃ekτ

(
f̃
)〉−〈RN(df̃ (ẽi),τ(f̃ ))df̃ (ẽi),τ(f̃ )〉≥ 0,

(2.9)

because τ2(f̃ ) = 0 in each Ũ and the Riemannian curvature of N is nonpositive. By

Bochner’s technique and the assumption ∂f̃t/∂t = 0 and D̄ẽi∂f̃t/∂t = 0 outside a com-

pact subset of int(Ũ), we know ‖τ(f̃ )‖2 = const, and then substituting into (2.9) we

have D̄ẽk(τf̃ )= 0, for all k= 1,2, . . . ,m by [7] which implies τ(f̃ )= 0 in each Ũ , that

is, f is harmonic on M .

Since harmonic maps are automatically biharmonic maps when the Riemannian cur-

vature of N is nonpositive, we will find a non-trivial biharmonic map into a sphere. By

the concepts of V-manifolds and the similar techniques as [11], we have the following

theorem.
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Theorem 2.5. Let f : (M,�)→ Sm+1 be nonzero parallel mean curvature isometric

embedding, then f is biharmonic if and only if the second fundamental form B(f̃ ) of f̃
with ‖B(f̃ )‖2 =m= dim(Ũ) in each Ũ over the support U on M .

Example 2.6. In Sm+1, the compact hypersurface of its Gauss map being isometric

embedding is the Clifford surface (see [15]):

Mm
k (1)= Sk

(√
1
2

)
×Sm−k

(√
1
2

)
, 0≤ k≤m. (2.10)

Let f :Mm
k (1)→ Sm+1 be the standard embedding. Set

Mm
k (1)

′ = S
k(√1/2

)
Zp

× S
m−k(√1/2

)
Zp′

, (2.11)

where p, p′ are prime numbers (p and p′ could be the same or different). Since

both the first and the second terms are compact V-manifolds, the product is also

a compact V-manifold. Let f ′ : Mm
k (1)

′ → Sm+1 be a map such that k ≠ m/2, pick

Ũ = {(x0,x1, . . . ,xk) ∈ Sk
√

1/2 : xi > 0, i is any of 0,1, . . . ,k} × {(xk+1, . . . ,xm+1) ∈
Sm−k

√
1/2 : xj > 0, j is any of k+1, . . . ,m+1} (if xi and xj vary, Ũ is different), and

let f̃ ′ : Ũ → Sm+1 (as part of the standard map f : Sk
√

1/2×Sm−k√1/2→ Sm+1) in each

{Ũ ,G,π} ∈ �. So f̃ ′ has parallel second fundamental form, and has parallel mean

curvature and B(f̃ ′) = k+m−k =m,‖τ(f̃ ′)‖ = |k− (m−k)| = 2k−m ≠ 0. That is,

f̃ ′ is biharmonic in Ũ for each {Ũ ,G,π} ∈ �. Then by Theorem 2.5 f is a nontrivial

biharmonic map on (M,�).

3. The stability and composition of biharmonic maps on V-manifolds. Let M be

a compact V-manifold, and N a Riemannian manifold. We continue to use the nota-

tions as in the previous sections. By applying the Green’s divergence theorem on the

compact V-manifold M [3], the concepts of V-manifolds, and the similar techniques

in [11], we can have the second variations of biharmonic maps as follows.

Theorem 3.1. If f : (M�)→N is a biharmonic map, then

1
2
d2

dt2
E2
(
ft
)∣∣∣∣
t=0

=
∑ 1∣∣Gα∣∣

∫
s̃α

∥∥�V +RN(df̃ (ẽi),V)df̃ (ẽi)∥∥2dx̃α

+
∑ 1∣∣Gα∣∣

∫
s̃α

〈
V,
(
D′df̃ (ẽk)R

N)(df̃ (ẽk),τ(f̃ ))V
+(D′τ(f̃ )RN)(df̃ (ẽi),V)df̃ (ẽi)+RN(τ(f̃ ),V)τ(f̃ )
+2RN

(
df̃
(
ẽk
)
,V
)
D̄ẽkτ

(
f̃
)+2RN

(
df̃
(
ẽi
)
,τ
(
f̃
))
D̄ẽiV

〉
dx̃α.

(3.1)

Definition 3.2. Let f : (M,�) → N be a biharmonic map from a compact

V-manifold M into a Riemannian manifold N . If d2/dt2E2(ft)|t=0 ≥ 0, then f is a

stable biharmonic map.
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If we look at a harmonic map as a biharmonic map, then it must be stable by the

definition of bi-energy since

1
2
d2

dt2
E2
(
ft
)∣∣∣∣
t=0

=
∑ 1∣∣Gα∣∣

∫
s̃α

∥∥�V +RN(df̃ )((ẽi),V)df̃ (ẽi)∥∥2dx̃α ≥ 0. (3.2)

Theorem 3.3. Let f : (M,�) → N be a stable biharmonic map from a compact V-

manifold M into a Riemannian manifold N of constant sectional curvature K > 0 and

f satisfies the conservation law, then f must be a harmonic map.

Proof. Because N has the constant sectional curvature, the term of D′RN of the

second variation formula disappears and

1
2
d2

dt2
E2
(
ft
)∣∣∣∣
t=0
=
∑ 1∣∣Gα∣∣

∫
s̃α

∥∥�V +RN(df (ei),V)df (ei)∥∥2dx̃α

+
∑ 1∣∣Gα∣∣

∫
s̃α

〈
V,RN

(
τ
(
f̃
)
,V
)
τ
(
f̃
)+2RN

(
df̃
(
ẽk
)
,V
)
D̄ẽkτ

(
f̃
)

+2RN
(
df̃
(
ẽi
)
,τ
(
f̃
))
D̄ẽiV

〉
dx̃α.

(3.3)

Take V = τ(f̃ ), and notice that f is biharmonic and N has the constant sectional

curvature, then by (3.3) we have

1
2
d2

dt2
E2
(
ft
)∣∣∣∣
t=0

=
∑ 4∣∣Gα∣∣

∫
s̃α

〈
RN
(
df̃
(
ẽi
)
,τ
(
f̃
))
D̄ẽkτ

(
f̃
)
,τ
(
f̃
)〉
dx̃α

= 4K
∑ 1∣∣Gα∣∣

∫
s̃α

[〈
df̃
(
ẽk
)
, ˜̄Dẽkτ

(
f̃
)〉∥∥τ(f̃ )∥∥2

−
〈
df̃
(
ẽk
)
,τ
(
f̃
)〉〈

τ
(
f̃
)
, D̄ẽkτ

(
f̃
)〉]

dx̃α.

(3.4)

In each Ũα, f̃ satisfies the conservation law [2], so〈
df̃
(
ẽk
)
,τ
(
f̃
)〉= 0,〈

df̃
(
ẽk
)
, D̄ẽkτ

(
f̃
)〉=−〈D̄ẽk df̃ (ẽk),τ(f̃ )

〉
=−

∥∥τ(f̃ )∥∥2
(3.5)

in each Ũ . Substitute (3.5) into (3.4), and f is stable, we have

1
2
d2

dt2
E2
(
ft
)∣∣∣∣
t=0

=−4K
∑ 1∣∣Gα∣∣

∫
s̃α

∥∥τ(f̃ )∥∥4dx̃α ≥ 0. (3.6)

Therefore, τ(f̃ )= 0 in each s̃α of Ũα, that is, f is harmonic on (M,�).
Let f : (M,�) → M′ be a smooth map from a compact V-manifold (M,�) into a

Riemannian manifold and M′, and f1 :M′ →M′′ a smooth map from M′ into another

Riemannian manifoldM′′. Then the composition f1◦f :M →M′′ is a smooth map. Let

D, D′, D̄, D̄′D̂, D̂′, D̂′′ be the Riemannian connections on TM , TM′, f−1TM , f−1
1 TM′′,

(f1 ◦f)−1TM′′, T∗M⊗f−1TM′, T∗M′ ⊗f−1
1 TM′′,T∗M⊗ (f1 ◦f)−1TM′′, respectively,

and let RM′(,), Rf
−1
1 TM′′ be the Riemannian curvatures on TM′′, f−1TM′′, respectively.

For all X,Y ∈ Γ(TM), we have

D̄′′X d
(
f1 ◦f

)
Y = D̂′df(X)df1(Y)+df1 ◦D̄Xdf(Y). (3.7)
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Theorem 3.4. Let (M,�) be a compact V-manifold, and M′, M′′ Riemannian mani-

folds. If f :M →M′ is a biharmonic map and f1 :M′ →M′′ is totally geodesic, then the

composition f1 ◦f :M →M′′ is a biharmonic map.

Proof. Since f1 is totally geodesic, that is, D̂′df1 = 0, so in each Ũ we have

τ(f1 ◦ f̃ )= df1 ◦τ(f̃ ) and

D̄′′∗D̄τ
(
f1 ◦ f̃

)= D̄′′∗D̄′′(df1 ◦τ
(
f̃
))

= D̄′′ẽk D̄
′′
ẽk

(
df1 ◦τ

(
f̃
))−D̄′′Dẽk ẽk

(
df1 ◦τ

(
f̃
))
.

(3.8)

By (3.7) and notice that f1 is totally geodesic, then

D̄′′ẽk
(
df1 ◦τ

(
f̃
))= D̄′′ẽk(df1 ◦D̂ẽj df̃

(
ẽj
))

=
(
D̂′D̂ẽj df̃ (ẽk)

df1

)(
D̂ẽj df̃

(
ẽj
))+df1 ◦D̄ẽk

(
D̂ẽj df̃

(
ẽj
))

= df1 ◦D̄ẽkτ
(
f̃
)
.

(3.9)

So

D̄′′ẽk D̄
′′
ẽk

(
df1 ◦τ

(
f̃
))= D̄′′ẽk(df1 ◦D̄ẽkτ

(
f̃
))= df1 ◦D̄ẽk D̄ẽkτ

(
f̃
)
,

D̄′′Dẽk ẽk
(
df1 ◦τ

(
f̃
))= df1 ◦D̄Dẽk ẽkτ

(
f̃
)
.

(3.10)

Substituting (3.10) into (3.8), we get

D̄′′∗τ
(
f1 ◦ f̃

)= df1 ◦D̄∗D̄τ
(
f̃
)
. (3.11)

On the other hand,

RM
′′(
d
(
f1 ◦ f̃

)(
ẽi
)
,τ
(
f1 ◦ f̃

))
d
(
f1 ◦f

)(
ẽi
)

= Rf−1
1 TM′′(df̃ (ẽi),τ(f̃ ))df1

(
df̃
(
ẽi
))

= df1 ◦RM′
(
df̃
(
ẽi
)
,τ
(
f̃
))
df̃
(
ẽi
)
.

(3.12)

By (3.11) and (3.12), we have

D̄∗D̄′′
(
f1 ◦ f̃

)+RM′′(d(f1 ◦ f̃
)(
ẽi
)
,τ
(
f1 ◦ f̃

))
d
(
f1 ◦ f̃

)(
ẽi
)

= df1 ◦
[
D̄∗D̄τ

(
f̃
)+RM′(df̃ (ẽi),τ(f̃ ))df̃ (ẽi)] (3.13)

in each Ũ . Hence, if f is biharmonic, then f1 ◦f is also biharmonic.

Remark 3.5. Theorem 3.4 generalizes the main theorem in [14] into V-manifolds.

The condition of f1 being totally geodesic cannot be weakened into harmonic or bi-

harmonic.
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