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Abstract. We extend van Dalen and Wattel’s (1973) characterization of orderable spaces
and their subspaces by obtaining analogous results for two larger classes of topological
spaces. This type of spaces are defined by considering preferences instead of linear orders
in the former definitions, and possess topological properties similar to those of (totally)
orderable spaces (cf. Alcantud, 1999). Our study provides particular consequences of rel-
evance in mathematical economics; in particular, a condition equivalent to the existence
of a continuous preference on a topological space is obtained.
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1. Introduction. This paper is a natural continuation of a prior contribution in

this journal (cf. Alcantud [2]). In that work, we had analyzed a number of significant

properties of a class of topologies associated with spaces ordered by preferences

(i.e., asymmetric and negatively transitive binary relations). Further issues regarding

that framework have been studied in Alcantud [1]. Preferences include the so-called

linear or total orders; the analogous study for this particular type of orders had been

conducted by different authors before. We now consider a converse problem, which

we may situate in the following general framework: which topological spaces can be

endowed with an order of a certain type, in such a way that the order and the topology

be related in a certain form? Again, we consider the particular case when the order is

linear as an initial approach.

To this respect, van Dalen and Wattel [18] solved the problem of characterizing

the so-called weakly orderable spaces, orderable spaces, and subspaces of orderable

spaces in terms of conditions on a subbase of the space. The technique that was

employed in such paper derived from that used by de Groot and Schnare [5]; this

later paper was devoted to providing characterizations of compact orderable spaces

(which they call totally orderable spaces) and their products. A further improvement

of these theorems led to characterizing products of orderable spaces and products of

subspaces of orderable spaces (cf. van Dalen [17]). Prior to these achievements, several

authors had dealt with these problems (cf. Eilenberg [9], Kok [13, 14], and Herrlich [11]

among others). We will extend their study to the case of spaces ordered by preferences.

Our purpose is to characterize certain types of topological spaces which generalize

weakly orderable and orderable spaces and their subspaces to the preference case.

Apart from its intrinsic interest, this work will enable us to deduce relevant ap-

plications to mathematical economics. Indeed, economic agents’ (strict) preferences

are usually modelled through asymmetric and negatively transitive binary relations.
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The role that preferences play in consumer theory has been exposed, for example,

in Debreu [8] and Hildenbrand and Kirman [12]. Some further properties are usually

assumed for an agent’s preferences, for instance continuity. This requires to work

on topological spaces such as Euclidean spaces, a common framework in economic

theory. The continuity axiom is not only technical, since it has an intuitive meaning

in economic terms. Furthermore, continuous preferences are of particular interest in

mathematical utility theory (cf. Bridges and Mehta [4], Debreu [7, Section 4.6], and

Rader [16]). The present contribution will enable us to take as a primitive concept the

agents’ indifference. In particular, we intend to provide necessary and sufficient con-

ditions under which this alternative way to model individual choice behavior leads

to that by preferences of certain significant types. Obviously, this will be apparent

after studying adequate orderability problems of topological spaces. Some concluding

remarks will help to understand these implications better.

2. Some known results. We proceed to fix the notation and list some results that

will ease our task.

An asymmetric, negatively transitive binary relation ≺ on a set X is a preference. A

transitive, asymmetric (or irreflexive) binary relation ≺ is called a partial order. With

any partial order ≺ we may associate a binary relation called indifference relation;

it is denoted by ∼ and defined by x ∼ y if and only if not x ≺ y , not y ≺ x. If ∼
is associated with a preference, then it is an equivalence relation and conversely. By

x �y we mean x ≺y or x ∼y . The order topology associated with a partial order ≺
(denoted by τor(≺), or simply τor if no confusion is possible) is the topology which has

the family formed by X and all the subsets {a ∈ X : a ≺ x} and {a ∈ X : x ≺ a} with

x ∈ X as a subbase of open sets. The equivalence classes by an equivalence binary

relation R on a set will be denoted by [x]R , or simply [x] if no confusion is possible.

The next two definitions were introduced in [2]. Given a collection � of subsets of a

set X, a binary relation R on X saturates � if xRy , y ∈ S, and S ∈� imply x ∈ S. We

say that a quotient map between topological spaces f : (X,τ)→ (X′,τ′) is a saturated

identification if, for eachA∈ τ ,A= f−1f(A). We also say that f :X →X′ is a saturated

identification with the topologies τ , τ′.
Because an open (closed) continuous onto map is a quotient map, a saturated iden-

tification can be redefined as an open (closed) continuous onto map withA= f−1f(A)
for allA∈ τ (C = f−1f(C) for all C closed). If f is the quotient map associated with an

equivalence relation R on X, the condition thatA= f−1f(A) for allA∈ τ is equivalent

to R saturates τ . Thus, for any equivalence binary relation on a topological space that

saturates the topology, the projection onto the quotient space is open.

We have proved in [3] the following characterization, which shows that saturation

appears naturally in the study of preferences.

Theorem 2.1. A partial order on a set is a preference if and only if the indifference

associated with it saturates its order topology.

In what follows, if a preference on a set X is denoted by ≺ then ∼ will stand for

the indifference that ≺ induces. Furthermore, for this preference ≺ we denote by ≺′
the linear order on X/ ∼ defined in a natural way by [x] ≺′ [y] if and only if a ≺ b
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for all a ∈ [x] and b ∈ [y] (cf. [10, Theorem 2.1]). Conversely, if R is an equivalence

binary relation on X, then any linear order ≺′ on X/R induces a preference ≺ on X in

a natural way according to the expression x ≺y if and only if [x]R ≺′ [y]R .

Under these conditions, the following result was proved in Alcantud [2].

Proposition 2.2. If ≺ is a preference on X and ≺′ is the induced linear order on

X/∼, then the projection map p :X →X/∼ is a saturated identification with the order

topologies.

A partial order ≺ is compatible with a topology τ if τor(≺) � τ . An alternative term

is to say that ≺ is continuous with respect to τ .

Weakly orderable spaces are those which can be endowed with a continuous lin-

ear order. Orderable spaces are usually called LOTS (for linearly ordered topological

space); their subspaces are called GO-spaces (which stands for generalized ordered

space). In this paper, we adopt this latter terminology. Thus, a LOTS is a topological

space whose topology is induced by a linear order on it. Now, the next definitions are

obtained by generalizing the concepts of GO-space and LOTS to the case of spaces

ordered by preferences.

Definition 2.3. A GPO-space (for Generalized Preference-Ordered space) is a triple

(X,≺,τ) where ≺ is a preference on X and τ is a topology on X such that τor � τ and

τ has a base formed by convex sets (C ⊆X is convex if p � z � q and p,q ∈ C implies

z ∈ C). A POTS (Preference-Ordered Topological Space) is a triple (X,≺,τor) where ≺
is a preference on X.

These definitions were also introduced in Alcantud [2], which is devoted to the

study of those classes of spaces; a study which is complemented in [1]. In particular,

we have shown in [2] that GPO-spaces form a class that is contained in the class of

monotonically normal spaces (as defined in Kubiak [15]) and that strictly contains

GO-spaces. Analogously to the linear case, the class of GPO-spaces coincides with the

class of subspaces of POTS. Notice that, in any GPO-space, the underlying indifference

saturates the topology.

Following van Dalen and Wattel [18] we say that a nest is a collection � of sets

with the property that for any two members N1 and N2 of � it is true that either

N1 ⊆ N2 or N2 ⊆ N1. It is also common to call this type of collections chains of sets.

Besides, a collection � of sets is interlocking provided that every set S0 of � which

is an intersection of strictly larger members of � has a representation as a union of

strictly smaller members of �, that is,

S0 =∩
{
S : S0 ⊆ S, S ∈�\{S0

}}
�⇒ S0 =∪

{
S : S ⊆ S0, S ∈�\{S0

}}
. (2.1)

Then, the following theorem was proved in [18].

Theorem 2.4 (van Dalen and Wattel [18]). A T1 topological space is a GO-space

(resp., a LOTS) if and only if it has an open subbase consisting of two nests (resp., of two

interlocking nests). A topological space admits a continuous linear order on it if and

only if there exist two nests of open sets that together generate a T1 topology.
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We point out that interlocking nests appear naturally in the study of the spaces

ordered by continuous preferences. A straightforward argument shows that, for any

≺ continuous preference on X, the collection of all the subsets xu := {y ∈X : x ≺y}
(resp., xl := {y ∈ X : y ≺ x}) with x ranging over X is an interlocking nest. These

sets are called upper (resp., lower) contour sets associated with x in the economic

literature.

A different solution to the problem of characterizing LOTS and GO-spaces was

stated by Deák in [6], by using the concept of compatible directions.

3. Orderability of topological spaces by continuous preferences. We begin by

obtaining a basically technical result, for the sake of the exposition.

Theorem 3.1. Let (X,τ) be a topological space and let R be an equivalence binary

relation on X. The following statements are equivalent:

(a) There exists a preference ≺ on X whose indifference coincides with R and such

that (X,≺,τ) is a GPO-space.

(b) R saturates τ , the equivalence classes by R are closed and τ has a subbase con-

stituted by the union of two nests.

Proof. (a)⇒(b). It is well known that, in any space ordered by a preference, the

equivalence classes induced by its indifference are closed in its order topology. Be-

sides, the indifference R saturates τ by the convexity of the open sets, and the nests

of open subsets {xu : x ∈X} and {xl : x ∈X} fulfill the remaining requirement.

(b)⇒(a). Suppose that τ has a subbase which is constituted by the union of two nests

� and �. The projection p onto the quotient space by R is open because R saturates

τ . We show that p(�) and p(�) are two nests of open sets whose union generates

τquot, which is T1.

It is clear that p(�) and p(�) are nests of open sets. Now, let A∈ τquot and x′ ∈A.

Take an element x ∈ p−1(x′); there must exist {Ai : i = 1, . . . ,n} ⊆ � and {Bj : j =
1, . . . ,m} ⊆� such that

x ∈∩{Ai : i= 1, . . . ,n
}∩{Bj : j = 1, . . . ,m

}⊆ p−1(A). (3.1)

Since R saturates τ , it follows that p(∩{Ai : i = 1, . . . ,n} ∩ {Bj : j = 1, . . . ,m}) =
∩{p(Ai) : i= 1, . . . ,n}∩{p(Bj) : j = 1, . . . ,m}. Thus

x′ ∈ ∩{p(Ai
)

: i= 1, . . . ,n
}∩{p(Bj

)
: j = 1, . . . ,m

}

= p(∩{Ai : i= 1, . . . ,n
}∩{Bj : j = 1, . . . ,m

})⊆ pp−1(A)=A.
(3.2)

This shows that the union of p(�) and p(�) is a subbase for τquot.

From Theorem 2.4, there exists a linear order ≺′ on X/R verifying that τor(≺′) �
τquot and such that the open sets of a base �′ of τquot are convex respect to ≺′. Let ≺
be the preference on X that induces ≺′ on X/R.

By Proposition 2.2, the projection p is a saturated identification with τor(≺) and

τor(≺′), and thus A ∈ τor(≺) implies p(A) ∈ τor(≺′), therefore p(A) ∈ τquot. Since

R saturates τor(≺) we deduce from A ∈ τor(≺) that A = p−1p(A) ∈ τ . Therefore

τor(≺) � τ .
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On the other hand, the collection � = {p−1(B′) : B′ ∈ �′} is a base of τ because

p is a saturated identification with τ and τquot. This collection is formed by convex

sets with respect to the preference ≺, which permits to conclude that (X,≺,τ) is

a GPO-space.

We now proceed to characterize POTS with regards to stating necessary and suffi-

cient conditions for a given indifference to derive from a model by continuous pref-

erences of a particular form.

Theorem 3.2. Let (X,τ) be a topological space and let R be an equivalence binary

relation on X. The following statements are equivalent:

(a) There exists a preference ≺ on X whose indifference coincides with R and such

that (X,≺,τ) is a POTS.

(b) R saturates τ , the equivalence classes by R are closed and τ has a subbase con-

stituted by the union of two interlocking nests.

Remark 3.3. Notice that a particular interpretation may be derived if R is thought

of as an agent’s indifference. In this case, condition (b) of Theorem 3.2 is equivalent to

the existence of a preference on X which induces the indifference R and whose order

topology coincides with the original topology.

Proof of Theorem 3.2. Again, the implication (a)⇒(b) is immediate.

(b)⇒(a). Suppose that τ has a subbase that is constituted by the union of two in-

terlocking nests, namely � and �. The projection p onto the quotient space by R is

open because R saturates τ . As in Theorem 3.1, p(�) and p(�) are two nests of open

subsets that generate τquot, which is T1. We show that p(�) is interlocking for each

� interlocking collection of subsets of X such that R saturates �, which implies that

p(�) and p(�) are interlocking.

Assume that S0 is a set of � such that

p
(
S0
)=∩{p(S) : p

(
S0
)⊆ p(S), p(S)∈ p(�)\{p(S0

)}}
. (3.3)

Since R saturates �,

p−1p
(
S0
)=∩{S : p

(
S0
)⊆ p(S), p(S)∈ p(�)\{p(S0

)}}
. (3.4)

Now {S : p(S0) ⊆ p(S), p(S) ∈ p(�)\{p(S0)}} = {S : S0 ⊆ S, S ∈ �\{S0}}, which will

permit to express S0 = p−1p(S0)=∩{S : S0 ⊆ S, S ∈�\{S0}}. Because � is interlocking

we can express S0 = ∪{S : S ⊆ S0, S ∈ � \ {S0}}. From this it follows that p(S0) =
∪{p(S) : S ⊆ S0, S ∈�\{S0}}. We may now conclude the argument because

{
p(S) : p(S)⊆ p(S0

)
,p(S)∈ p(�)\{p(S0

)}}= {p(S) : S ⊆ S0,S ∈�\{S0
}}
, (3.5)

and therefore p(S0)=∪{p(S) : p(S)⊆ p(S0),p(S)∈ p(�)\{p(S0)}}.
From Theorem 2.4, there exists a linear order ≺′ on X/R such that τquot = τor(≺′).

Let ≺ be the preference on X that induces ≺′ on X/R; we show that τ = τor(≺).
Indeed, from Proposition 2.2 the projection p is a saturated identification with

τor(≺) and τor(≺′); therefore, from A∈ τor(≺) we deduce p(A)∈ τor(≺′), or, equiva-

lently, p(A) ∈ τquot. Besides, R saturates τor(≺) because it is the indifference associ-

ated with ≺, thus A∈ τor(≺)⇒ p−1p(A)=A.
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It follows that τor(≺) � τ because

A∈ τor(≺) �⇒ p(A)∈ τquot �⇒ p−1p(A)∈ τ �⇒A∈ τ. (3.6)

On the other hand, if A ∈ τ then p(A) ∈ τquot, and now τor(≺′) = τquot yields

p−1p(A)∈τor(≺) becausep :(X,τor(≺))→(X/R,τor(≺′)) is continuous (Proposition 2.2).

From A∈ τ we obtain that A= p−1p(A) because R saturates τ , and thus A∈ τ yields

p−1p(A)∈ τor(≺) and so A∈ τor(≺). Therefore τ � τor(≺). This ends the proof.

Finally, we prove the following characterization of the topological spaces that may

be ordered by a continuous preference. This will yield the main application to indi-

vidual choice behavior, and particularly to mathematical economics.

Theorem 3.4. Let (X,τ) be a topological space and let R be an equivalence binary

relation on X. The following statements are equivalent:

(a) There exists a preference on X which is continuous with respect to τ and whose

indifference coincides with R.

(b) There exist two nests of open sets of τ whose union generates a topology τ′ such

that R saturates τ′ and the equivalence classes by R are closed in τ′.

Remark 3.5. Again, we may reinterpret this result by takingR as an agent’s indiffer-

ence. We thus obtain a condition which is equivalent to the existence of a continuous

preference onX inducing R as its indifference. Therefore, if we depart from a model of

individual choice behavior in which indifference is a primitive concept, then we know

under which conditions this is compatible with assuming that there are underlying

continuous preferences explaining such behavior.

Proof of Theorem 3.4. The implication (a)⇒(b) is immediate.

(b)⇒(a). As p : (X,τ′) → (X/R,(τ′)quot) is open, then the elements of p(�) and

p(�) are open in τquot. As in Theorem 3.1, p(�) and p(�) are two nests whose union

generates (τ′)quot, which is T1. From Theorem 2.4 there exists a linear order ≺′ on

X/R that is compatible with τquot.

Let ≺ be the preference on X whose indifference coincides with R and naturally

induces ≺′ on X/R. Then, the fact that the indifference R associated with ≺ saturates

the order topology τor(≺) and Proposition 2.2 yield that ≺ is the desired preference.

4. Concluding remarks. We have provided new orderability results that permit im-

mediate applications to fields like consumer theory. A closer look at the implications

in this field may be of interest for non-specialists.

The primitive concept in consumer theory is typically the binary relation that rep-

resents the agent’s tastes. The classical assumptions include asymmetry and negative

transitivity, which have been long criticized since they impose a “too rational” behav-

ior. It is well known that the indifference associated with an asymmetric and nega-

tively transitive binary relation (i.e., a preference) is an equivalence relation. There-

fore, one might be interested in taking indifference as the primitive concept in the

model instead. That would permit more general approaches, since it does not pre-

suppose as much rationality on the agent as requesting that he/she has expressed
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tastes by preferences. One may pose the following natural, related problems. Firstly,

when is the knowledge of indifference equivalent to the knowledge of the preference?

Secondly, a crucial question regarding the relationship between the two approaches

in both directions. On the one hand, it is obvious that modeling through indiffer-

ence is more general than proceeding by continuous preferences, since it allows for

many more possibilities. On the other hand, and concerning the converse problem,

assume now that an agent has some indifference defined on a commodity space on

which a topology has been fixed; when his/her tastes can be modeled by a continuous

preference (possibly satisfying further requirements) yielding that indifference and

therefore explaining the original choice behavior? Needless to say, indifference must

be an equivalence relation because of the observation above, and thus we may speak

of proper indifference classes.

With regards to the first question, we have proved the following result. If the com-

modity space is connected and the consumer’s preferences are assumed to be contin-

uous, then the indifference determines the preference up to inversion (cf. Alcantud

and Gutiérrez [3]). In the usual classroom situation where the commodity space is a

connected subset of Rn, monotonicity would determine the preference univocally in

a natural way.

The second question has been answered as a natural application of the results

herein contained. This construction paves the way towards developing a consumer

theory on the basis of the concept of indifference. An adequate model would permit

us to proceed, under the conditions required by the corresponding orderability results,

as if the agent’s behavior was determined by continuous preferences, which allows

the researcher to apply the extensive theoretical results for that model. The predictive

capabilities under the knowledge of the weaker concept of indifference only can be,

therefore, significantly enhanced.
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