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Abstract. We introduce the notion of compatibility for a pair of self-maps on a 2-metric
space and we have fixed point theorems for pairs as well as quadruples of self-maps on a
2-metric space satisfying certain generalised contraction conditions. Further metric space
versions of the same have also been obtained.
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Brian Fisher [1] proved the following result.

Theorem 1. Let f be a self-map on a complete metric space (M,ρ) such that

ρ2(fx,fy)≤αρ(x,fx)ρ(y,fy)+βρ(x,fy)ρ(y,fx) (1)

for all x,y in M for some nonnegative constants α, β with α < 1. Then f has a fixed

point in M . If further β < 1, then f has a unique fixed point in M .

In this paper we first obtain generalisations of the existence part of the 2-metric

space version of Theorem 1 for a pair of self-maps and the uniqueness part of the

same for four self-maps on a 2-metric space. Next we state without proof the metric

space versions of some of these results. We also give a number of examples to throw

light on the results discussed and the concept of compatibility of a pair of self-maps

on a 2-metric space introduced here.

Recall some basic notions and facts for the sake of completeness.

Definition 2. Let X be a nonempty set. A real-valued function d on X×X×X is

said to be a 2-metric on X if

(i) given distinct elements x, y of X, there exists an element z of X such that

d(x,y,z)≠ 0,

(ii) d(x,y,z)= 0 when at least two of x, y , z are equal,

(iii) d(x,y,z)= d(x,z,y)= d(y,z,x) for all x, y , z in X, and

(iv) d(x,y,z)≤ d(x,y,w)+d(x,w,z)+d(w,y,z) for all x,y,z,w in X.

When d is a 2-metric on X, the ordered pair (X,d) is called a 2-metric space.

Definition 3. A sequence {xn} in a 2-metric space (X,d) is said to be

(i) convergent with limitx in X if limn→∞d(xn,x,a) = 0 for all a in X,

(ii) Cauchy if limm,n→∞d(xn,xm,a)= 0 for all a in X.
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Definition 4. A 2-metric space is said to be complete if every Cauchy sequence in

it is convergent.

Definition 5. A 2-metric on a setX is said to be continuous onX if it is sequentially

continuous in two of its arguments.

It is known that a 2-metric is a nonnegative real-valued function, that it is sequen-

tially continuous in anyone of its arguments and that if it is sequentially continuous

in two of its arguments then it is sequentially continuous in all the three arguments. It

was observed by Naidu and Prasad that (i) a convergent sequence in a 2-metric space

need not be Cauchy (see [4, Remark 0.1 and Example 0.1]) (ii) in a 2-metric space (X,d)
every convergent sequence is Cauchy if d is continuous on X [4, Remark 0.2] and (iii)

the converse of (ii) is false [4, Remark 0.2 and Example 0.2].

Throughout this paper, unless otherwise stated, (X,d) is a 2-metric space; (M,ρ)
is a metric space; R is the set of all real numbers; R+ is the set of all nonnegative real

numbers; for a self-map θ on R+, θ1 stands for θ and for a positive integer n, θn+1 is

the composite of θ and θn; ϕ is a monotonically increasing map from R+ to R+ with∑∞
n=1

√
ϕn(t) < +∞ for all t in R+; ψ is a map from R+ to R+ with ψ(0) = 0; K is an

absolute nonnegative real constant; and, depending upon the context, f , g, S, T are

self-maps on X or M .

We note that ϕ(t) < t for all t in (0,∞) and that ϕ(0)=ϕ(0+)= 0.

Remark 6. For a monotonically increasing nonnegative real-valued function θ on

R+ the condition “
∑∞
n=1

√
θn(t) <+∞ for all t in R+” neither implies nor is implied by

the condition “θ(t+) < t for all t in (0,∞).” Examples 7 and 8 illustrate this.

Example 7. Define θ :R+ →R+ as θ(t) = t2 if 0≤ t ≤ 3/4 and θ(t) = 3/4 if t > 3/4.

Then θ is monotonically increasing on R+. For a positive integer n, we have θn(t) =
(3/4)2

n−1
if t > 3/4 and θn(t) = t2n if t ≤ 3/4. Hence

∑∞
n=1

√
θn(t) < +∞ for all t in

R+. We note that θ((3/4)+)= 3/4.

Example 8. Define θ : R+ → R+ as θ(t) = t/(1+t) for all t in R+. Then θ is a

strictly increasing continuous function on R+ with θ(t) < t for all t in (0,∞). We have

θ(1/n)= 1/(n+1) for all n= 1,2,3, . . . . Hence θn(1)= 1/(n+1) for all n= 1,2,3, . . . .
Hence

∑∞
n=1

√
θn(1) is divergent.

We need the following lemma of Naidu [3].

Lemma 9 (see [3]). Let {yn}∞n=0 be a sequence in (X,d). For a∈ X, let dn(a)= d(yn,
yn+1,a). Suppose that dn(ym) = 0 for any nonnegative integers m, n with n > m.

Then d(yi,yj,yk)= 0 for all nonnegative integers i, j, k.

Proposition 10. Suppose that

d2(fx,gy,a)≤ϕ(Kd(fx,Ty,a)d(Sx,gy,a)
+max

{
d2(Sx,Ty,a),d2(Sx,fx,a),d2(Ty,gy,a)

})

+Ψ(d(fx,Ty,a)d(Sx,gy,a))
(2)
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for all x,y,a in X. Let {xn}∞n=0 be a sequence in X such that

fx2n = Tx2n+1(=y2n, say), gx2n+1 = Sx2n+2(=y2n+1, say) (n= 0,1,2, . . .). (3)

Then {yn}∞n=0 is Cauchy.

Proof. Let dn(a)= d(yn,yn+1,a). By taking x = x2n+2 and y = x2n+1 in inequal-

ity (2) we obtain

d2
2n+1(a)≤ϕ

(
max

{
d2

2n(a),d
2
2n+1(a)

})
. (4)

By taking x = x2n and y = x2n+1 in inequality (2) we obtain

d2
2n(a)≤ϕ

(
max

{
d2

2n−1(a),d
2
2n(a)

})
. (5)

From the above two inequalities we have

d2
n+1(a)≤ϕ

(
max

{
d2
n(a),d

2
n+1(a)

})
(n= 0,1,2, . . .). (6)

Since ϕ is nonnegative and ϕ(t) < t for all t in (0,∞), from the above inequality we

have

d2
n+1(a)≤ϕ

(
d2
n(a)

)
(n= 0,1,2, . . .). (7)

By repeatedly using inequality (7) and the monotonic increasing nature ofϕ we obtain

d2
n(a)≤ϕn(d2

0(a)
)
(n= 0,1,2, . . .). (8)

From inequality (7) we see that dn+1(a)= 0 if dn(a)= 0. Since dm(ym)= 0 for every

nonnegative integer m, it follows that dn(ym) = 0 for any nonnegative integers m,

n with n > m. Hence from Lemma 9 we have d(yi,yj,yk) = 0 for all nonnegative

integers i, j, k. Hence for any nonnegative integersm andnwithn<m, by repeatedly

using the triangle type inequality for 2-metrics, we obtain

d
(
yn,ym,a

)≤
m−1∑
k=n

dk(a). (9)

Hence from inequality (8) we have

d
(
yn,ym,a

)≤
m−1∑
k=n

√
ϕk
(
t0
)
, (10)

where t0 = d2
0(a). Since

∑∞
k=1

√
ϕk(t) <+∞ for all t in R+,

∑m−1
k=n ϕk(t0) tends to zero

as bothm and n tend to +∞. Hence d(yn,ym,a) tends to zero as bothm and n tend

to +∞. Since this is true for any a in X, it follows that {yn} is Cauchy.

Theorem 11. Suppose that Ψ is right continuous at zero and

d2(fx,gy,a)≤ϕ(max
{
d2(x,y,a),d2(x,fx,a),

d2(y,gy,a),Kd(fx,y,a)d(x,gy,a)
})

+Ψ(d(fx,y,a)d(x,gy,a))
(11)
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for all x,y,a in X. For any x0 in X, let {xn}∞n=1 be defined iteratively as

x2n+1 = fx2n, x2n+2 = gx2n+1 (n= 0,1,2, . . .). (12)

Then {xn} is Cauchy. If {xn} converges to an element z of X, then z is a common fixed

point of f and g. Further the fixed point sets of f and g are the same.

Proof. By taking S = T = I, the identity map on X, in Proposition 10, we can

conclude that {xn} is a Cauchy sequence inX. Suppose that it converges to an element

z of X. By taking x = x2n and y = z in inequality (11) we obtain

d2(x2n+1,gz,a
)≤ϕ(max

{
d2(x2n,z,a

)
,d2(x2n,x2n+1,a

)
,

d2(z,gz,a),Kd
(
x2n+1,z,a

)
d
(
x2n,gz,a

)})
+Ψ(d(x2n+1,z,a

)
d
(
x2n,gz,a

))
.

(13)

The limit of the first term on the right-hand side of inequality (13) as n tends to +∞ is

ϕ(d2(z,gz,a)) ifd(z,gz,a) is positive. Otherwise, it isϕ(0) orϕ(0+). Sinceϕ(0+)=
ϕ(0) = 0, in either case it can be written as ϕ(d2(z,gz,a)). Since Ψ(0+) = Ψ(0) = 0,

by taking limits on both sides of the above inequality as n tends to +∞ we obtain

d2(z,gz,a)≤ϕ(d2(z,gz,a)
)
. (14)

Since ϕ(t) < t for all t in (0,∞), we have d2(z,gz,a) = 0. Since this is true for all a
in X, gz = z. Similarly it can be shown that fz = z. If x is a fixed point of f , then

by taking y = x in inequality (11) we obtain d2(x,gx,a) ≤ ϕ(d2(x,gx,a)). Hence

gx = x. Similarly it can be shown that any fixed point of g is also a fixed point of f .

Hence f and g have the same fixed point sets.

Remark 12. The hypothesis of Theorem 11 does not ensure the uniqueness of the

common fixed point for f and g. This can be seen by taking f and g as identity maps

on X, K = 2, ϕ(t) = (1/2)t and Ψ(t) = 0 for all t in R+. We can also take K = 0 and

ϕ(t)= Ψ(t)= (1/2)t for all t inR+ orϕ(t)= 0 andΨ(t)= t for all t inR+. Theorem 11

is an improvement over the existence part of Theorem 3 of Naidu [3] in which the first

Ψ occurring in the governing inequality is to be read as ϕ. Proposition 10 is also an

improvement over that of Naidu [3].

Corollary 13. Suppose that (X,d) is complete and

d2(fx,fy,a)≤αd(x,fx,a)d(y,fy,a)+βd(x,fy,a)d(fx,y,a) (15)

for all x,y in X for some nonnegative constants α, β with α < 1. Then f has a fixed

point in X. If further β < 1, then f has a unique fixed point in X.

Proof. The existence part of the corollary follows from Theorem 11 by taking

g = f , K = 0, ϕ(t)=αt, and Ψ(t)= βt for all t in R+. The rest of it is evident.

Remark 14. Corollary 13 is the 2-metric space version of Theorem 1.

A perusal of the proof of Theorem 11 leads to the following variant.
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Theorem 15. Suppose thatϕ(t+) < t for all t in (0,∞), Ψ is right continuous at zero

and

d2(fx,gy,a)≤ϕ(Kd(fx,y,a)d(x,gy,a)
+max

{
d2(x,y,a),d2(x,fx,a),d2(y,gy,a)

})
+Ψ(d(fx,y,a)d(x,gy,a))

(16)

for all x,y,a in X. For any x0 in X, let {xn}∞n=1 be defined iteratively as in Theorem 11.

Then {xn} is Cauchy. If {xn} converges to an element z of X, then z is a common fixed

point of f and g. Further the fixed point sets of f and g are the same.

Remark 16. The hypothesis of Theorem 15 does not ensure the uniqueness of a

common fixed point for f and g. This can be seen by taking f and g as identity maps

on X, K = 1, ϕ(t)= (1/2)t, and Ψ(t)= 0 for all t in R+.

The concept of weak continuity of a 2-metric and that of weak commutativity for a

pair of self-maps on a 2-metric space were introduced by Naidu and Prasad [4]. The

notion of compatibility for a pair of self-maps on a metric space and that of weak

compatibility for a pair of self-maps on an arbitrary set can be found in Jeong and

Rhoades [2]. We state them below for the sake of completeness.

Definition 17 (see [4]). We say that d is weakly continuous at z ∈ X if every

convergent sequence in X with limit z is Cauchy.

Definition 18 (see [4]). A pair (f1,f2) of self-maps on (X,d) is said to be a weakly

commuting pair (w.c.p.) if d(f1f2x,f2f1x,a)≤ d(f2x,f1x,a) for all x,y,a in X.

Definition 19 (see [2]). A pair (f1,f2) of self-maps on (M,ρ) is said to be a compat-

ible pair (co.p.) if {ρ(f1f2xn,f2f1xn)} converges to zero whenever {xn} is a sequence

in M such that {f1xn} and {f2xn} are convergent in M and have the same limit.

Definition 20 (see [2]). A pair (f1,f2) of self-maps on an arbitrary set E is said

to be a weakly compatible pair (w.co.p.) if f1f2x = f2f1x whenever x ∈ E is such that

f1x = f2x.

In analogy with Definition 19 we introduce the concept of compatibility for a pair

of self-maps on a 2-metric space.

Definition 21. A pair (f1,f2) of self-maps on (X,d) is called a compatible pair

(co.p.) if {d(f1f2xn,f2f1xn,a)} converges to zero for each a in X whenever {xn} is

a sequence in X such that {f1xn} and {f2xn} are convergent sequences in X having

the same limit and {d(f2xn,f1xn,a)} converges to zero for each a in X.

Remark 22. The notion of asymptotic weak commutativity for a pair of self-maps

on a 2-metric space introduced by Naidu [3] is slightly more stringent than the no-

tion of compatibility introduced here. In 2-metric spaces, weak commutativity implies

compatibility. But the converse is false. The following example illustrates it.

Example 23. Define d on R+×R+×R+ as d(x,y,z)=min{|x−y|,|y−z|,|z−x|}.
Then d is a 2-metric on R+. Define f1, f2 from R+ to R+ as f1x = x/(1+x) and

f2x = 2x for all x in R+. Let {xn} be a sequence in R+. Then {d(f2xn,f1xn,a)}
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converges to zero for each a in R+ if and only if {xn} converges to zero in R+ in the

usual sense. We have

d
(
f1f2xn,f2f1xn,a

)=
(

2xn
1+2xn

,
2xn

1+xn
,a
)

≤ 2xn
(

1
1+xn

− 1
1+2xn

)
�→ 0 as n �→+∞

(17)

when {xn} converges to zero in R+ in the usual sense. Hence (f1,f2) is a co.p. For any

positive real number x, while d(f1f2x,f2f1x,2x) is positive d(f2x,f1x,2x) is zero.

Hence f1 and f2 do not commute weakly.

Theorem 24. Suppose that Ψ is monotonically increasing on R+, Ψ(t+) < t for all t
in (0,∞),

d2(fx,gy,a)≤ϕ(max{d2(Sx,fx,a),d2(Ty,gy,a)})
+Ψ(d(fx,Ty,a)d(Sx,gy,a)) (18)

for all x,y,a in X and that there are sequences {xn}∞n=0 and {yn}∞n=0 as stated in

Proposition 10. Then {yn} is Cauchy. Suppose that it converges to an element z of X.

Then the following statements are true.

(I) Neither the pair of maps f and S nor the pair of maps g and T can have a

common fixed point other than z. If Sz = z, then fz = z. If Tz = z, then gz = z.

(II) If Sz = Tz, then z is a common fixed point of f and S if and only if it is a common

fixed point of g and T .

(III) The point z is a unique common fixed point of f and S if one of the following

five groups of conditions is true.

(i) (f ,S) is a w.co.p. and z ∈ S(X).
(ii) (f ,S) is a co.p., and f and S are continuous at z.

(iii) (f ,S) is a co.p., S is continuous at z and d is weakly continuous at Sz.

(iv) (f ,S) is a w.co.p. and, for some positive integer k, fSk = Skf , Sk is contin-

uous at z and d is weakly continuous at Skz.

(v) (f ,S) is a co.p. and, for some positive integer k, Sk is continuous at z and

commutes with each of the maps f , g, and T .

(IV) The point z is a fixed point of f if one of the following two groups of conditions

is true.

(i) (f ,S) is a co.p., f is continuous at z and d is weakly continuous at fz.

(ii) f is continuous at z and commutes with each of the maps g, S, and T .

(V) Statements (III) and (IV) with f , g, S, and T replaced by g, f , T , and S, respec-

tively.

Proof. That {yn} is Cauchy follows from Proposition 10. Suppose that it con-

verges to an element z of X. By taking y = x2n+1 in inequality (18) we obtain

d2(fx,y2n+1,a)≤ϕ
(
max

{
d2(Sx,fx,a),d2(y2n,y2n+1,a

)})
+Ψ(d(fx,y2n,a)d(Sx,y2n+1,a)

)
.

(19)

By taking limits on both sides of inequality (19) as n→ +∞ and using the facts that
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{yn} is a Cauchy sequence converging to z,ϕ(0)=ϕ(0+)= 0 and Ψ is monotonically

increasing on R+ we obtain

d2(fx,z,a)≤ϕ(d2(Sx,fx,a)
)+Ψ(d(fx,z,a)d(Sx,z,a)+) (20)

for all a in X.

We now prove the following statements.

(1) If fx = Sx for some x ∈X, then fx = Sx = z.

(2) If Sx = z for some x ∈X, then fx = z.

Proof of (1). Suppose that fx = Sx for some x ∈ X. Then, since ϕ(0) = 0, from

inequality (20) we have d2(fx,z,a) ≤ Ψ(d2(fx,z,a)+). Since Ψ(t+) < t for all t in

(0,∞), we have d2(fx,z,a)= 0. Since this is true for all a in X, we have fx = z.

Proof of (2). Suppose that Sx = z for some x ∈ X. Then, since Ψ(0+) = 0, from

inequality (20) we haved2(fx,z,a)≤ϕ(d2(z,fx,a)). Sinceϕ(t) < t for all t in (0,∞),
we have d2(fx,z,a)= 0. Since this is true for all a in X, we have fx = z.

Since inequality (18) remains unaffected if we interchange f , g, S, T with g, f , T , S,

respectively, in analogy with statements (1) and (2) we have the following statements.

(3) If gx = Tx for some x ∈X, then gx = Tx = z.

(4) If Tx = z for some x ∈X, then gx = z.

Statement (I) is evident from statements (1), (2), (3), and (4). Statement (II) is evident

from statement (I). We now prove the following statement (5).

(5) If S is continuous at z and (f ,S) is a co.p., then {fSx2n} converges to Sz.

Suppose that S is continuous at z and (f ,S) is a co.p. Since d(Sx2n,fx2n,a) =
d(y2n−1,y2n,a) → 0 as n → +∞, {yn} converges to z and (f ,S) is a co.p.,

d(fSx2n,Sfx2n,a)→ 0 as n→+∞. Since S is continuous at z and {fx2n} converges

to z, {Sfx2n} converges to Sz. We have

d
(
fSx2n,Sz,a

)≤ d(fSx2n,Sfx2n,a
)

+d(Sfx2n,Sz,a
)+d(fSx2n,Sfx2n,Sz

)
�→ 0

(21)

as n→+∞. Hence {fSx2n} converges to Sz.

We now prove statement (III).

(i) Suppose that z ∈ S(X). Then there exists an x ∈ X such that z = Sx. From

statement (2) it follows that fx = z. Suppose that (f ,S) is a w.co.p. Then, since Sx =
fx, we have fSx = Sfx, that is, fz = Sz. Hence from statement (1) we have fz =
Sz = z.

(ii) Suppose that f and S are continuous at z and (f ,S) is a co.p. From statement

(5) it follows that {fSx2n} converges to Sz. Since f is continuous at z and {Sx2n}
converges to z, {fSx2n} converges to fz. Hence fz = Sz. Hence from statement (1)

we have fz = Sz = z.

(iii) Suppose that d is weakly continuous at Sz, S is continuous at z and (f ,S) is

a co.p. From statement (5) it follows that {fSx2n} converges to Sz. Since S is contin-

uous at z and {Sx2n} converges to z, {SSx2n} converges to Sz. Since d is weakly

continuous at Sz and both {fSx2n} and {SSx2n} converge to Sz, it follows that
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{d(fSx2n,SSx2n,a)}converges to zero. By takingx=Sx2n in inequality (20) we obtain

d2(fSx2n,z,a
)≤ϕ(d2(SSx2n,fSx2n,a

))

+Ψ(d(fSx2n,z,a
)
d
(
SSx2n,z,a

)+). (22)

By taking limits on both sides of (22) as n → +∞, we obtain d2(Sz,z,a) ≤
Ψ(d2(Sz,z,a)+). Since Ψ(t+) < t for all t in (0,∞), we have d2(Sz,z,a) = 0. Since

this is true for all a in X, we have Sz = z. Hence from statement (I) we have fz = z.

We now establish the following statement (6), which is needed to complete the proof

of statement (III).

(6) If (f ,S) is a w.co.p. and, for some positive integer k, fSk = Skf , Sk is continuous

at z, and {d(Sky2n−1,Sky2n,a)} converges to zero for each a in X, then fz = Sz = z.

Suppose that there is a positive integer k such that fSk = Skf , Sk is continuous at z
and {d(Sky2n−1,Sky2n,a)} converges to zero for each a in X. Since Sk is continuous

at z and {yn} converges to z, {Skyn} converges to Skz. Since fSk = Skf , fSkx2n

= Skfx2n = Sky2n. We have SSkx2n = SkSx2n = Sky2n−1. By taking x = Skx2n in

inequality (20), we obtain

d2(Sky2n,z,a
)≤ϕ(d2(Sky2n−1,Sky2n,a

))

+Ψ(d(Sky2n,z,a
)
d
(
Sky2n−1,z,a

)+). (23)

By taking limits on both sides of (23) as n → +∞, we obtain d2(Skz,z,a) ≤
Ψ(d2(Skz,z,a)+). Since Ψ(t+) < t for all t in (0,∞), we have d2(Skz,z,a) = 0. Since

this is true for all a in X, we have Skz = z. Hence z ∈ S(X).
Hence, if (f ,S) is a w.co.p., then conditions (i) of statement (III) are fulfilled so that

from what we already proved we have fz = Sz = z.

We now resume the proof of statement (III).

(iv) Suppose that Sk is continuous at z for some positive integer k. Then {Skyn}
converges to Skz. Suppose now that d is weakly continuous at Skz. Then {d(Sk
y2n−1,Sky2n,a)} converges to zero for each a in X. Hence, if (f ,S) is a w.co.p. and

fSk = Skf , then from statement (6) we have fz = Sz = z.

(v) Suppose that Sk commutes with each of the maps f , g, and T for some posi-

tive integer k. Then from equation (3) we have f(Skx2n) = T(Skx2n+1) = Sky2n and

g(Skx2n+1)= S(Skx2n+2)= Sky2n+1 for all n= 0,1,2, . . . . Hence from Proposition 10,

it follows that {Skyn} is Cauchy. In particular, {d(Sky2n−1,Sky2n,a)} converges to

zero for each a in X. Hence from statement (6) it follows that fz = Sz = z if condi-

tions (v) of statement (III) are fulfilled.

The proof of the following statement is similar to that of statement (5).

(7) If f is continuous at z and (f ,S) is a co.p., then {Sfx2n} converges to fz.

We now prove statement (IV).

(i) Suppose that d is weakly continuous at fz, f is continuous at z and (f ,S) is a

co.p. From statement (7) it follows that {Sfx2n} converges to fz. Since f is continuous

at z and {fx2n} converges to z, {ffx2n} converges to fz. Since d is weakly contin-

uous at fz and both {Sfx2n} and {ffx2n} converge to fz, {d(Sfx2n,ffx2n,a)}
converges to zero. By taking x = fx2n in inequality (20) and then taking limits on

both sides of the inequality as n → +∞, we obtain d2(fz,z,a) ≤ Ψ(d2(fz,z,a)+).
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Since Ψ(t+) < t for all t in (0,∞), we have d2(fz,z,a)= 0. Since this is true for all a
in X, we have fz = z.

We note that if fS = Sf , then d(Sfx2n,ffx2n,a) = d(fSx2n,ffx2n,a) =
d(fy2n−1,fy2n,a) and (f ,S) is a co.p. Hence from a perusal of the above proof we

have the following statement.

(8) If fS = Sf , f is continuous at z and {d(fy2n−1,fy2n,a)} converges to zero for

each a in X, then fz = z.

We now resume the proof of statement (IV).

(ii) Suppose that f commutes with each of the maps g, S, and T . Then from equa-

tions (3) we have

f
(
fx2n

)= T(fx2n+1
)= fy2n,

g
(
fx2n+1

)= S(fx2n+2
)= fy2n+1 ∀n= 0,1,2, . . . .

(24)

Hence from Proposition 10, it follows that {fyn} is Cauchy. Hence {d(fy2n−1,fy2n,
a)} converges to zero for each a in X. Hence from statement (8) it follows that fz = z
if conditions (ii) of statement (IV) are fulfilled.

Statement (V) follows from symmetry considerations.

Remark 25. Theorem 24 is an improvement over Theorem 2 in [3].

Corollary 26. Suppose that Ψ is monotonically increasing on R+, Ψ(t+) < t for all

t in (0,∞),

d2(fx,gy,a)≤ϕ(max
{
d2(Sx,fx,a),d2(Sy,gy,a)

})
+Ψ(d(fx,Sy,a)d(Sx,gy,a)) (25)

for all x, y , a in X and that there are sequences {xn}∞n=0 and {yn}∞n=0 in X such that

fx2n = Sx2n+1 =y2n, gx2n+1 = Sx2n+2 =y2n+1 (n= 0,1,2, . . .). (26)

Then {yn} is Cauchy. Suppose that it converges to an element z ofX. Then z is a unique

common fixed point of f , g, and S if one of the following groups of conditions is true.

(i) z ∈ S(X) and either (f ,S) or (g,S) is a w.co.p.

(ii) S is continuous at z, and either f is continuous at z and (f ,S) is a co.p. or g is

continuous at z and (g,S) is a co.p.

(iii) S is continuous at z, d is weakly continuous at Sz and either (f ,S) or (g,S) is a

co.p.

(iv) Sk is continuous at z and d is weakly continuous at Skz for some positive integer

k, and S commutes with either f or g.

(v) S commutes with each of the maps f and g, and Sk is continuous at z for some

positive integer k.

Remark 27. In Theorem 24 if inequality (18) is replaced with the following more

stringent inequality

d2(fx,gy,a)≤ϕ(d(Sx,fx,a)d(Ty,gy,a))
+Ψ(d(fx,Ty,a)d(Sx,gy,a)), (27)
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then the weak continuity of d can be dropped from all those numbered statements in

which it appears. A similar remark applies to Corollary 26 also.

We now state without proof the metric space versions of some of the results we

obtained in 2-metric spaces. Hereafter, unless otherwise stated, f , g, S, T are self-

maps on M .

Proposition 28. Suppose that

ρ2(fx,gy)≤ϕ(Kρ(fx,Ty)ρ(Sx,gy)
+max

{
ρ2(Sx,Ty),ρ2(Sx,fx),ρ2(Ty,gy)

})
+Ψ(ρ(fx,Ty)ρ(Sx,gy))

(28)

for all x, y in M and that there are sequences {xn}∞n=0 and {yn}∞n=0 in M satisfying

equations (3). Then {yn}∞n=0 is Cauchy.

Remark 29. Proposition 28 fails if the condition
∑∞
n=1

√
ϕn(t) <+∞ for all t in R+

is replaced by the condition ϕ(t+) < t for all t in (0,∞). Example 30 illustrates this

when g = f , S = T = I (the identity map on M) and Ψ(t)= t for all t in R+.

Example 30. Let M = {xn : n= 1,2,3, . . .}, where xn =
∑n
k=1 1/k. Define f :M →M

as fxn = xn+1 for all n= 1,2,3, . . . . Define ϕ :R+ →R+ as ϕ(t)= t/(1+t) for all t in

R+. Then ϕ is a strictly increasing continuous function on R+ with ϕ(t) < t for all t
in (0,∞) and

|fx−fy|2 ≤ϕ(|x−y|2)+|fx−y||x−fy| (29)

for all x,y in M . Evidently for any x in M the sequence {fnx} diverges to +∞ and

hence is not Cauchy.

Theorem 31. Suppose that Ψ is right continuous at zero and

ρ2(fx,gy)≤ϕ(max
{
ρ2(x,y),ρ2(x,fx),ρ2(y,gy),Kρ(fx,y)ρ(x,gy)

})
+Ψ(ρ(fx,y)ρ(x,gy)) (30)

for all x,y in M . For any x0 in M , let {xn}∞n=1 be defined iteratively as in Theorem 11.

Then {xn} is Cauchy. If {xn} converges to an element z ofM , then z is a common fixed

point of f and g. Further the fixed point sets of f and g are the same.

Theorem 32. Suppose that ϕ(t+) < t for all t in (0,∞), Ψ is right continuous at

zero and

ρ2(fx,gy)≤ϕ(Kρ(fx,y)ρ(x,gy)
+max

{
ρ2(x,y),ρ2(x,fx),ρ2(y,gy)

})
+Ψ(ρ(fx,y)ρ(x,gy))

(31)

for all x,y in M . For any x0 in M , let {xn}∞n=1 be defined iteratively as in Theorem 11.

Then {xn} is Cauchy. If {xn} converges to an element z ofM , then z is a common fixed

point of f and g. Further the fixed point sets of f and g are the same.
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Remark 33. In Theorem 32 the conclusion that z is a common fixed point of f and

g fails in the absence of the condition ϕ(t+) < t for all t in (0,∞) even if (M,ρ) is

complete, f = g, K = 1 and Ψ is identically zero on R+. Examples 34 and 35 illustrate

this. While in Example 34 the function f has no fixed point, in Example 35 it has.

Example 34. Let M = {1/2n | n = 0,1,2, . . .}∪{0}. Then M is a complete metric

space under the metric induced by the modulus function. Define f :M →M as fx =
(1/2)x if x ≠ 0 and f0= 1. Define ϕ :R+ →R+ as ϕ(t)= 1 if t > 1 and ϕ(t) = (1/4)t
if t ≤ 1. Thenϕ is monotonically increasing on R+,

∑∞
n=1

√
ϕn(t) <+∞ for all t in R+,

ϕ(1+)= 1 and

|fx−fy|2 ≤ϕ(|fx−y||x−fy|+max
{|x−y|2,|x−fx|2,|y−fy|2}) (32)

for all x,y inM . We note that for any x0 inM the sequence {fnx0} converges to zero.

But 0 is not a fixed point of f . In fact, f has no fixed point.

Example 35. Let M be as in Example 34. Define f : M → M as fx = (1/2)x if

x ∉ {0,1} and f0 = f1 = 1. Defineϕ :R+ →R+ asϕ(t)= 1 if t > 1 andϕ(t)= (9/10)t
if t ≤ 1. Thenϕ is monotonically increasing on R+,

∑∞
n=1

√
ϕn(t) <+∞ for all t in R+,

ϕ(1+)= 1 and inequality (32) is satisfied for all x,y in M . We note that for any x0 in

M\{0,1} the sequence {fnx0} converges to zero. But 0 is not a fixed point of f .

Remark 36. A pair (f1,f2) of self-maps on (M,ρ) is a w*.c.p. if ρ(f1f2x,f2f1x)≤
γρ(f2x,f1x) for all x in M for some nonnegative real number γ and a w.c.p. (weakly

commuting pair) if ρ(f1f2x,f2f1x)≤ ρ(f2x,f1x) for all x in M . (The notion of weak

commutativity for a pair of self-maps on a metric space was introduced by Sessa [5].)

Clearly a w.c.p. is a w*.c.p. and a w*.c.p. is a co.p. But the converse is false in either

case. Examples 37 and 38 illustrate this.

Example 37. Define f1, f2 from R to R as f1x = x2 and f2x = 2x−1 for all x in

R. Then |f1f2x−f2f1x| = 2(x−1)2 = 2|f1x−f2x| for all x in R. Hence (f1,f2) is a

w*.c.p. but not a w.c.p.

Example 38. Define f1,f2 from R to R as f1x = x2 and f2x = −x2 for all x in R.

Then |f1f2x−f2f1x| = 2x4 and |f1x−f2x| = 2x2 for all x in R. Clearly there is no

nonnegative real number γ such that 2x4 ≤ γ(2x2) for all x in R. Hence (f1,f2) is not

a w*.c.p. Clearly it is a co.p.

Theorem 39. Suppose that Ψ is monotonically increasing on R+, Ψ(t+) < t for all t
in (0,∞),

ρ2(fx,gy)≤ϕ(max
{
ρ2(Sx,fx),ρ2(Ty,gy)

})+Ψ(ρ(fx,Ty)ρ(Sx,gy)) (33)

for all x,y in M and that there are sequences {xn}∞n=0 and {yn}∞n=0 in M satisfying

equations (3). Then {yn}∞n=0 is Cauchy. Suppose that it converges to an element z ofM .

Then the following statements are true.

(1) Neither the pair of maps f and S nor the pair of maps g and T can have a

common fixed point other than z. If Sz = z, then fz = z. If Tz = z, then gz = z.
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(2) If Sz = Tz, then z is a common fixed point of f and S if and only if it is a common

fixed point of g and T .

(3) If (f ,S) is a w.co.p. and z ∈ S(X), then fz = Sz = z.

(4) If (f ,S) is a co.p. and S is continuous at z, then fz = Sz = z.

(5) If (f ,S) is a w.co.p. and, for some positive integer k, fSk = Skf and Sk is continuous

at z, then fz = Sz = z.

(6) If f is continuous at z and (f ,S) is a co.p., then fz = z.

(7) Statements (3), (4), (5), and (6) with f and S replaced by g and T , respectively.

Finally we conclude the paper with the following open problem.

Open problem. Does Theorem 15 remain valid if the condition ϕ(t+) < t for all

t in (0,∞) is deleted from the hypothesis?

Note 40. The results in Naidu and Prasad [4] remain valid if the weak commu-

tativity condition in them is replaced with compatibility condition as introduced in

Definition 21.
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