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Abstract. The kinematic separation of size, shape, and orientation of n-body systems
is investigated together with specific issues concerning the dynamics of classical n-body
motions. A central topic is the asymptotic behavior of general collisions, extending the
early work of Siegel, Wintner, and more recently Saari. In particular, asymptotic formulas
for the derivatives of any order of the basic kinematic quantities are included. The kine-
matic Riemannian metric on the congruence and shape moduli spaces are introduced via
O(3)-equivariant geometry. For n = 3, a classical geometrization procedure is explicitly
carried out for planary 3-body motions, reducing them to solutions of a rather simple
system of geodesic equations in the 3-dimensional congruence space. The paper is largely
expository and various known results on classical n-body motions are surveyed in our
more geometrical setting.
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1. Introduction. The classical n-body problem studies the motion of n celestial

bodies under the mutual influence of gravitational forces. In reality one studies an

idealized system consisting of n point masses Pi of mass mi in Euclidean 3-space,

where the dynamical laws are given by the Newtonian potential function. In the more

recent literature, one also finds studies of particle systems whose dynamics are given

by various types of potential functions with similar symmetry properties, such as the

inverse q force law with q ≠ 2.

We start in Section 2 with the kinematics of many particle systems, in the general

setting of classical vector algebra. Of particular importance is the decomposition of

kinetic energy and the associated kinematic identities and inequalities, including the

Sundman inequality which is well known from celestial mechanics. As far as dynam-

ics is concerned, say, with the inverse q force law, 1 < q < 3, a central topic which

we will discuss is the asymptotic behavior of motions leading to a general collision

(total collapse). This old topic dates back to the pioneering work of Sundman and

Siegel on 3-body motions (see [17, 18, 22, 23]) and its partly generalization to n > 3

by Wintner [24], where the time derivatives up to second order of the basic kinematic

quantities are investigated. We will extend these results and prove the expected as-

ymptotic formulas for the derivatives of any order. The first part of the proofs appears

in Section 2.2; here we establish the case of derivatives up to order 2, largely follow-

ing Siegel’s approach. The proof is completed in Section 6, where we have adapted

ideas found in Wintner [24]. We mention that Saari and his collaborators have ex-

tended Wintner’ ideas and techniques to study (i) collisions involving subsystems of

the particles, and (ii) expanding systems and their limiting behavior as t→∞ (cf. [14]).
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Unfortunately, in this treatise we have not included any discussion and corresponding

results in these directions.

Section 3 is more geometric, involving equivariant geometry modulo the orthogo-

nal group O(3). Here we define the congruence and shape moduli spaces M̄ and M∗,

respectively, and their natural kinematic Riemannian geometry, which actually coin-

cides with their O(3)-orbital distance metric and describes M̄ as the Riemannian cone

over the compact shape space M∗. This section is far from being exhaustive, but pro-

vides some new formalism beyond the vector algebra setting in Section 2 which will

be used in later sections. We refer to Hsiang and Straume [6] for a detailed and more

complete investigation of the geometry of triangles with mass distribution. For n> 3,

we refer to [5] and its succeeding paper [7].

In Section 4, we discuss briefly another classical topic, namely the central con-

figurations and the corresponding shape invariant n-body motions. In celestial me-

chanics these motions are essentially the only known exact solutions for n ≥ 3, and

they date back to Euler and Lagrange (around 1770) who investigated the case n =
3. The simplicity of these motions is clearly illustrated by the image curve in the

shape moduli space M∗, which in these cases is a single point, namely the shape

of a central configuration. We will give an explicit and uniform description of these

motions.

The induced Riemannian kinematic metric on the cone M̄ = CM∗ has the standard

form ds̄2 = dρ2+ρ2dσ 2, where ρ2 = I is the total moment of inertia of the n-body

system, representing the size of the system, and dσ 2 is the induced metric on the

shape space M∗. In Section 5, we consider the case n = 3, where M∗ is a round 2-

dimensional (half-)sphere of radius 1/2, and hence dσ 2 = (1/4)(dr 2+sin2 rdϕ2) in

terms of spherical polar coordinates (r ,ϕ). Thus, the triplet (ρ,r ,ϕ) presents itself

as a natural coordinate system in M̄ , and following the classical geometrization pro-

cedure in dynamics we work out explicitly in these coordinates the induced (or rather

reduced) ODE for 3-body motions at moduli space level, for the special case of pla-

nary motions at a fixed energy level h. Its Hamiltonian version is also presented but

not further investigated. The above mentioned ODE in M̄ coincides with the geodesic

equations of the conformally modified metric ds̄2
h = (U+h)ds̄2 on M̄ , where −U is the

potential energy. Due to its conspicuous simplicity, we expect this ODE to be quite use-

ful both in the qualitative and numerical analysis of 3-body motions. In future studies

we will continue in this direction and also investigate the corresponding system for

nonplanary motions.

The present work is a revised version of [21], growing out from the geometric study

[6] and the more analytical methods of Siegel and Wintner. In retrospect, however,

some of the problems we wanted to study are found to be more or less solved in the

existing literature during the recent decades, especially by work of Saari and his col-

laborators (cf. [8, 14, 15, 16]). Despite this elimination, we apologize for any remaining

overlappings or missing references to related works. However, in this rather exposi-

tory treatise, perhaps with an untraditional approach, we discuss some theoretical but

important issues in celestial mechanics which are far from being completely settled,

and we hope to stimulate further studies and insight in these mathematical problems

which are, after all, still rooted in the physical reality.
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2. Fundamental results in the setting of classical vector algebra. In this section,

we work out some fundamental identities and inequalities generally known from the

classical literature, perhaps in a different setting. Many of these results are actually

of a purely kinematic nature, namely independent of the nature of the forces acting

on the particles. Therefore, it is natural to start out from a kinematic viewpoint.

2.1. Kinematics of many particle systems. Let ai, i ≤ n, be the radius vector of

points Pi in a fixed Euclidean 3-space, denoted by R3. The position and motion of the

system is recorded by the following time dependent vector in the associated Euclidean

3n-space

X= X(t)= (a1,a2, . . . ,an
)∈R3n =R3

(1)⊕R3
(2)⊕···⊕R3

(n) (2.1)

with velocity vector (d/dt)X = Ẋ = (ȧ1, ȧ2, . . . , ȧn), assumed to be continuous. We re-

fer to the vector X as an n-configuration, and R3n as the (unrestricted) configuration

space. The dynamics of the system also involves the acceleration Ẍ, namely when the

influence of forces on the kinematic behavior is concerned. However, kinematics is

the formal investigation of quantities and relationships involving X and Ẋ, where the

vectors are usually regarded as independent. Thus, in the following subsection, we

focus attention on constructions involving two arbitrary vectors X and Y.

2.1.1. Vector algebra and geometry in R3n. Let a·b (resp., a×b) denote the stan-

dard inner product (resp., cross product) of a and b in R3. However, following an old

idea due to Jacobi it is convenient to equipR3n with a Euclidean metric associated with

the given mass distribution (m1,m2, . . . ,mn), which we will refer to as the kinematic

metric, namely for general X=(a1,a2, . . . ,an) and Y = (b1,b2, . . . ,bn) define the inner

product by

X·Y =
∑
mi

(
ai ·bi

)
. (2.2)

Similarly, we define the cross-product R3n×R3n→R3 by

X×Y =
∑
mi

(
ai×bi

)
. (2.3)

and we will also need the usual exterior product construction R3n×R3n→Λ2R3n

X∧Y =
∑
i,j

ai∧bj ∈
∑
i,j
R3
(i)∧R3

(j), (2.4)

where ai∧bj is regarded as a vector in the (i,j)-summand R3
(i)∧R3

(j) of Λ2R3n and

R3
(i)⊂R3n is the ith summand with orthogonal basis e(i)r =er , r =1,2,3. Here {e1,e2,e3}

denotes a fixed orthonormal basis of our model 3-space R3 containing the vectors

ai =
∑
x(i)r er and bj =

∑
y(j)s es . However, Λ2R3n inherits the Euclidean metric induced

from (2.2), with orthonormal basis

1√mimj
e(i)r ∧e

(j)
s , (r ,i)≠ (s,j), r < s if i= j, (2.5)



692 ELDAR STRAUME

in particular, ‖e(i)r ‖ =√mi. Thus, the vector in (2.4) has norm square

‖X∧Y‖2 = det

∣∣∣∣∣∣X·X X·Y
X·Y Y ·Y

∣∣∣∣∣∣= ‖X‖2‖Y‖2−(X·Y)2

=
n∑
i=1

m2
i
∥∥ai×bi

∥∥2+
∑
i<j
mimj

3∑
r ,s=1

(
x(i)r y

(j)
s −x(j)s y(i)r

)2
,

(2.6)

where ai =
∑
x(i)r e(i)r , bi =

∑
y(j)s e

(j)
s , and ai ∧ bj are regarded as vectors in R3n,

whereas ai×bi belongs to R3.

In order to investigate further the connection between the three types of “vector

product,” (2.2), (2.3), and (2.4), we introduce the following four nonnegative quantities

depending on X and Y:

Q♦
1 =

∑
bi≠0

mi

(
ai♦bi

)2∥∥bi
∥∥2 , Q♦

2 =
∑

ai≠0

mi

(
ai♦bi

)2∥∥ai
∥∥2 , (2.7)

where the operator symbol ♦ means either ◦ or ×, indicating the inner product or

cross product in R3, respectively. They are evidently related by

Q◦
1+Q×

1 = ‖X‖2, Q◦
2+Q×

2 = ‖Y‖2. (2.8)

The notation X♦Y refers to (2.2) and (2.3), and the inequalities

(X♦Y)2 ≤ ‖X‖2Q♦
2 , respectively (X♦Y)2 ≤Q♦

1‖Y‖2 (2.9)

follow by an application of the Cauchy-Schwarz inequality, for example

(X♦Y)2 =
[∑

mi
(
ai♦bi

)]2

=
[∑(√

mi
∥∥ai

∥∥)(√mi

(
ai♦bi

)∥∥ai
∥∥

)]2

≤
[∑

mi
∥∥ai

∥∥2
][∑

mi

(
ai♦bi

)2∥∥ai
∥∥2

]
= ‖X‖2Q♦

2 .

(2.10)

Let R♦i , i= 1,2, be the residues (or residual terms) of the inequalities in (2.9), namely

by definition

(X♦Y)2+R♦2 = ‖X‖2Q♦
2 , respectively (X♦Y)2+R♦1 = ‖Y‖2Q♦

1 . (2.11)

Then by carefully checking the inequality in (2.10), we find that

R♦2 = 0⇐⇒ X♦Y

‖X‖2
= ai♦bi∥∥ai

∥∥2 , ∀i, (2.12)

R♦1 = 0⇐⇒ X♦Y

‖Y‖2
= ai♦bi∥∥bi

∥∥2 , ∀i, (2.13)

(whenever ai and bi are nonzero, as in (2.7)). By combining (2.8), (2.9), and (2.11), we

obtain the identity

‖X×Y‖2+(X·Y)2+�= ‖X‖2‖Y‖2, i= 1,2, (2.14)
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and therefore

�= (R◦1+R×1 )= (R◦2+R×2 )≥ 0 (2.15)

is the residue of the inequality

‖X×Y‖2+(X·Y)2 ≤ ‖X‖2‖Y‖2 (2.16)

or equivalently, by (2.6), the inequality

‖X×Y‖2 ≤ ‖X∧Y‖2. (2.17)

2.1.2. The basic kinematic quantities and examples of “simple” types of mo-

tion. Now, we return to the n-configuration motion X(t), (2.1), and put Y = Ẋ in

Section 2.1.1. First of all, we define the ith individual (central) moment of inertia Ii,
kinetic energy Ti, and angular momentum Ωi by

Ii =mi
∥∥ai

∥∥2, Ti = 1
2
mi

∥∥ȧi
∥∥2, Ωi =mi

(
ai× ȧi

)
. (2.18)

The corresponding total moment of inertia, kinetic energy, and angular momentum

is the sum of the individual ones. They are the basic kinematic quantities, namely

I = ρ2 = ‖X‖2, T = 1
2
‖Ẋ‖2, Ω = X× Ẋ. (2.19)

We introduce some terminology in order to characterize specific types of “well-

behaved” motions. The motion is rectilinear (resp., planar or flat ) if the particles

Pi move along a fixed line (resp., plane) in 3-space. The motion is collinear (resp.,

coplanar ) if at each time t the particles lie on a line (resp., plane) which may depend

on t. Furthermore, we say a motion is torque-free if each individual angular momentum

Ωi, i≥ 1, is constant. Recall that in dynamics this means that Pi is (for some reason)

subject to a central force field, see for example [12].

In the following examples we will draw some immediate kinematic consequences

from the sole assumption that Ω is time independent.

• A collinear motion is torque-free, and then it is rectilinear if and only if Ω = 0. On

the other hand, if Ω ≠ 0 then a collinear motion is planar and Ω is normal to the plane

of motion. Moreover, each Ωi is a nonnegative multiple of Ω.

• A coplanar motion is necessarily planar if it is torque-free. Indeed, each Pi moves

in a fixed plane (resp., along a fixed line) if Ωi ≠ 0 (resp., if Ωi = 0), namely in a

plane with normal vector Ωi. This plane is independent of i. For n= 3 all motions are

coplanar (or collinear), of course. In fact, for a 3-body motion (in a gravitational force

field) which is torque-free and with Ω ≠ 0, the Pi are at the vertices of an equilateral

triangle, and hence the motion is shape invariant.

Problem 2.1. Assume a coplanar motion X(t) is perpendicular to Ω (e.g., Ω = 0)

at some time t0, and assume X(t0) is not collinear. Must the motion be planar?

The answer is yes for n= 3; it is, for example, a direct consequence of the general-

ized Euler equations for 3-body motions given by [6, Theorem 4]. A weaker statement

is proved in Lemma 2.2 below. In dynamics, Saari [15] answers the problem affirma-

tively for general n, making use of the “standard” symmetry assumptions on the
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potential function U . We conjecture, however, that an affirmative answer holds for

purely kinematic reasons as well.

• The class of homothetic n-body motions is defined by the condition that X(t) is

confined to a fixed line in R3n. This is the subclass, defined by the condition Ω = 0,

of the more general shape invariant motions, namely the n-configurations at times

t1 ≠ t2 differ by a similarity transformation of the Euclidean 3-space. Equivalently, the

kinetic energy term Tσ representing change of shape vanishes (cf. Section 2.1.4). In

Wintner [24], n-body motions of this type are referred to as homographic. The first

solutions of the 3-body problem in the literature, dating back to Euler and Lagrange,

are shape invariant. Still, with essentially no exceptions they are the only known ex-

act solutions of the (unrestricted) n-body problem. Even so, in the classical n-body

problem, the complete determination of all realizable shapes for the shape invariant

solutions is still an unsolved problem for n > 3. We refer to Section 4 for a precise

description of the shape invariant motions.

Sundman was the first to prove, for the Newtonian n-body problem, that a general

collision (or total collapse) is only possible when Ω = 0. Weierstrass probably knew

this result, and he showed for n= 3 that the motion must be planar if Ω = 0. We will

give a simple and purely kinematic proof of this fact in the following lemma.

Lemma 2.2. A 3-configuration motion with constant angular momentum Ω, with

respect to the center of mass, is planar if and only if Ω is perpendicular to the plane of

motion. In particular, the motion is planar if Ω vanishes.

Proof. Let the origin be the center of mass. We will assume a1×a2 ≠ 0 during the

motion, say a1×a2 = f(t)n with f(t) > 0, where n is a unit normal vector of the plane

of motion. Define numbers x and y by

x = (a1×a2
)· ȧ1, y = (a1×a2

)· ȧ2. (2.20)

Then it is easy to see that ṅ= 0, that is, the motion is planar, if and only if x =y = 0.

On the other hand, a simple calculation gives the identity

−m3Ω×
(
a1×a2

)= (k11x+k12y
)
a1+

(
k21x+k22y

)
a2, (2.21)

where

k11 =m1m3+m2
1, k22 =m2m3+m2

2,

k12 = k21 =m1m2, det
(
kij

)=m1m2m3,
(2.22)

and the mass distribution has been normalized so that Σmi = 1. It follows that Ω and

n are collinear if and only if x =y = 0.

2.1.3. The basic kinematic identities and inequalities. Consider an n-configur-

ation motion X(t), and apply the results of Section 2.1.1 with Y = Ẋ. So far, we need

not assume invariance of any quantity such as Ω. Equation (2.6) reads

‖X∧ Ẋ‖2 = 2IT − 1
4
İ2 =

n∑
i=1

∥∥Ωi∥∥2+
∥∥Ωmix

∥∥2, (2.23)
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where the “mixed angular momentum” term Ωmix has norm square

∥∥Ωmix

∥∥2 =
∑
i<j
mimj

3∑
r ,s=1

(
x(i)r ẋ

(j)
s −x(j)s ẋ(i)r

)2
. (2.24)

Moreover, (2.14) and (2.16) now reads

‖Ω‖2+ 1
4
İ2+�= 2IT , (2.25)

‖Ω‖2+ 1
4
İ2 ≤ 2IT , (2.26)

where the latter is usually referred to in the literature as the Sundman inequality (cf.

Saari [13]), and hence it is appropriate to refer to the kinematic identity (2.25) as the

Sundman identity and to � as the Sundman residue.

Recall from (2.15) that� decomposes in two ways. Correspondingly, it follows from

(2.12) and (2.13) that equality holds in (2.26), that is, � vanishes, if and only if

İi = IiI İ, Ωi = IiI Ω, ∀i, (2.27)

or equivalently (whenever the fractions are defined)

İi = TiT İ, Ωi = TiT Ω, ∀i. (2.28)

In fact, it is not difficult to see that the above conditions characterize shape invari-

ant motions which in the case Ω ≠ 0 must be coplanar. Therefore, these motions are

characterized by the Sundman identity with a vanishing residual term, namely

‖Ω‖2+ 1
4
İ2 = 2IT . (2.29)

Remark 2.3. For the classical gravitational n-body motions, or in dynamics where

the potential has similar symmetry properties, shape invariant motions with non-

vanishing angular momentum are, in fact, planar (i.e., coplanar, but confined to a

fixed plane). We refer to Section 4.

We will further analyze the structure of the Sundman residue �, (2.15), starting

with the following remark.

Remark 2.4. By its definition,� is a nonnegative, homogeneous, andO(3)-invariant

polynomial of degree 4 of the 6n variables x(i)r , ẋ(j)s . Hence, by classical invariant theo-

ry it may be written as a quadratic polynomial of inner products among the n position

vectors ai and their velocities.

By invoking the identity (2.23) and the obvious decomposition

‖Ω‖2 =
∑∥∥Ωi∥∥2+2

∑
i<j
Ωi ·Ωj , (2.30)

we obtain the following explicit formula:

�=
∥∥Ωmix

∥∥2−2
∑
i<j
Ωi ·Ωj

=
∑
i,j
mimj

[∥∥ai
∥∥2∥∥ȧj

∥∥2−(ai·aj)(ȧi·ȧj)−(ai×aj
)·(ȧi×ȧj

)]
.

(2.31)
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From the last expression it is easy to see that � vanishes if and only if for each

i ≠ j the following three conditions hold (where the last two make sense only when

all four vectors involved are nonzero):

• ‖ai‖‖ȧj‖ = ‖aj‖‖ȧi‖;
• the angle θi,j between ai and aj equals the angle between ȧi and ȧj ;

• ai and aj span the same plane as ȧi and ȧj (if sinθi,j ≠ 0).

For Ω ≠ 0, a kinematic interpretation of � is still somewhat awkward. However,

there is a modified version of the kinematic identity (2.25), namely the general kine-

matic identity

IIω‖ω‖2+ 1
4
İ2+�̃ = 2IT , (2.32)

where

Iω‖ω‖2 = ‖ω×X‖2≥‖Ω‖
2

I
, (2.33)

Iω =
∑
Ii sin2θi ≤ I, (2.34)

is the moment of inertia with respect to the ω-axis, where ω is the instantaneous

angular velocity of the system and θi is the angle between ai and ω. The general

residue

�̃ =�−(IIω‖ω‖2−‖Ω‖2)≥ 0 (2.35)

is, indeed, still nonnegative. The connection between Ω andω is explained in the next

subsection, where the three terms on the left side of (2.32) are interpreted in terms

of kinetic energy. Moreover, equality holds in (2.33), and hence �= �̃, if and only if

X is perpendicular to Ω, that is, either Ω vanishes or X is coplanar and its plane is

perpendicular to Ω.

2.1.4. Decomposition of kinetic energy. We will focus attention on the kinetic

energy T and its natural decomposition suggested by the geometry of Euclidean

3-space R3. Namely, an n-configuration is uniquely characterized by the three geo-

metric invariants: size, shape, and position, where shape and size together define the

congruence class of the n-configuration, and the position (relative to a fixed refer-

ence n-configuration X0) is measured by an element (or rather coset) of the isometry

subgroup of R3 fixing the origin, that is, the orthogonal group O(3). For a given n-

configuration motion, t→ X(t), the rate of change of the above invariants is expressed

by the corresponding components of the velocity, namely the following orthogonal

decomposition

Ẋ= Ẋ
ρ+ Ẋ⊥ = Ẋρ+(Ẋσ + Ẋω

)
. (2.36)

The associated decomposition of kinetic energy is written as

T = Tρ+T⊥ = Tρ+Tσ +Tω,

Tϕ = 1
2

∥∥Ẋϕ
∥∥2, ϕ ∈ {ρ,⊥,σ ,ω}.

(2.37)
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Remark 2.5. So far, the center of mass is not assumed to be the origin, so the above

“congruence” notion may not be a natural one. However, after this subsection this will

be assumed (cf. Section 2.2). Anyhow, (2.36) is a well-defined decomposition, with a

possible translational component Ẋt being “absorbed” into the other components.

In (2.36), Ẋρ is the radial velocity component, which by definition is parallel with X

itself, whereas the transversal component Ẋ⊥ is perpendicular to X. The latter further

decomposes into Ẋσ and Ẋω, representing the change of “shape” and “position” (or

orientation), respectively. It follows that Ẋρ = (ρ̇/ρ)X, and consequently

Tρ = İ2

8I
= 1

2
ρ̇2 (2.38)

which combined with (2.23) gives

T⊥ = 1
2I
∥∥X∧ Ẋ

∥∥2 = 1
2I

n∑
i=1

∥∥Ωi∥∥2+ 1
2I
∥∥Ωmix

∥∥2. (2.39)

Next, we turn to the more awkward problem of splitting off the rotational energy

Tω from T⊥. The velocity Ẋω is the component tangential to the SO(3)-orbit through

X, whose tangent space is spanned by the (Killing) vector fields

X �→(n×a1, . . . ,n×an
)= n×X (2.40)

generated by all n∈R3 � so(3). Therefore

Ẋω =ω×X (2.41)

for some ω∈R3, and moreover, for any n

n·(X× Ẋω
)= (n×X)· Ẋω = (n×X)· Ẋ=n·(X× Ẋ

)= n·Ω. (2.42)

It follows that

Ω = X×(ω×X) (2.43)

and for fixed X this identity defines a linear transformationω→Ω which is easily seen

to be invertible if X is not collinear. Anyhow, Ω vanishes if and only ifω×X vanishes.

Although in the collinear case,ω is only determined up to a summand in the direction

of the vectors ai, Iω adjusts correspondingly in the general formula for the rotational

kinetic energy

Tω = 1
2
‖ω×X‖2 = 1

2
Iω‖ω‖2. (2.44)

In general, we have inequalities

‖Ω‖2

I ·Iω
≤ ‖ω‖2 ≤ 2T

Iω
, (2.45)

where equality on the right side means purely rotational motion, that is, T = Tω, and

equality on the left side (cf. (2.33)) is equivalent to the vanishing of the Sundman

residue �, namely (2.29) holds. Furthermore, assuming X is not collinear, one can
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show that Ω and ω are collinear vectors if and only if X is a coplanar configuration

and Ω is perpendicular to its plane, namely

ω= 1
I
Ω, Iω = I, Tω = 1

2
‖Ω‖2

I
. (2.46)

For example, (2.46) holds for a planar motion, whereas the expression for Tω in (2.46)

is a lower bound in the general case.

It is now clear that for a planar motion X(t), (2.37) coincides with the Sundman

identity (2.25), and for a general motion the “change of shape” kinetic energy term is

given by

Tσ = 1
2I
�̃ (2.47)

so that (2.37) coincides with the general kinematic identity (2.32). The motion is said

to be shape invariant if the term Tσ vanishes. In particular, for planar motions its

expression becomes

Tσ = 1
2I
�= 1

2I

(∥∥Ωmix

∥∥2−2
∑
i<j
Ωi ·Ωj

)
. (2.48)

In retrospect, we recall the inequalities

0≤ �̃ ≤� (2.49)

and the following interpretations:

• �̃ =� says X is perpendicular to Ω (and hence coplanar if Ω ≠ 0),

• �̃ = 0 says the motion is shape invariant,

• �= 0 says the motion is shape invariant, and is also coplanar if Ω ≠ 0,

• �̃ = 0 if and only if �= 0 holds in dynamics governed by a “typical” potential

function, for example, for Newtonian n-body motions.

We have seen that the inequality Tω+Tρ ≤ T , or its equivalent form

IIω‖ω‖2+ 1
4
İ2 ≤ 2IT (2.50)

is generally stronger than the Sundman inequality (2.26). For any motion the inequality

in (2.50) is strict, unless the motion is shape invariant, whereas equality holds in the

Sundman inequality if the shape invariant motion is also homothetic or coplanar. The

inequality �̃ ≤� also expresses that, in an appropriate sense, the change of shape is

(locally) maximal when the motion passes through a coplanar n-configuration.

2.2. Dynamics and basic asymptotic analysis. In this subsection, we assume that

the n-configuration motion is due to a force acting on the mass points, derived from

a potential function U(X), namely

Ẍ=∇U =
(

1
m1

∂U
∂a1

,
1
m2

∂U
∂a2

, . . . ,
1
mn

∂U
∂an

)
(2.51)

is the differential equation of the motion.
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2.2.1. The potential function and invariance properties. We will make the follow-

ing two basic assumptions on the potential function:

• U is invariant with respect to Euclidean motions in R3;

• U is homogeneous of degree −e, that is, U(kX)= k−eU(X) for all k > 0.

These properties are typical for a system with only mutual interaction between

particles and no external forces acting on the system. As a direct consequence of the

translational, respectively O(3)-invariance of U , we infer respectively

∑
miäi =

∑ ∂U
∂ai

= 0, Ω̇ =
∑

ai× ∂U∂ai
= 0, (2.52)

and moreover, U depends only on the mutual distances

ri,j =
∥∥ai−aj

∥∥ (2.53)

since these numbers constitute a complete set (but not functionally independent if

n> 4) of congruence invariants for n-configurations. In particular, the vector Ω is an

invariant of the motion.

Recall that ρ = √I is the distance from X to the origin in R3n, whereas the actual

“size” of an n-configuration is more naturally measured by

J = 1
m̄

∑
i<j
mimjr 2

i,j , m̄= Σmi, (2.54)

namely the moment of inertia with respect to the center of mass, (1/m̄)
∑
miai. It

follows that I = J if and only if the center of mass coincides with the origin, and

thanks to (2.52) we can, indeed, choose origin in this way.

Remark 2.6. In classical mechanics, it is the invariance of linear momentum, namely∑
miȧi is constant, which enables one to choose the origin at the center of mass, with-

out sacrificing the “inertial” property of the reference frame, needed for the validity

of the force law (2.51).

Henceforth, we assume the center of mass lies at the origin, and consequently we

will restrict our configuration space to the following linear subspace of R3n:

M �R3n−3 :m1a1+m2a2+···+mnan = 0 (2.55)

with the induced kinematic metric (2.2). We also use the notation

U(X)= ρ−eU(X1
)= U∗

ρe
,

X1 = 1
ρ

X= (u1,u2, . . . ,un
)
, ui = 1

ρ
ai,

(2.56)

where U∗ denotes the restriction of U to the unit sphere (ρ = 1) =M1 � S3n−4 of M .

Clearly, U is uniquely determined by its restriction U∗.
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In addition to the above two assumptions on U we will also add one more assump-

tion:

• The singular set of U∗ is the collision variety, that is, ai = aj for some i ≠ j.
Moreover, assume that U∗ > 0 and U∗ →∞ as X1 approaches the singular set.

The standard example is, of course, the classical gravitational field, where e = 1.

The energy integral of the motion is written as

h= T −U (2.57)

whence −U is the potential energy. Recall that the classical n-body motions have the

Newtonian potential function (in appropriate units)

U =
∑
i<j

mimj

ri,j
(2.58)

and its gradient vector field (in M , with respect to the Jacobi metric (2.2)) has

components

1
mi

∂U
∂ai

=
∑
k≠i
mk

(
ak−ai

)∥∥ak−ai
∥∥3 . (2.59)

In general, combining (2.51) with the following crucial property of a homogeneous

function U of degree −e with respect to the vectors ai,

X· Ẍ=
n∑
i=1

ai · ∂U∂ai
=−eU. (2.60)

The associated Lagrange-Jacobi differential equation is the result of differentiating

I = ‖X‖2 twice and making the obvious substitutions from (2.57) and (2.60), namely

the following three equivalent equations:

Ï = 2(2T −eU)= (4−2e)T +2eh, (2.61)

ρ̈+ ρ̇
2

ρ
− 1
ρ
[
(2−e)U+2h

]= 0, (2.62)

(2−e)(Tσ +Tω)= ρ̈ρ+ e
2
ρ̇2−eh, (2.63)

are valid for motions on a given energy level h. Thus, (2.61) is merely a differential con-

sequence of the energy integral (2.57), and conversely, the latter integral is recovered

from (2.61) by integration, with h appearing as an integration constant.

Symmetries of the equation of motion. The differential equation (2.51) is

invariant under Euclidean motions as well as time translation and reversion. It is also

easy to check that the equation has a 1-parameter group {gs} of time-space scaling

symmetries. In effect, if t→ X(t) is a solution at energy level h and angular momentum

Ω, then for each fixed real number s

t �→ Y(t)= eνsX(e−st), ν = 2
2+e , (2.64)

is a solution with energy and angular momentum

h(s) = e−eνsh, Ω(s) = e((2−e)/2)νsΩ, (2.65)
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respectively. (The exceptional case e =−2 is simpler; the space homotheties X→ esX
are symmetries.)

2.2.2. Asymptotic estimates of general collisions. This subsection is devoted to

the basic asymptotic behavior of motions leading to a total collapse (also called general

collision). This event is simply characterized by the condition I → 0. The main results

are stated in Theorems 2.7 and 2.8, but completion of the proofs is postponed until

Section 6.

Results in this direction date back to Sundman’s work around 1910 on n-body mo-

tions, mostly with n = 3. They were substantially improved by Siegel three decades

later. Among the classical results are, for example, the vanishing of the angular mo-

mentum vector Ω and asymptotic formulas of the physical quantities T and I = ρ2.

Sundman also found asymptotic formulas for İ and Ï and, moreover, he showed that

U∗ has a limit as I → 0. These results are also contained in our Theorem 2.7.

For functions f(t) and g(t) recall the following notion of asymptotic equivalence

f ∼ g if
f
g
�→ 1 as t �→ to. (2.66)

Theorem 2.7. Assume U > 0 is homogeneous of degree −e, 0 < e < 2, and the

motion leads to a general collision at t = to. Then

lim
t→t0

U∗(t)= µ > 0 (2.67)

exists, and for all i≥ 0

di

dti
(ρ)∼ di

dti
(
κtν

)
,

di

dti
E ∼ di

dti

(
µ
ρe

)
∼ di

dti

(
1
2
ν2κ2t2ν−2

)
,

(2.68)

where E denotes Tρ , T , or U , and the constants e and µ determine the constants ν and

κ by

ν = 2
2+e , µ = ν

2

2
κ2+e. (2.69)

Theorem 2.8. Under the assumptions of Theorem 2.7, the total angular momentum

Ω is identically zero. Furthermore, each individual angular momentum Ωi as well as

the “mixed angular momentum” Ω̃mix, (see (2.24)) must tend to zero.

We turn to the proofs of the theorems, using ideas adapted from the work of Siegel

and Wintner (cf. [18, 19, 24]).

As in the early investigations, a principal tool is the Lagrange-Jacobi equation (see

(2.61)) which in the standard case e= 1 reads

Ï = 2T +2h. (2.70)

Another crucial property of the potential function (2.58) is U(X)→∞ as X→ 0, hence

also Ï →∞ by the above equation. Consequently, I → 0 in finite time, and İ > 0 holds

near collision time.
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We first clarify our conditions on U . The condition e > 0 is needed since there is

no a priori reason for X1 ∈M1 to approach the singular set (where U∗ →∞) as I → 0.

However, the additional condition e < 2 will be needed later, see (2.96).

From (2.61) it follows that Ï →∞, so again the collision must occur at finite time. By

translating and (eventually) reversing time we will assume collision occurs at t = 0+,

and henceforth the motion is studied during a small time interval (0, t0), where we

may also assume İ > 0.

We start by showing that the constant vectorΩ =∑Ωi must be zero. To this end, put

K =
∥∥X∧ Ẋ

∥∥= ∥∥Ω̃mix

∥∥2+
n∑
i=1

∥∥Ωi∥∥2
(2.71)

and deduce the inequality

İ Ï ≥ (2−e)KİI−1+2hİ (2.72)

by combining (2.23) and (2.61). Define K0 = inf(t,t0) K and integrate the inequality from

t to t0 to obtain

1
2
İ20 ≥

1
2

(
İ20− İ2

)≥ (2−e)Ko ln
(
I0
I

)
+2h

(
I0−I

)
,

K0 ≤ 2hI−2hI0+2−1İ20
(2−e) ln(I0/I) �→ 0 as t �→ 0.

(2.73)

This proves that Ω = 0.

Recall the splitting (2.37) of kinetic energy; here Tω = 0 since Ω = 0. Thus, the

identity T = Tρ+Tσ =U+h gives the asymptotic formula

U∗ ∼A(t)+B(t) as t �→ 0+, (2.74)

where

A(t)= ρeTρ, B(t)= ρeTσ . (2.75)

Lemma 2.9. The term A(t) has a limit, namely limt→0+A(t)= µ > 0 exists.

Proof. By combining formulas (2.38) and (2.62),

Ȧ= ρ̇ρ−1+e((2−e)Tσ +eh). (2.76)

Hence, for t ≤ t0 ≤ ε

A
(
t0
)−A(t)= ∫ t0

t
(2−e)ρ−1+eρ̇Tσdt+h(ρ(t0)e−ρ(t)e) (2.77)

and since bothA and the integrand are nonnegative, limA(t)= µmust exist. It remains

to show that µ > 0.

Suppose we have µ = 0. Since min(U∗) > 0, (2.62) implies

ρ̈ρ1+e = (2−e)U∗+2hρe−2A= (2−e)U∗+o(1)≥ C > 0 (as t �→ 0+) (2.78)
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and therefore

ρ̇ρ̈ = ρ̇
ρ1+e

(
(2−e)U∗+o(1))≥ C ρ̇

ρ1+e . (2.79)

Consequently, by integration

ρ̇
(
t0
)2− ρ̇(t)2 =

∫ t0
t

d
dt
(
ρ̇2)dt = 2

∫ t0
t
(ρ̇ρ̈)dt ≥ 2C

∫ t0
t

ρ̇
ρ1+e dt

= 2C
e

(
1

ρ(t)e
− 1

ρ
(
t0
)e ) �→∞ as t �→ 0+

(2.80)

and this is clearly contradictory.

From Lemma 2.9 we have now A(t) = µ + o(1), hence by definition of A, ρ̇ =√
2µρ−e/2+o(ρ−e/2) and consequently

νρ1/ν =
∫ ρ

0
ρe/2 dρ =

∫ t
0
ρ̇ρe/2 dt =

∫ t
0

(√
2µ+o(1)

)
dt =

√
2µt+o(t) (2.81)

which gives ρ ∼ κtν and κ = (ν−1
√

2µ)ν . Moreover, ρ̇ ∼ √2µρ−e/2 ∼ νκtν−1, and then

the asymptotic expression we seek for Tρ follows from Tρ ∼ µρ−e or (1/2)ρ̇2.

Next, we turn to the asymptotic formula for ρ̈. Implicit in the work of Siegel [17, 18]

is a special property of the potential function U which, in our interpretation, leads

to an upper bound estimate of U̇ on time intervals where U∗ and its gradient (or the

gradient of U evaluated on M1) have a given bound. The next lemma explains this.

Lemma 2.10. Let 0< t2 < t1 < ε and assume thatU(X1)≤ C1 and ‖∇U(X1)‖<C1 for

t ∈ [t2, t1]=�. Then there is a constant C > 0, depending on ε, such that |U̇| ≤ Ct2ν−3

for all t ∈�.

Proof. Since U̇ =∇U · Ẋ,

|U̇| ≤
∥∥∇U(X)∥∥‖Ẋ‖ = 1

ρe+1

∥∥∇U(X1
)∥∥√2T . (2.82)

On the other hand, for small t

T =U+h= 1
ρe
(
U∗+hρe)≤ C2ρ−e, (2.83)

and consequently

|U̇| ≤ C1
√

2C2

ρe+1+e/2 ≤
C

t(e+1+e/2)ν =
C

t3−2ν . (2.84)

Lemma 2.11. The term B(t) tends to zero, that is, B(t)→ 0 as t→ 0+.

Proof. Since B is nonnegative, the claim is limsupB(t)= 0. We first establish

liminfB(t)= 0 as t �→ 0+. (2.85)

Using the asymptotic formulas for ρ and ρ̇, consider (2.77), from which it follows that

the integral ∫ t0
0+
ρ−1+eρ̇Tσ dt (2.86)
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is convergent. However, the integrand is

ρ−1+eρ̇Tσ =
(
ν
t
+o(t−1))B(t) (2.87)

and the integral of 1/t is divergent, so this is not possible unless liminfB(t)= 0.

It remains to show that limsupB(t)= 0. Assume to the contrary, that limsupB(t) >
0. Consequently, for given ε > 0, there is a sequence ε > t1 > t2 > ··· > tk > ··· with

limtk = 0, such that for some δ > 0

δ≤ B(t)≤ 3δ, for t ∈ [t2i, t2i−1
]= Ji; B

(
t2i−1

)= 3δ, B
(
t2i
)= δ. (2.88)

Therefore, for t ∈ Ji and each i, by Lemma 2.9 there is a constant C1 such that

U∗ =A+B−ρeh≤ µ+3δ+o(1)≤ C1, (2.89)

where o(1)→ 0 as t1 → 0. In particular, the curve X1(t) will stay in a compact region

on the sphere M1 and disjoint from the singular set of U∗. In this region the norm of

the gradient is also bounded, say, by C1. Hence, we may apply Lemma 2.10, and for

some constant C

|Ṫ | = |U̇| ≤ Ct2ν−3 for t ∈ Ji. (2.90)

Consequently, by (2.83), (2.90), and the asymptotic formulas for ρ and ρ̇ already found,

there is a constant C2 such that∣∣∣∣ ddt (ρeT)
∣∣∣∣= ∣∣ρeṪ +eρe−1ρ̇T

∣∣≤ C2
1
t

for t ∈ Ji. (2.91)

Since A∼ µ, we may also assume t1 is so small that

∣∣A(t2i−1
)−A(t2i)∣∣≤ δ. (2.92)

Then, by (2.75), (2.89), and (2.91)

2δ= B(t2i−1
)−B(t2i)

= (ρeT −A)t=t2i−1
−(ρeT −A)t=t2i

≤ C2

∫ t2i−1

t2i

dt
t
+δ

(2.93)

from which we infer∫ t2i−1

t2i

B(t)
t

dt ≥ δ
∫ t2i−1

t2i

dt
t
≥ δ

2

C2
for each i. (2.94)

On the other hand, the integral (2.86) is convergent and consequently also

∫ t1
0

B(t)
t

dt <∞. (2.95)
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Clearly, (2.94) and (2.95) are not compatible, and this completes the proof that

limsupB(t)= 0.

From Lemma 2.11 we infer Tρ ∼ T , and evidently T ∼ U . Then the asymptotic ex-

pression for ρ̈ follows from (2.62). Returning to K defined in (2.23) or (2.71),

K = 2IT − İ
2

4
= 2I

(
T −Tρ)= 2ITσ = 2ρ2−eB �→ 0 as t �→ 0+ (2.96)

and this completes the proof of Theorem 2.8.

Finally, the asymptotic formulas for the time derivatives of E = Tρ,T , or U in

Theorem 2.7 rest upon the asymptotic formulas for all

d3

dt3
ρ,
d4

dt4
ρ,. . . ,

di

dti
ρ, i > 2, (2.97)

whose proof will be delayed until Section 6. Assuming these formulas for the mo-

ment, we use (2.62) to find successively U,U̇,Ü , . . . ,(di/dti)U , as a polynomial in

ρ,ρ̇, . . . ,(di+2/dti+2)ρ. Similar polynomial expressions are easily derived for the deriva-

tives of Tρ = (1/2)ρ̇2, of course. Now, the asymptotic expressions for the derivatives

of E follows by inserting the asymptotic expressions of ρ,ρ̇, . . . into the corresponding

polynomial. However, for a fixed i > 0, the three cases of E will have the same mono-

mial as its asymptotic expression, say (di/dti)(E)∼ pitqi , since the three cases agree

for i= 0, and the common monomial is

p0tq0 = 1
2
ν2κ2t2ν−2. (2.98)

We leave this topic here by stating the following problem concerning the asymptotic

behavior in the remaining “directions,” namely with regard to shape and position (or

orientation). In Section 6.2 we will return to this problem.

Problem 2.12. In the case of a general collision, what is the asymptotic behavior

of the curve X1(t) = ρ−1X(t) on the unit sphere M1? Must X1(t) converge, that is, is

there a limiting shape and orientation?

3. The moduli space of size and shape. In this section, we will focus attention on

the kinematics of motions in the congruence moduli space M̄ , whose points represent

the size and shape of n-configurations. As a mathematical object, M̄ is the quotient

space

M π
�→ M̄ =M/O(3) (3.1)

consisting of the congruence classes π(X) = X̄. Namely, M̄ is the orbit space of the

natural orthogonal O(3)-representation on M � R3(n−1) by n−1 copies of the stan-

dard representation on R3. The above quotient construction is well understood in the

framework of equivariant Riemannian geometry, by which M̄ becomes a (stratified)

Riemannian space and π a Riemannian submersion. As will be seen below, this de-

scription of the metric is, in fact, consistent with the decomposition of kinetic energy

in Section 2.1.4. We refer to [2] for basic results on equivariant differential geometry.



706 ELDAR STRAUME

3.1. The kinematic metric on M̄ . Recall that one can define kinetic energy on M
and M̄ as functions T and T̄ on the respective tangent bundles of M and M̄

TM
T

dπ

R

TM̄
T̄

R

(3.2)

such that their restriction to each tangent space (fibre) is a positive definite quadratic

form. The associated Riemannian metrics are customarily written as

ds2 = 2Tdt2, ds̄2 = 2T̄dt2. (3.3)

On M we want this, of course, to be the kinematic metric defined by the Jacobi inner

product (2.2), that is, ds2 = ∑
mids2

i where ds2
i is the standard metric on the ith

summand of R3n.

On the other hand, the natural choice of T̄ is suggested by the decomposition (2.37)

of T , namely

T = T̄ +Tω, T̄ = Tρ+Tσ . (3.4)

We claim that T̄ is, indeed, a function defined on TM̄ with the appropriate properties.

This will be seen in the next subsection, whereds̄2 = 2T̄dt2 is recognized as the orbital

distance metric on M̄ . Consequently, we will also refer to ds̄2 as the kinematic metric

on M̄ .

By inserting the expression for Tω found in Section 2 into (3.4), we have by (3.3)

ds2 = ds̄2+2Tωdt2 = ds̄2+Iω‖ω‖2dt2 (3.5)

which expresses the rotational kinetic energy as the “lost” term in the passage from

M to M̄ , cf. (3.2). In the special case of planary motion, or if Ω vanishes, the above

formula reads

ds2 = ds̄2+ ‖Ω‖
2

ρ2
dt2. (3.6)

3.2. The orbital geometry of M̄ . We first describe the Euclidean space M as the

Riemannian cone

M = C(M1
)

: ds2 = dρ2+ρ2dφ2 (3.7)

over M1, where (M1,dφ2) is the unit sphere (ρ = 1) of M with its spherical metric

dφ2. As usual, ρ is the norm function

ρ(X)=
√
I = ‖X‖ (3.8)

which together with coordinates onM1 constitute polar coordinates onM . Clearly ρ is

also a function on theO(3)-orbit space, which can be described as the Riemannian cone

M̄ = C(M∗) : ds̄2 = dρ2+ρ2dσ 2 (3.9)
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over its “unit sphere” (ρ = 1)(
M∗,dσ 2)= (M1,dφ2)/O(3). (3.10)

Here ds̄2 (and its restriction dσ 2 to M∗) denotes the orbital distance metric, and as

will be seen below, the notation in (3.9) is consistent with (3.3).

As a cone, M̄ (resp., M) is a union of rays emanating from its vertex 0̄ (resp., 0).

These curves are also the geodesics reaching the vertex, and ρ measures the distance

from X̄ (resp., X) to the vertex. Note that scalar multiplication in M induces a “mul-

tiplication” by positive scalars k in M̄ , namely kX̄=π(kX), and a ray consists of all

positive multiples of a unique point on M∗. The unit vector field in the (outward) ray

direction (in M̄ or M) is denoted by ∂/∂ρ.

We will also refer to the subspaceM∗ of M̄ as the moduli space of similarity classes

(or shapes), or briefly the shape space. Clearly, the crucial data of the geometry of M̄
is encoded into (M∗,dσ 2), see Section 3.3. The simplest but important case n= 3 has

been thoroughly investigated in [6].

Finally, we show that the kinetic energy as defined by the orbital distance metric

is, after all, the function T̄ defined by (3.4). To this end, let X ≠ 0 be a given point in

M and X̄ its image in M̄ . Consider the following tangent spaces and their orthogonal

decompositions:

TXM �M =Mρ⊕Mσ ⊕Mω, (3.11)

TX̄M̄ = M̄ρ⊕M̄σ . (3.12)

Here Mρ is the radial line (in the direction of ∂/∂ρ) through X, mapped by dπ to the

tangent line M̄ρ through X̄ generated by ∂/∂ρ, and Mω = kerdπ is the tangent space

of the SO(3)-orbit (cf. Section 2.1.4). Moreover, Mσ is mapped isomorphically to the

other summand M̄σ . Now, the inner product on TX̄M̄ , by definition of Riemannian

submersion, is determined by the condition that dπ :Mρ⊕Mσ → TX̄M̄ is an isometry.

In particular, we have

dπ(X)= ‖X‖ ∂
∂ρ

= ρ ∂
∂ρ
,

1
ρ
dπ :Mσ �

�→ M̄σ �
�→ TX∗M∗,

(3.13)

where X∗ = (1/ρ)X̄ is the image of X in M∗, the map Mσ �→ M̄σ is an isometry, and

M̄σ = TX∗M∗ if ρ = 1.

Let X(t) be a motion in M and X̄(t) the induced motion in M̄ . Let Ẋ = Ẋρ + Ẋσ +
Ẋω be the splitting of the velocity in accordance with (3.11). By definition, (d/dt)X̄
= dπ(Ẋρ+ Ẋσ ), and consequently the kinetic energy of X̄(t) will be (as promised)

1
2

∥∥∥∥ ddt X̄
∥∥∥∥2

= 1
2

(∥∥Ẋρ
∥∥2+

∥∥Ẋσ
∥∥2)= Tρ+Tσ = T̄ . (3.14)

Remark 3.1. Geodesics in M̄ and M∗ are the locus Γ and Γ∗ of moduli curves

X̄(t) and X∗(t) of “linear” motions of n-configurations with Ω = 0, where by “linear”

motion we mean a motion in 3-space with constant velocity (i.e., the potential function

U is constant). For example, in the case n = 3, Γ∗ is an arc of a great circle on the 2-

sphere M∗.
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3.3. A brief description of M∗. Observe that (M∗,dσ 2) is a compact (3n− 7)-
dimensional stratified Riemannian manifold

M∗ ⊃Π∗ ⊃ E∗, (3.15)

where the three strata (M∗−Π∗), (Π∗−E∗), and E∗ correspond to theO(3)-orbit types

1⊂O(1)⊂O(2), respectively. Here Π∗ and E∗ represent the shapes of coplanar and

collinear n-configurations, respectively.

The orbital stratification of M∗ involves projective spaces as explained by the fol-

lowing diagram where the horizontal maps are inclusions and the vertical ones are

orbit space projections:

Sn−2 S2n−3 S3n−4 =M1

RPn−2 = Sn−2/O(1) CPn−2 = S2n−3/SO(2)

E∗ CPn−2/Z2 M1/SO(3)

S2n−3/O(2)=Π∗ M∗ =M1/O(3).

(3.16)

The group Z2 � O(1) acts on CPn−2 by complex conjugation, with E∗ = RPn−2 as

fixed point set and Π∗ as orbit space. Similarly, M∗ is the quotient of M1/SO(3) by

the induced action of O(3)/SO(3)� Z2, with Π∗ as fixed point set.

Note that the two sets E∗ ⊂Π∗ will not change if we work with congruence modulo

SO(3) rather than O(3). However,

M1/SO(3)−Π∗ �→M1/O(3)−Π∗ (3.17)

is a 2-fold covering if n > 3. On the other hand, in M1/SO(3) there are only two

orbital strata, namely E∗ and its complement. This is due to the fact that the action

of SO(3) has only two isotropy types, namely 1⊂ SO(2). In particular, M1/SO(3)−E∗
is a smooth manifold.

We also mention that M̄ =M/O(3) (resp., M∗) can be naturally identified with the

set of real, positive semidefinite symmetric (n− 1)× (n− 1)-matrices of rank ≤ 3

(and with Euclidean norm 1, resp.). We refer to [5, 7] for further analysis of the above

equivariant geometry.

3.3.1. The special case n = 3. Any 3-body system (called mass triangle) is, of

course, a coplanar 3-configuration. Therefore, in (3.16) we have Π∗ =M∗ = S3/O(2);
this is a 2-disk D2 which geometrically is a closed hemisphere of the 2-sphere CP1 =
S2(1/2) of radius 1/2. The boundary of the hemisphere is the (equator) circle E∗ =
RP1 = S1(1/2) which represents the degenerate triangles, namely the collinear con-

figurations.
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On the other hand, the non-degenerate triangle X = (a1,a2,a3) in 3-space can be

oriented, say, by the frame {a1,a2,a1×a2}. Hence, it is natural to consider oriented

congruence classes of mass triangles, in which case M∗ will be the base space of the

usual Hopf fibration S3 → S2, namely

M∗ = S3/SO(2)= CP1 = S2
(

1
2

)
=M∗

+ ∪M∗
− ,

M∗
± = S5/SO(3)= S5/O(3), M∗

+ ∩M∗
− = E∗,

(3.18)

where the two hemispheresM∗
± �D2 represent triangles of opposite orientation. This

modified definition of M∗ is consistent with the “observation” that the normal vector

of a triangle in motion should change continuously; the triangle degenerates when the

motion crosses E∗, and as the motion enters the other hemisphere the triangle has,

indeed, the opposite orientation. We refer to [6].

3.4. The gradient fields of U and U∗. Let U be the potential function on M , as in

Section 2.2. By O(3)-invariance, U may also be regarded as a function on M̄ , and then

its restriction to M∗ is given by the restriction of U to the unit sphere M1, namely

U∗ =U∗(X∗)=U(X1
)= ρeU(X̄), (3.19)

where X∗ = (1/ρ)X̄=π(X1) and X1 = (1/ρ)X lies on the unit sphere M1.

The gradient vector field of U in M is homogeneous of degree −(e+1), namely

∇U(X)= 1
ρe+1

∇U(X1
)= 1

ρe+1
W, (3.20)

where W=W(X1) is the restriction of ∇U to M1 and

W=Wρ+W⊥ =Wρ+Wσ +Wω (3.21)

is the orthogonal decomposition according to (2.36). However, the O(3)-invariance of

U implies that Wω vanishes. Moreover, Wρ = kX1(= k(∂/∂ρ)) for some k, and using

the formula

∇U ·X=−eU, (cf. (2.60)) (3.22)

we find that k=−eU∗.

The bundle map dπ : TM → TM̄ of (3.2) identifies ∇U(X) with ∇U(X̄), and further-

more, it identifies Wσ at X1 with the gradient of U∗ at X∗. Consequently, we may write

W =−(eU∗) ∂
∂ρ
+∇U∗ (3.23)

and the gradient of U in M̄ is given by

∇U(X̄)=−eU
∗(X∗)
ρe+1

∂
∂ρ
+ 1
ρe+1

∇U∗(X∗). (3.24)

Remark 3.2. Note that ∇U +eρU(∂/∂ρ) is a global vector field on M , away from

origin, whose restriction to the sphere M1 is tangential to M1 and may be identified

with ∇U∗. In fact, the restriction is just Wσ .
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3.5. Motions in the moduli space M̄ . Consider a smooth curve Γ̄ in M̄ , away from

the collision subvariety, and let Γ∗ be its image in M∗. Then Γ∗ is smooth whenever Γ̄
is transversal to the vector field ∂/∂ρ; we assume this is the case, with the possible ex-

ception of some isolated points. Let θ be the arc-length parameter along Γ∗ measured

from a chosen starting point.

By a construction due to Hsiang [4], define the cone surface C(Γ∗) to be the surface

sweeped out by the rays passing through a point moving along Γ∗. It is a flat surface

immersed in M̄ , with induced Riemannian metric

ds̄2|C(Γ∗) = dρ2+ρ2dθ2 (3.25)

which describes (locally, for θ ranging over an interval of length < 2π ) a Euclidean

sector with (ρ,θ) as polar coordinates centered at the cone vertex 0̄. The surface con-

tains the curves Γ̄ and Γ∗, or more precisely, a “stretched out” version of them, and

here Γ∗ is the circular (or equidistant) curve of distance ρ = 1 from 0̄.

Let the surface C(Γ∗) be positively oriented by the orthonormal frame {∂/∂ρ,
(1/ρ)∂/∂θ}. Define the parameter α (along Γ̄ ) to be the angle between the ray di-

rection ∂/∂ρ and the tangent vector direction. More precisely, for a given orientation

of Γ̄ , the unit tangent vector t and the angle α are related as follows:

t= dΓ̄
ds̄

= cosα
∂
∂ρ
+sinα

1
ρ
∂
∂θ
, cosα= dρ

ds̄
, sinα= ρdθ

ds̄
. (3.26)

Consider a smooth n-configuration motion X(t) and the induced motions X̄(t) and

X∗(t) in M̄ and M∗ along the curves Γ̄ and Γ∗ (as above) with arc-length functions s̄
and θ, respectively. The kinetic energy of X̄(t) is, by definition,

T̄ = Tρ+Tσ , where Tρ = 1
2
ρ̇2, Tσ = 1

2
ρ2θ̇2. (3.27)

Recall that Tσ is the ray-transversal component explaining the change of shape; in

particular, θ̇ is the speed of the shape curve X∗(t). The dependence of θ̇ on T̄ can

also be expressed by

θ̇2 = 2T̄
ρ2+(dρ/dθ)2 , where ρ̇ = θ̇ dρ

dθ
(3.28)

with special attention to the event θ̇ = 0 (or lim θ̇ = 0), which is conceivable in both

cases T̄ = 0 and T̄ ≠ 0.

On the other hand, on a time interval where T̄ does not vanish, the angle α between

the curve and the ray direction is well defined and we have by (3.25) and (3.26)

sin2α= T
σ

T̄
= B
A+B (cf. (2.75)). (3.29)

The event sinα = 0 means that X̄(t) is tangent to a ray, provided T̄ ≠ 0, and α may

possibly be defined by a limit procedure whenever T̄ vanishes. In any case, assuming

θ̇ and α are defined (or have limits)

sinα= 0⇐⇒ θ̇ = 0⇐⇒ dρ
dθ

=±∞. (3.30)



ON THE GEOMETRY AND BEHAVIOR OF n-BODY MOTIONS 711

3.5.1. Dynamics in M̄ . Consider a motion X̄(t) in M̄ induced from a solution X(t)
of the equation of motion Ẍ=∇U(X) in M (cf. (2.51)) with potential function U (as in

Section 2.2, with 0 < e < 2). We will also assume Ω = 0, consequently T = T̄ and the

Lagrange-Jacobi equation (2.63) reads

Tσ = 1
2−e

[
ρ̈ρ+ e

2
ρ̇2−eh

]
. (3.31)

It follows that the kinetic energy Tσ due to change of shape is, in fact, a second-order

differential consequence of the radial motion, for a fixed total energy level h. As func-

tions of t > 0, ρ and T are differentiable (in fact, analytic), and so is the nonnegative

function Tσ = T −(1/2)ρ̇2.

Of particular interest is the case of a general collision, say, at t = 0+. Then, we

consider such a motion for small t ∈ (0, t1]; in particular, ρ ∼ κtν and ρ̇ ∼ κνtν−1

as t → 0+, by Theorem 2.7. Moreover, we know (by Theorem 2.7) there is a limit,

U∗(t) = U∗(X∗(t)) → µ, although it is unclear whether the shape curve X∗(t) itself

must (necessarily) converge. This is certainly true if the level set U∗ = µ is known to

be discrete. But this open problem is subsumed by the following and more general

challenge.

Problem 3.3. If Tσ is not identically zero, what can be said about its asymptotic

behavior as ρ → 0? For example, can we have Tσ ∼ τtr for some constants τ and r?

Must Tσ > 0 hold for t sufficiently small?

Here is some preliminary information relevant for the above problem. The case

where Tσ vanishes identically is just the shape invariant case (see Section 4), namely

the motion in M̄ is confined to a single ray; in particular U∗ = µ is constant. In general,

however, we note that Tσ = 0 implies Ṫ σ = 0, and Tσ = 0 for arbitrarily small t
would imply, for each k > 0, the existence of a decreasing sequence ti → 0 such that

(dk/dtk)Tσ = 0 at t = ti. At any time t where Tσ vanishes, (3.31) reduces to the

identity

ρ̈+ eU
∗

ρe+1
= 0 (3.32)

which for t→ 0 “approaches” the ODE

ρ̈+ eµ
ρe+1

= 0 (3.33)

of the shape invariant case. In the latter case a series expansion of ρ(t) is easily derived

(see Section 4.3). We make some additional observations:

• The shape curve X∗(t) converges to a point p ∈M∗ if it is rectifiable (as t→ 0).

In fact, the curve must have limit points in the compact space M∗, but two distinct

limit points would certainly lead to an unbounded arc-length function

θ(t)=
∫ t1
t

∥∥Ẋ∗(t)
∥∥dt

=−
∫ t1
t
θ̇(t)dt, 0< t < t1,

(3.34)
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where length is measured from some initial time t1 > 0 and

θ̇ =−
√

2Tσ

ρ
≤ 0 (by (3.27)),

θ̇ ∼ o(1)
t

as t �→ 0+ (by (3.31)).
(3.35)

• There is the following convergent integral:∫ t1
0+
t · θ̇(t)2 dt = const

∫ t1
0+

1
t
ρeTσ dt <∞ (cf. (2.95)). (3.36)

However, this does not imply convergence of the integral in (3.34); a case like θ̇(t)∼
1/t lnt provides a counterexample.

• If Tσ ∼ ctr as t→ 0+, for some exponent r , then θ̇(t)∼ c′ts , with s = r/2−ν >−1,

and consequently the shape curve has finite length and hence converges.

Proposition 3.4. Consider an n-body motion X(t) leading to a general collision at

t = 0+. Then the following hold:

(i) α∼ (2+e)/2tθ̇ = o(1) as t→ 0.

(ii) dρ/ds̄ → 1 as t→ 0. In particular, the moduli curve Γ̄ in M̄ has finite length L̄(t)
measured from the vertex 0̄, and moreover, L̄(t)∼ ρ(t) as t → 0.

(iii) If there is a limiting shape

p = limX∗(t)∈M∗ as t �→ 0+, (3.37)

then Γ̄ is tangent to the ray through p at the cone vertex.

For the proof of the above statements, we first combine Lemmas 2.9, 2.11, and (3.29)

to obtain sinα→ 0 as t→ 0. Moreover, by (3.26),

dρ
dθ

= ρ̇
θ̇
= ρcotα∼ ρ

α
, or α∼ ρ

ρ̇
θ̇ ∼ 1

ν
tθ̇ = 2+e

2
tθ̇ (3.38)

and this proves (i). (ii) is an immediate consequence of (i) and (3.26), and (iii) is due to

the fact α→ 0.

4. The shape invariant motions. If the induced shape curve X∗(t) in M∗ is a sin-

gle point p, or equivalently the moduli curve X̄(t) stays on a fixed ray in M̄, the

n-configuration motion X(t) is called shape invariant. In terms of kinetic energy the

condition is that the term Tσ vanishes. Then we will write explicitly

X(t)= (a1(t),a2(t), . . . ,an(t)
)∈M,

ai(t)= ρ(t)A(t)ui,
(4.1)

where ρ(t) > 0, A(t) ∈ SO(3), and the constant vectors ui ∈ R3 are distinct. We may

also normalize so that
∑
mi‖ui‖2 = 1, and moreover, A(t0) = Id for some initial

time t0.

Our aim is to describe all shape invariant solutions of the equation of motion

Ẍ=∇U(X), where U is the given potential function, as in Section 2.2. For a fixed shape
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p ∈M∗ we will write

µ =U∗(p)=U(u1, . . . ,un
)

(4.2)

and then the total energy integral reads

h= 1
2
ρ̇2+Tω− µ

ρe
. (4.3)

The procedure leading to all shape invariant solutions consists of two steps:

(i) Determination of the central shapes p ∈M∗, namely the critical points of the

function U∗. We remark that n-configurations X ∈M having central shape are often

referred to as central configurations in the literature (see Definition 4.3 in Section 4.2).

Planar solutions are also referred to as relative equilibria (cf. Smale [20]).

(ii) Integration of a central force problem, involving the inverse (1+e)-force law.

We refer to this as the Kepler problem, see Section 4.3.

Remark 4.1. Clearly, all motions are necessarily shape invariant when n = 2; in

fact,M∗ is a single point. On the other hand, step (ii) is independent of n≥ 2. Namely,

for a given central configuration, the integration problem is just the “2-body problem.”

The two steps are discussed separately in separate subsections, combined to the

final description in Section 4.4. But firstly, in Section 4.1 we will focus attention on

the special case of vanishing angular momentum.

4.1. Homothetic motions. The subclass of shape invariant motions with constant

A(t) in (4.1), that is,

X(t)= ρ(t)(u1,u2, . . . ,un
)
, (4.4)

will be referred to as homothetic motions. There are various equivalent characteriza-

tions, in purely kinematic terms.

Proposition 4.2. Homothetic motions X(t) are characterized by the following equiv-

alent conditions:

(i) Ẋ(t) is proportional to X(t);
(ii) the motion is shape invariant with vanishing angular momentum (Ω = 0);

(iii) the motion is shape invariant with vanishing individual angular momenta

(Ωi = 0).

The proof is easy. For example, we see why condition (ii) leads to an expression like

(4.4). For the motion X(t) in (4.1)

Ω =
∑
miai× ȧi = ρ2A

(∑
miui×S

(
ui
))

= ρ2A
(∑

miui×
(
s×ui

))= ρ2A
(

s−
∑
mi

(
ui ·s

)
ui

)
,

(4.5)

where s = s(t) is the vector in R3 representing the skew-symmetric matrix S = A−1Ȧ
in the sense that Sv= s×v for v∈R3. Hence, Ω vanishes if and only if

s=
∑
mi

(
ui ·s

)
ui. (4.6)
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Unless the vectors ui are collinear, this identity can only hold for s= 0, and hence A
is constant. On the other hand, if all ui are collinear, then the identity implies Sui = 0

and again A(t)ui is independent of t.

4.2. The central configurations. Recall from Section 3.4, the gradient field of U on

M can be written as

∇U(X)= 1
ρe+1

W= 1
ρe+1

[
−eU∗(p) ∂

∂ρ
+∇U∗(p)

]
. (4.7)

Here p ∈M∗ is the shape of X, W= (w1,w2, . . . ,wn), with

wi = 1
mi

∂U
∂ai

(
X1
)
, (4.8)

is the value of ∇U at the point X1 = ρ−1X, and ∇U∗ is the component of W tangential

to the unit sphere M1. Moreover, as the notation indicates, the latter component has

been identified with the gradient of U∗ inM∗ at the point p = X∗. Thus, the condition

of vanishing ∇U∗(p) in (4.7) is equivalent to the following definition.

Definition 4.3. For a given potentialU , X= (a1, . . . ,an) is a centraln-configuration

(and X∗ is a central shape) if ∇U(X)= λX for some constant λ, that is,

λai = 1
mi

∂U
∂ai

(X), ∀i. (4.9)

Note that λ is determined by (4.7), namely λ = −eρ−2U(X). In particular, since U
is homogeneous it suffices to determine configurations of size ρ = 1, namely X =
(u1, . . . ,un) is a unit vector and hence by (4.2) and (4.7), condition (4.9) is equivalent

to

−(eµ)ui = 1
mi

∂U
∂ai

(
u1, . . . ,un

)
, ∀i. (4.10)

In the special case of the Newtonian potential function U , (4.10) reads

−µui =
∑
j≠i

mj
(
uj−ui

)∥∥uj−ui
∥∥3 , ∀i, (4.11)

where

µ =U∗(p)=
∑
i<j

mimi∥∥ui−uj
∥∥ . (4.12)

Thus the determination of central configurations appears as a nontrivial problem in

vector algebra. For a givenn and mass distribution, the cardinality of the set of critical

points of U∗ is the number of central shapes. We state the following basic and still

unsolved problem for the Newtonian potential.

Problem 4.4 (see Wintner [24]). Is the number of central shapes finite for all mass

distributions?

Remark 4.5. The less precise and more common saying “the number of central

configurations” actually means “the number of central shapes.” Anyhow, one counts

the number of solutions X up to scaling and congruence (modulo O(3), or rather
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SO(3) which doubles the number of non-coplanar solutions). By definition of mass

distribution, the masses are positive numbers. Indeed, there are examples showing

that the number of solutions can be infinite if negative masses are allowed.

4.2.1. Lagrange’s multiplier method. In his study of 3-body motions along a fixed

line, Euler [3] discovered the collinear central configurations and found the three dif-

ferent shapes by solving a specific algebraic equation of degree 5 (cf. also Siegel [18]).

Five years later, in 1772, Lagrange found the remaining central shape of three bod-

ies, namely the shape of the regular triangle. In doing so Lagrange used his socalled

multiplier method, well known in elementary calculus today. His proof is very simple

and works equally well for n = 3 and 4 (and more generally for n-configurations in

(n−1)-space).

Crucial to the proof is his use of the “correct” coordinates for the purpose, namely

the mutual distances rij = ‖ai−aj‖, i < j. These constitute a complete set of invari-

ants for n-configurations X = (a1, . . . ,an) in Rn−1 up to congruence, that is, modulo

O(n−1). For the regular part of the congruence moduli space

M̄ =R(n−1)2/O(n−1), (4.13)

namely those points such that a1, . . . ,an spanRn−1, the functions rij can be used as co-

ordinates since they are functionally independent and restricted only by inequalities.

Clearly, the Newtonian potential U achieves an optimally simple form

U =
∑
i<j

mimj

rij
(4.14)

and moreover, Lagrange’s quadric formula for the moment of inertia

I =
∑
i<j
mimjr 2

ij

(
here we assume

∑
mi = 1

)
(4.15)

makes the constraint I = 1 which restricts X̄ to the shape spaceM∗ almost trivial. The

resulting equation

∇U = λ·∇I (4.16)

yields immediately 2λ=−r−3
ij , and consequently all rij are equal (for any mass distri-

bution). In particular, for n = 4 the only central shape which is not in a plane is the

regular tetrahedron.

Indeed, the above standard definition of central configurations may itself be viewed

as an application of Lagrange’s method, since condition (4.9) is precisely (4.16) when

we replace the multiplier λ by (1/2)λ. However, whereas (4.9) takes place in the high

dimensional space M , Lagrange utilized the fact that U and I are actually functions

on the quotient space M̄ , and here they have simple algebraic expressions.

4.2.2. Old and recent results on central configurations (for the gravitational

potential). Around 1900, Moulton [9] generalized Euler’s result on collinear central

configurations for all n by showing that the total number is always (1/2)n!. Simpler

and more geometric proofs have appeared since then. For example, in 1970 Smale
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[20] proved this result in terms of elementary Morse theory, and during the following

years Smale and his student Palmore, among others, continued the study of coplanar

central configurations along the same lines using topological methods such as Morse

theory. However, so far (anno 1998) Problem 4.4 is still unsettled for each n> 3.

The problem with the Morse theoretic approach is that critical points of U∗ may be

degenerate (cf. Palmore [10]), so the critical set may possibly be infinite. In fact, it is

either finite or contains a continuum (cf. Palmore [11]). There are examples showing

that for n> 3 the cardinality depends on the mass distribution. The cardinality is, in

fact, known (by Palmore, Moeckel) to be finite for almost all masses, but the problem

still remains to tell more constructively, for a given mass distribution, what is the

cardinality.

Finally, we describe what is known about the case n = 4. First of all, there are

(1/2)4! = 12 noncongruent collinear configurations and one nondegenerate tetrahe-

dron, namely the regular one. However, the planar solutions are not known for general

mass distributions, but we mention that Albouy [1] has recently completed the special

case of four equal masses. Indeed, there are only three (proper) planar shapes mod-

ulo a permutation of masses; namely, the square, the regular triangle with the fourth

mass at the center, and a special isosceles triangle with the fourth mass at the axis

of symmetry. To describe the latter solution, consider an isosceles triangle with base

edge of length 2 and height ≈ 1.82. The fourth mass point (resp., center of mass) has

approx. height 0.65 (resp., 0.62) above the base. In summary, in the equal mass case

there are (12+19+1)= 32 solutions inM∗ = SM/O(3), or 33 solutions modulo SO(3)
since the regular tetrahedron configuration amounts to two classes modulo SO(3).

4.3. The Kepler problem. By definition, the Kepler problem (for fixed e > 0,µ > 0)

is given by the following (integrable) differential equation:

ẍ+ eµ
‖x‖2+e x= 0 (4.17)

in 3-space. Clearly, the angular momentum vector ω = x× ẋ is an integral of the

motion, and either

(i) ω= 0 and the motion is rectilinear (i.e., along a fixed line), or

(ii) the motion takes place in the plane perpendicular to ω≠ 0.

In the second case, writeω=ωk and let (ρ,θ) be polar coordinates in the plane of

motion. Then (4.17) translates to the following ODE

ρ1+eρ̈−ρ2+eθ̇2+eµ = 0, 2ρ̇θ̇+ρθ̈ = 0, (4.18)

where the second equation expresses the invariance of ω= ρ2θ̇.

By introducing the integration constant ω we eliminate θ̇ in the first equation of

(4.18) and obtain

ρ̈+ eµ
ρ1+e −

ω2

ρ3
= 0 (4.19)

which has the energy expression

h= 1
2
ρ̇2+ 1

2
ω2

ρ2
− µ
ρe

(4.20)
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as a first integral. This implies solvability by quadrature of the above Kepler problem.

The motion is rectilinear (or 1-dimensional) if and only if ω= 0.

Recall the classical case (e = 1) where the solutions with ω ≠ 0 are conic sections

(ellipses, parabolas, or hyperbolas)

ρ = ρ(θ)= ω2µ−1

1+εcosθ
, h= µ2

2ω2

(
ε2−1

)
, (4.21)

with eccentricity ε. Thus, explicit and elementary expressions for the solution curves

exist if we eliminate time t and regard ρ as a function of θ, but for this purpose the

above approach is not the simplest one. However, starting from (4.20) and using the

identity

ρ̇ = dρ
dθ
θ̇, (4.22)

it is easy to verify that the above expression for ρ(θ) is, indeed, a solution.

4.3.1. The 1-dimensional Kepler problem revisited. Here the Kepler problem is

the ODE (4.19) with ω = 0, or its integrated form (4.20). Namely, one can start from

any of the three equivalent equations:

ρ1+eρ̈+eµ = 0, (4.23a)

ρρ̈+ e
2
ρ̇2−eh= 0, (4.23b)

ρeρ̇2−2hρe−2µ = 0, (4.23c)

where ρ = ρ(t) may be regarded as the coordinate of a real line. On each side of the

“collapse” singularity ρ = 0, ρ(t) is found by quadrature, implicitly defined by an

equation H(ρ) = t which involves the integration constants h and ρ0 = ρ(0). Then

one is left with the inversion procedure, which is rather an algebraic problem. The

latter can be solved, for example, by assuming a series expansion of ρ(t) and define

its coefficients recursively by substituting the series into a series expansion of H(ρ).
However, the coefficients are derived more efficiently from the ODE itself.

As an illustration, we determine the solution ρ(t) ≥ 0 for t ≥ 0, with the singular

initial condition ρ0 = 0. To simplify notation, let ξ = µ−1/(2+e)ρ and let

ξ̈+ e
ξ1+e = 0 (4.24)

be the corresponding “normalized” version of (4.23a), whose energy integral is

�= µ−υh= 1
2
ξ̇2−ξ−e, where υ= 2

2+e , (cf. Section 2.2). (4.25)

It follows that H�(ξ)= t, where

H�(ξ)= 1√
2

∫ ξ
0

xe/2√
1+�xe dx (4.26)

and we seek the solution as a series ξ(t)= tυ(c0+c1tυ+c2t2υ+c3t3υ+···).
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The function in (4.26) can be expanded as

H�(ξ)= ξ
1+e/2
√

2

[
1(

1+(1/2)e) −
�

2(1+(3/2)e)ξ
e+ 3�2

8(1+(5/2)e)ξ
2e

− 5�3

16(1+(7/2)e)ξ
3e+···

]
.

(4.27)

In the classical case e= 1, υ= 2/3, the explicit expression for the function is

H�(ξ)=



√
2

3
ξ3/2, �= 0,

1√
2
�−3/2

[√
�ξ
√

1+�ξ− ln
(√
�ξ+

√
1+�ξ

)]
, �> 0,

1√
2

(|�|−3/2)[arcsin
√
−�ξ−

√
−�ξ

√
1+�ξ

]
, �< 0.

(4.28)

Note that, in addition to being invertible as a function of ξ, H� is also continuous with

respect to �, namely lim�→0H�(ξ) = H0(ξ). For � < 0, it follows from (4.28) that ξ
reaches its maximal value ξ1 = (−�)−1 at time t1 =π(−2�)−3/2.

We obtain the series solution

ρ(t)= 3
√
µξ(t)= t2/3(k0+k1t2/3+k2t4/3+k3t2+···), (4.29)

where

k0 = κ =
(

9
2
µ
)1/3

, k2 =−3
7
k2

1

k0
, k3 = 23

63
k3

1

k2
0

, . . . . (4.30)

Here k1 is arbitrary and is a factor of each ki for i > 1. But this series can also be

derived directly, and perhaps more easily, from (4.23a). From (4.23b) or (4.23c) we

deduce that the energy constant h is related to k1 by k1 = (9/10)(h/k0). The value of

k0 is, of course, in agreement with the general asymptotic formula for ρ in Section 2.2.

Finally, note that replacement of the series (k0+k1t2/3+k2t4/3+···) in (4.29) by a

power series (k0+k1t+k2t2+···) leads only to the solution with ki = 0 for all i≥ 1,

namely the solution ρ(t)= κt2/3 corresponding to h= 0.

4.4. Description of the shape invariant solutions. Let X(t) denote a solution of

the differential equation Ẍ=∇U(X). Then, by the identity (4.7), the following two con-

ditions on the motion (for a given time interval) are equivalent:

(i) ∇U(X(t)) is a multiple of X(t);
(ii) the motion has central shape, that is, each X∗(t)∈M∗ is a critical point of the

function U∗.

Remark 4.6. We do not claim that central shape implies shape invariance (i.e., con-

stant shape), as would be the case, for example, if the critical set of U∗ is finite. How-

ever, a constant shape must necessarily be central, according to the following lemma.

Lemma 4.7. If the motion is shape invariant, then its shape must be central.

Proof. Consider the orthogonal decomposition of the acceleration vector

Ẍ=∇U = kX+ Ẍσ (4.31)
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of X(t) (cf. (3.20), (3.21)). In general, the shape curve X∗(t) has a “horizontal” lifting

H(t) inM1, namely π :M1 →M∗ takes H(t) to X∗(t) and dπ maps the velocity Ḣ= Ḣσ

isometrically to (d/dt)X∗(t).
Now, if Ẍσ ≠ 0 at t = t0, then also Ḧσ ≠ 0 at t = t0 and consequently Ḣ cannot

vanish identically near t = t0. This argument shows that Ẍσ must vanish identically if

X(t) is a curve of constant shape X∗(t)= X∗(t0), namely ∇U is a multiple of X.

We turn to the uniform description of all shape invariant solutions, for n≥ 2.

Theorem 4.8. A shape invariant motion is a solution of the differential equation

Ẍ=∇U(X) if and only if the following two conditions hold (cf. notation in (4.1)):

(i) the constant vectors ui constitute a central n-configuration, namely a solution

of equation system (4.10);

(ii) ρ and A satisfy the differential equation

ρ1+eA−1 d2

dt2
(ρA)=−(eµ)·Id (4.32)

when both sides are regarded as linear operators restricted to the subspace

V ⊂R3 spanned by the vectors ui.

Proof. The motion X(t) is a solution of the differential equation if and only if

d2

dt2
(ρA)= 1

mi

∂U
∂ai

(X)= ρ−(1+e)Awi, ∀i, (4.33)

where

wi = 1
mi

∂U
∂ai

(
u1,u2, . . . ,un

)
. (4.34)

By Lemma 4.7, the shape of the motion is central, and hence wi = −(eµ)ui by (4.10).

Therefore (4.33) can be written as in (4.32).

Corollary 4.9. Each solution (ρ,A) of the differential equation (4.32) must satisfy

A(t)∈ SO(2) for some fixed subgroup SO(2)⊂ SO(3). Furthermore, if

A(t)=
(

cosθ sinθ
−sinθ cosθ

)
, θ = θ(t), (4.35)

then (ρ,A) is a solution of (4.32) if and only if (ρ,θ) is a solution of the Kepler problem

(4.18).

Proof. The last statement is easily checked once we know that A(t) belongs to

the rotation group of a fixed plane.

Suppose to the contrary, that there is a solution where the rotations A(t) do not

belong to a single subgroup SO(2). We consider the “2-body problem” with potential

function

U = n1n2∥∥b1−b2

∥∥e (4.36)

and choose the numbers ni > 0 together with two vectors vi satisfying the conditions∑
nivi = 0,

∑
ni
∥∥vi

∥∥2 = 1, U
(
v1,v2

)= µ. (4.37)



720 ELDAR STRAUME

Then Y = (b1,b2), with bi(t) = ρ(t)A(t)vi, is a non-planar solution of the differen-

tial equation Ÿ =∇U(Y). However, this equation is really a Kepler problem (4.17) for

x= b1, say. This is a contradiction since a solution of a Kepler problem is always

planar.

Corollary 4.10. A shape invariant solution of the equation Ẍ=∇U(X) with angu-

lar momentum Ω ≠ 0 must be planar.

Proof. Consider a solution X(t), as in (4.1). By Corollary 4.9, A(t) belongs to a

group SO(2), say, the rotation group of the xy-plane as in Corollary 4.9.

We claim that (u1, . . . ,un) in (4.1) is an n-configuration in the xy-plane. This is a

consequence of Theorem 4.8, according to which the space V ⊂ R3 spanned by the

vectors ui lies in the kernel of the linear operator

ρ1+eA−1 d2

dt2
(ρA)+(eµ)·Id=

 a b 0

−b a 0

0 0 c

 , (4.38)

where a= c−ρ2+eθ̇2, b = ρ1+e(2ρ̇θ̇+ρθ̈), c = ρ1+eρ̈+eµ.

Suppose some ui is outside the xy-plane, hence c = 0. However, a2+b2 > 0 since

θ̇ ≠ 0, and this will force V to be the z-axis and hence also Ω = 0.

A simple calculation shows that Ω in the above corollary is the normal vector ωk

where ω= ρ2θ̇.

Corollary 4.11. A homothetic motion X(t), (4.4), is a solution of the equation Ẍ=
∇U(X) if and only if (u1, . . . ,un) is a central configuration and ρ(t) is a solution of the

1-dimensional Kepler problem (4.23).

Remark 4.12. The first (and exact) solutions of the 3-body problem, dating back to

Euler and Lagrange, are the shape invariant motions where the bodies rotate rigidly

about the center of mass with constant angular velocity. They calculated the possible

shapes for such motions, namely the collinear central configurations and the shape of

a regular triangle. From the terminology due to Smale [20], central configurations in a

plane are also referred to as relative equilibria since those shape invariant solutions

of the n-body problem where the bodies rotate rigidly and uniformly around origin

become fixed points in a rotating coordinate system.

For example, let X= (a1,a2, . . . ,an) be a fixed central configuration in the plane and

consider the solution X(t) of the classical n-body problem obtained by uniformly

rotating the mass points around the origin (= center of mass) with a specific angular

speed ω. What must be the value of ±ω? This problem is easily solved by regarding

the vectors as complex numbers and writing ai(t)= eiωtai. Then from the Newtonian

equation and the definition of a central configuration

Ẍ(t)=∇(X(t))= λX(t), (4.39)

it follows

ω2 =−λ= U(X)
ρ2

=
∑
i<jmimj

∥∥ai−aj
∥∥−1∑

mi
∥∥ai

∥∥2 . (4.40)
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5. The induced equation of motion at moduli space level. We will study the equa-

tions of motion in the congruence moduli space M̄ , induced from the equation Ẍ =
∇U(X) inM . However, we will only consider planar motions or motions with vanishing

angular momentum. As will be seen, the resulting differential equations in M̄ depend

on h = T −U and ω = ‖Ω‖ as parameters with fixed values. For n = 3 the equations

are worked out explicitly in terms of (global) coordinates of M̄ as a cone over the

sphere M∗, and the associated Hamiltonian formulation is also given for the sake of

completeness.

5.1. Variational principles and the dynamical metric. To achieve the reduced

equations on M̄ we shall first replace the above Newtonian type equation by any of

its equivalent systems derived from an action principle involving either the Lagrange

function L = T +U or kinetic energy T . Namely, recall from classical mechanics the

two action integrals

J1 =
∫
L dt, J2 =

√
2
∫
T dt, (5.1)

corresponding to Hamilton’s principle and the least action principle, respectively. In

the second case, Jacobi’s “geometrization trick” amounts to the reformulation of J2

as the integral

J2 =
∫ √

T da=
∫ √
U+h da=

∫
dah, (5.2)

where the Euclidean metric

da2 = 2T dt2 = ‖Ẋ‖2dt2 (5.3)

is the kinematic metric on M , and its conformal modification by the function U+h

da2
h = (U+h) da2 (5.4)

may be called the dynamical metric onM at energy level h. Thus, by (5.2) the solution

curves in M , for a given value of h, are geodesics of the modified metric (5.4).

Now, we turn to the induced equation of motion in the moduli space M̄ , for pla-

nar motions t → X(t) or motions with vanishing angular momentum (ω = 0). The

action principles in (5.2) can be pushed down to M̄ , expressed in terms of the reduced

versions of kinetic energy, potential energy and Lagrangian function, namely

T̄ = T − 1
2
ω2

ρ2
, Ū =U− 1

2
ω2

ρ2
, L̄= T̄ +Ū ,

J̄1 =
∫
L̄ dt, J̄2 =

√
2
∫
T̄ dt =

∫
ds̄h,ω,

(5.5)

where

ds̄2
h,ω = (Ū+h) ds̄2 (5.6)

is the induced dynamical metric on M̄ at level (h,ω), namely the conformal modifi-

cation of the kinematic metric ds̄2 by the function (Ū+h).
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It follows that the moduli curves X̄(t) of the solutions X(t) in M , for given values

of h and ω, are the solutions of each of the following two equivalent systems:

(i) the Euler-Lagrange equations of the Lagrangian L̄ = T̄ + Ū , regarded as a func-

tion on the tangent bundle of M̄ ;

(ii) the geodesic equations of the dynamical metric ds̄2
h,ω on M̄ (cf. (5.6)).

Note that the solutions in case (i) are curves parameterized by time t, whereas in case

(ii) the connection between t and the arc-length parameter s̄h,ω is given by the relation

(ds̄h,ω
dt

)2

= T̄
(
ds̄
dt

)2

= 2T̄ 2. (5.7)

5.2. Geodesic curvature and critical rays in M̄ . By Theorem 4.8, we already know

that the critical rays in M̄ , that is, rays passing through critical points of U∗ on M∗,

are the only rays which are also geodesics of the dynamical metric. Another proof of

this fact will be demonstrated here, as follows. Being a conformal modification of the

kinematic metric ds̄2, the geodesics of the metric in (5.6) are characterized by

K̄(n)= 1
2
d
dn

ln(Ū+h), (5.8)

where K̄(n) is the geodesic curvature in the normal direction n, with respect to ds̄2.

However, all rays are geodesics of ds̄2, so the ray through p ∈M∗ is a geodesic of the

modified metric if and only if

d
dn

ln(Ū+h)= 0 (5.9)

holds along the ray, for any normal vector n. This condition is, in fact, independent of

the coordinate ρ, so we choose ρ = 1 and hence the vectors n span the tangent space

of M∗ at p. It follows that (5.9) holds if and only if p is a critical point of U∗.

5.3. The induced ODE in M̄ for the case n = 3. In the simplest case n = 3, global

coordinates for M̄ are readily available and we shall do explicit calculations to derive

the equation of motion in M̄ , either as the Euler-Lagrange equations for the Lagrangian

L̄, or equivalently as the geodesic equations of the metric ds̄2
h,ω, expressed in terms

of t as the independent variable.

Recall from Section 3, the subspace (M∗,dσ 2)⊂ (M̄,ds̄2) is the 2-sphere of radius

1/2 in the kinematic metric. Here we shall, however, find it convenient to representM∗

by the standard sphere S2(1) of radius 1, and consequently we must use the modified

expression

ds̄2 = dρ2+ ρ
2

4
ds2 = dρ2+ ρ

2

4

(
dr 2+sin2 r dϕ2) (5.10)

for the kinematic metric in M̄ , where ds2 = 4dσ 2 is the metric of S2(1) and (r ,ϕ) are

spherical polar coordinates centered at any chosen point p0 on the sphere, 0≤ r ≤π ,

0 ≤ ϕ ≤ 2π . In particular, r = 0 at the point p0. Note that M̄ , as a cone over S2, is

homeomorphic to R3 and away from the cone vertex M̄ is, in fact, diffeomorphic to

R3−{0}.
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Theorem 5.1. For planar 3-body motions of total energy h, the corresponding con-

gruence moduli curves X̄(t) are the solutions of the following ODE:

0= ρ̈+ ρ̇
2

ρ
− 1
ρ

(
2−e
ρe

U∗(r ,ϕ)+2h
)
, (5.11a)

0= r̈ +2
ρ̇
ρ
ṙ − 1

2
sin(2r)ϕ̇2− 4

ρ2+e
∂U∗

∂r
, (5.11b)

0= ϕ̈+2
ρ̇
ρ
ϕ̇+2cot(r)ṙ ϕ̇− 4

ρ2+e
1

sin2 r
∂U∗

∂ϕ
. (5.11c)

We make the following remarks concerning the above theorem:

•As usual, the potential functionU is homogeneous of degree−e, 0< e < 2, namely

U = U∗(r ,ϕ)/ρe where U∗ is the restriction of U to the 2-sphere M∗ = (ρ = 1).
• By combining the energy conservation law h = T̄ − Ū with the expression for 2T̄

given by the kinematic metric, we obtain the 1-order equation

2
ρe
U∗+2h−ω

2

ρ2
= ρ̇2+ ρ

2

4

(
ṙ 2+sin2(r)ϕ̇2) (5.12)

as a first step of the integration of the system (5.11). Conversely, solving (5.12) for

ω2 leads to an expression which is easily seen to be a first integral of the system

(5.11). This procedure actually introduces ω2 = ‖Ω‖2 as a nonnegative constant of

integration, and in the remaining integration problem we may replace (5.11b) or (5.11c)

by (5.12).

• Equation (5.11a) is just the Lagrange-Jacobi equation, see (2.62).

• The system of equations (5.11a), (5.11b), (5.11c), and (5.12) is symmetric with

respect to the choice of spherical coordinates (centered at any point) on M∗ = S2. For

example, the center may lie on the eclipse circle E∗ which represents the collinear

3-configurations.

• For n > 3, (5.11b) and (5.11c) will be replaced by 3n−7 “similar” equations of

order 2, defined by the dynamical metric of M̄ and in a 1-1 correspondence with the

chosen coordinates of M∗.

• The above ODE system in M̄ is of order 4 when (5.12) is included and time t is

eliminated.

We will derive the ODE of the theorem via the Riemannian viewpoint, starting

with the calculation of the Christoffel symbols {Γ ki,j} in the coordinates (ρ,r ,ϕ) =
(x1,x2,x3). The following three vector fields:

v1 = 1
f
∂
∂ρ
, v2 = 1

f
2
ρ
∂
∂r
, v3 = 1

f
2

ρsinr
∂
∂ϕ

, (5.13)

where f 2 = Ū +h, constitute an orthonormal frame in (M̄,ds̄2
h,c) whenever defined.

Define

g1,1 = f 2, g2,2 = 1
4
f 2ρ2, g3,3 = 1

4
f 2ρ2 sin2 r ,

gi,i = g−1
i,i , gi,j = gi,j = 0 for i≠ j,

(5.14)
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and hence by a standard procedure of Riemannian geometry

Γ ki,j =
1
2

∑
m

{∂gj,m
∂xi

+ ∂gm,i
∂xj

− ∂gi,j
∂xm

}
gm,k, (5.15)

d2

du2
xk+

∑
i,j
Γ ki,j

d
du

xi
d
du

xj = 0, k= 1,2,3, (5.16)

where u= s̄h,ω is the arc-length parameter. As an example, choose k= 1 in (5.16) and

obtain the first geodesic equation

−ρ′′ = 1
2f 2

[
− eU

∗

ρ1+e +
ω2

ρ3

](
ρ′
)2−

[
ρ+ ρ2

2f 2

(
− eU

∗

ρ1+e +
ω2

ρ3

)]

· 1
4

[(
r ′
)2+sin2 r

(
ϕ′)2

]
+ 1
ρef 2

[
U∗r ρ′r ′ +U∗ϕρ′ϕ′] (5.17)

using the notation x′ = (d/du)x, U∗r = ∂U∗/∂r and so forth. By (5.7) and (5.10), we

have the identities

u̇2 = 2T̄ 2 = 2f 4, 2f 2 = ρ̇2+ ρ
2

4

(
ṙ 2+sin2 rϕ̇2),

x′ = ẋ
u̇
, x′′ = u̇ẍ−üẋ

u̇3
, where x = ρ,r or ϕ,

(5.18)

by means of which the above equation for ρ′′ transforms to

0= ρ̈+ 1
2f 2

[
− eU

∗

ρ1+e +
ω2

ρ3

]
ρ̇2

− 2f 2− ρ̇2

ρ2

[
ρ+ ρ2

2f 2

(
− eU

∗

ρ1+e +
ω2

ρ3

)]
+
(
U̇∗

f 2ρe
− (d/dt)T̄

T̄

)
ρ̇.

(5.19)

Now it is straightforward to verify that the last equation further simplifies to the

Lagrange-Jacobi equation, namely (5.11a). Similarly, the cases k = 2,3 yield (5.11b)

and (5.11c), respectively.

5.3.1. Shape invariant motions as solutions of the reduced ODE. At the level of M̄ ,

the shape invariant solutions of the dynamical equation Ẍ=∇U(X) are the solutions

of the system (5.11) with ṙ = ϕ̇ = 0. Let p0 = (r0,ϕ0)∈M∗ be the shape of a solution.

By equation (5.11b) and (5.11c) it follows that

∂U∗

∂r
(
p0
)= ∂U∗

∂ϕ
(
p0
)= 0, (5.20)

namely p0 is a critical point of U∗, and when the constant µ = U∗(p0) is substituted

into equation (5.11a), ρ(t) will be a solution of the resulting Lagrange-Jacobi equation

ρ̈+ ρ̇
2

ρ
− 1
ρ

(
2−e
ρe

µ+2h
)
= 0. (5.21)

Furthermore, one checks that the expression

ω2 = ρ2
(

2h+ 2µ
ρe
− ρ̇2

)
(5.22)



ON THE GEOMETRY AND BEHAVIOR OF n-BODY MOTIONS 725

is a first integral of (5.21), which in turn simplifies to the Kepler equation (4.19)

ρ̈+ eµ
ρ1+e −

ω2

ρ3
= 0 (5.23)

when ρ̇2 is eliminated in (5.21) by means of ω2.

5.3.2. Collinear 3-body motions. By definition, a collinear motion has its shape

curve X∗(t) confined to the equator circle E∗ ⊂M∗ = S2. The equations of motion for

this special case are obtained from the system (5.11), as follows. For example, choose

polar coordinates (r ,ϕ) centered at a point p0 ∈ E∗, say E∗ is given by ϕ = 0 and r
is the arc length along E∗. Then ODE (5.11) is reduced to the system

ρ̈+ ρ̇
2

ρ
− 1
ρ

(
2−e
ρe

U∗+2h
)
= 0, r̈ +2

ρ̇
ρ
ṙ − 4

ρ2+e
∂U∗

∂r
= 0, (5.24)

since equation (5.11c) vanishes identically. In fact,U∗ϕ(r ,0) vanishes since it is the nor-

mal derivative of U∗ along the equator circle E∗ and moreover, U∗(r ,ϕ)= U∗(r ,−ϕ)
holds. Finally, the energy conservation equation (5.12) reduces to

2
ρe
U∗+2h−ω

2

ρ2
= ρ̇2+ ρ

2

4
ṙ 2. (5.25)

Alternatively, by choosing the (north) pole as the center of polar coordinates, E∗ is

given by r =π/2 and ϕ is the arc length along E∗. The resulting system of equations

is again given by (5.24), with r replaced by ϕ.

5.3.3. The Hamiltonian formulation. We will give a Hamiltonian version of the ODE

of Theorem 5.1, in terms of the variables (ρ,r ,ϕ) and their conjugates (P,R,Φ). Start-

ing from the Lagrangian and Hamiltonian functions on M̄

L̄= T̄ +Ū = 1
2
ρ̇2+ ρ

2

8

(
ṙ 2+sin2 rϕ̇2)+ U∗(r ,ϕ)

ρe
−ω

2

ρ2
, (5.26)

H̄ = T̄ −Ū = 1
2
ρ̇2+ ρ

2

8

(
ṙ 2+sin2 rϕ̇2)− U∗(r ,ϕ)

ρe
, (5.27)

we define P , R, and Φ by

P = ∂L̄
∂ρ̇

= ρ̇, R = ∂L̄
∂ṙ

= 1
4
ρ2ṙ , Φ = ∂L̄

∂ϕ̇
= 1

4
ρ2 sin2 rϕ̇. (5.28)

It follows that

H̄ = 1
2
P2+ 2

ρ2
R2+ 2

ρ2 sin2 r
Φ2− U

∗(r ,ϕ)
ρe

(5.29)

and the equations of motion are

ρ̇ = P, ṙ = 4
ρ2
R, ϕ̇ = 4

ρ2 sin2 r
Φ,

Ṗ = 4
ρ3
R2+ 4

ρ3 sin2 r
Φ2− e

ρ1+e U
∗(r ,ϕ),

Ṙ = 4cotr
ρ2 sin2 r

Φ2+ 1
ρe
∂U∗

∂r
, Φ̇ = 1

ρe
∂U∗

∂ϕ
.

(5.30)
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5.4. The scaling symmetry. Recall from Section 2.2.1, for any n there is the 1-

parameter group of space-time scaling symmetries of the equation of motion Ẍ=
∇U(X) in M . This group survives as an induced 1-parameter group {ḡs} defined on

the space R×M̄ , and it is a symmetry group of the induced equation of motion on M̄ .

The action is trivial on the coordinates of M∗ and is otherwise given by

ḡs : (t,ρ) �→ (
est,eνsρ

)
, ν = 2

2+e . (5.31)

In particular, if t→ (ρ(t),r(t),ϕ(t)) is a solution of the ODE described in Theorem 5.1,

then the curve

t �→ (
eνsρ

(
e−st

)
,r
(
e−st

)
,ϕ
(
e−st

))
(5.32)

is also a solution.

The infinitesimal generator Y of the group {ḡs = esY }, prolonged up to order 1, is

Y = t ∂
∂t
+νρ ∂

∂ρ
− ν

2
P
∂
∂P
+ ν

2
R
∂
∂R

+ ν
2
Φ
∂
∂Φ
. (5.33)

6. Asymptotic behavior at a general collision. In the first subsection we continue

the asymptotic analysis of the derivatives of the size functionρ(t), needed to complete

the proof of Theorem 2.7. In the second subsection we recall the history and discuss

the present state of Problem 2.12 stated at the end of Section 2.

The results in this section should be valid for potential functions U as in the as-

ymptotic analysis in Section 2.2. However, for simplicity and explicit calculations we

will choose the “standard model”

U =
∑
i<j

mimj∥∥ai−aj
∥∥e , 0< e < 2, (6.1)

where in the proofs below we may as well choose exponent e= 1. But the letter e also

appears in ex with the usual meaning.

6.1. Asymptotic estimates and completion of the proof of Theorem 2.7. Let

X(t) = (a1(t), . . . ,an(t)) be an n-body motion leading to a general collision at t = 0.

The normalized motion X1(t)= ρ(t)−1X(t) is a curve on the unit sphereM1. However,

since we know ρ(t) ∼ κtν as t → 0, it is natural to study the following approximate

normalized motion (where the scaling factor κ is omitted for simplicity)

X̃(t)= t−νX(t)= (ã1(t), . . . , ãn(t)
)
, where ãi = 1

tν
ai. (6.2)

By expressing the equation of motion and its energy conservation, namely

∇U = Ẍ, T −U = h, (6.3)

in terms of the motion X̃(t), we will extend the results from Section 2.2 as rather

simple consequences. To this end, we modify appropriately the approach of Wintner

(cf. [24, Sections 363–364] ), where related “normalized” functions are used. First we

need some new notation.
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It is convenient to replace time t by the variable

u=− logt
(
or t = e−u) (6.4)

hence t → 0 means u → ∞. Then there is the following identity for differential

operators:

tk
dk

dtk
= (−1)k

(
nk,1

d
du

+···+nk,k d
k

duk

)
, nk,k = 1, nk,i ∈ Z+. (6.5)

In particular, for a function f(t) and its “transform”

f̄ (u)= f(t)= f (e−u) (6.6)

it is easy to verify the following equivalence

tk
dkf
dtk

≈ 0, 1≤ k≤m⇐⇒ dk

duk
f̄ ≈ 0, 1≤ k≤m, (6.7)

where we have used the notation

f1 ≈ f2 iff f1−f2 = o(1) as t �→ 0 (or u �→∞). (6.8)

However, following the standard convention we simply write f instead of f̄ when the

choice of independent variable is clear, confer (6.6).

For any function f of X, write f̃ for the same function applied to X̃. Both functions

will also be regarded as functions of t, namely

f̃
(
X̃
)= f (X̃), f (t)= f (X(t)), f̃ (t)= f

(
1
tν

X(t)
)
. (6.9)

For example, we have ρ̃(t)= t−νρ(t) and

Ũ
(
X̃
)=∑

i<j

mimj∥∥ãi− ãj
∥∥e , Ũ(t)= tνeU(t). (6.10)

Suppose f(t) is a function with the property that

t−qf (t) �→ f0 ≠ 0 as t �→ 0, for some constants q and f0. (6.11)

Such a constant q is unique if it exists; we will refer to q as the order of f (near t = 0)

and write

f̃ (t)= t−qf (t)≈ f0. (6.12)

It is easy to check that (6.12) is consistent with (6.9).

Lemma 6.1. Suppose f̃ (t) = t−qf (t) ≈ f0 is a function of order q near t = 0, and q
is not an integer ≥ 0. Then there is the following equivalence:

tk
dk

dtk
f̃ (t)≈ 0, 1≤ k≤m, (6.13a)

⇐⇒

dk

dtk
f (t)∼ dk

dtk
(
f0tq

)
, 1≤ k≤m. (6.13b)
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Proof. We will make use of the Leibniz formula

dm

dtm
f̃ (t)= dm

dtm
(
t−qf (t)

)= m∑
i=0

(
m
i

)
dm−i

dtm−i
(
t−q

) di
dti

f (t) (6.14)

and use induction on m to prove the equivalence. We start by dividing each term of

the identity
df
dt

= f̃ (t) d
dt
(
tq
)+tq d

dt
f̃ (t) (6.15)

by (d/dt)(f0tq). Then the right-hand side is ≈ 1, that is, its limit is 1 as t→ 0, if and

only if t(d/dt)f̃ ≈ 0. This proves (6.13) for m = 1. Next, by induction, assume the

equivalence holds for all k ≤m−1, and we will establish the equivalence for k =m
as a consequence.

(i) Assume (6.13a) holds (for all k≤m). By the induction assumption, (6.13b) holds

for all k ≤m−1, namely

dk

dtk
f = f0

dk

dtk
(
tq
)+o(tq−k), 1≤ k≤m−1 (6.16)

and we need to establish this identity for k =m as well. Now, by (6.14) and the as-

sumptions,

0≈ tm dm

dtm
f̃ (t)= tm

m∑
i=0

(
m
i

)
dm−i

dtm−i
(
t−q

)[ di
dti

(
f0tq

)+o(tq−i)]

+tm−q
(
dm

dtm
f − dm

dtm
(
f0tq

)−o(tq−m))

= tm
m∑
i=0

(
m
i

)
dm−i

dtm−i
(
t−q

) di
dti

(
f0tq

)+tm m∑
i=0

(
m
i

)
dm−i

dtm−i
(
t−q

)
o
(
tq−i

)
+tm−q

(
dm

dtm
f − dm

dtm
(
f0tq

))+o(1)
= tm dm

dtm
f0+tm

m∑
i=0

cm,q,it−q−m+io
(
tq−i

)+tm−q( dm
dtm

f− d
m

dtm
(
f0tq

))+o(1)
≈ tm−q

(
dm

dtm
f − dm

dtm
(
f0tq

)) (
all cm,q,i are constants!

)
.

(6.17)

Therefore, since the last expression is ≈ 0 we conclude

dm

dtm
f ∼ dm

dtm
(
f0tq

)
. (6.18)

(ii) Conversely, assume (6.13b) holds, that is, (6.16) holds in the range 1 ≤ k ≤m.

Then by (6.14)

tm
dm

dtm
f̃ =tm

m∑
i=0

(
m
i

)
dm−i

dtm−i
(
t−q

)[ di
dti

(
f0tq

)+o(tq−i)]=tm dm

dtm
f0+o(1)≈0 (6.19)

and thus (6.13a) also holds for k=m.
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Now, we reformulate the two basic equations of (6.3) in terms of the motion X̃(t).
Straightforward calculations give

d2

dt2
X= d

2

dt2

(
tν X̃

)= tν−2
[
ν(ν−1)X̃+(1−2ν)

d
du

X̃+ d2

du2
X̃
]
, (6.20)

∇U = tν−2
(

1
m1

∂Ũ
∂ã1

, . . . ,
1
mn

∂Ũ
∂ãn

)
, T = t2ν−2

[
T̃u+ ν

2

2
ρ̃2− ν

2
ρ̃
d
du

ρ̃
]
, (6.21)

where
1
mi

∂Ũ
∂ãi

= e
∑
k≠i

mk
(
ãk− ãi

)∥∥ãi− ãk
∥∥e+2 , T̃u = 1

2

∑
mi

∥∥∥∥ ddu ãi

∥∥∥∥2

. (6.22)

By substituting the above equations into (6.3) we obtain equation (6.23a) and (6.23b)

below, and (6.23c) is merely a reformulation of asymptotic estimates already obtained

in Section 2.2.2:

t2−ν ·∇U = ∇̃Ũ = ν(ν−1)X̃+(1−2ν)
d
du

X̃+ d2

du2
X̃, (6.23a)

T̃u =−ν
2

2
ρ̃2+ ν

2
ρ̃
d
du

ρ̃+Ũ+he−(2−2ν)u, (6.23b)

ρ̃ ≈ κ, Ũ ≈ µ
κe
,

d
du

ρ̃ ≈ d2

du2
ρ̃ ≈ 0. (6.23c)

The term involving h in (6.23b) vanishes when u → ∞, since 2− 2ν > 0. So, by

inserting the expressions of (6.23c) into (6.23b) it follows that the left side of (6.23b)

is ≈ 0, or equivalently each (d/du)ãi ≈ 0. On the other hand, ‖X̃‖ ≈ κ and hence each

ãi is bounded, and moreover, by (6.23c) it follows that Ũ is bounded and therefore all

‖ãi−ãk‖ have a lower bound. Then we deduce from (6.21) that all partial derivatives of

Ũ , with respect to the components of ãi and of any order, are also bounded, regarded

as functions of u. In particular, in (6.23a) ∇̃Ũ is bounded, hence also (d2/du2)X̃ is

bounded. Now, the idea is to apply the operator d/du successively to (6.23a), and then

it follows that (dk/duk)∇̃Ũ and hence also (dk+1/duk+1)X̃ is bounded, for all k≥ 1.

In fact, we can deduce from the boundedness that (dk/duk)X̃ ≈ 0 for each k ≥ 1,

thanks to the following lemma of “Tauberian type.”

Lemma 6.2 (see [24, Section 363]). Let f(u) be a function defined for u > 0, and

assume f(u) has a limit and (d2/du2)f (u) is bounded, asu→∞. Then (d/du)f(u)→
0 as u→∞.

Finally, by applying the operator d/du successively to (6.23b) we deduce that the

highest derivative of ρ̃ is always bounded. Again from the above lemma we conclude

that (dk/duk)ρ̃ ≈ 0 for all k≥ 1.

Corollary 6.3. If the n-body motion X(t) leads to a general collision at t = 0, then

the following asymptotic formulas hold:

dk

dtk
ρ(t)∼ dk

dtk
(
κtν

)
, k≥ 0, (6.24)

tk
dk

dtk
X1 = o(1), k≥ 1. (6.25)
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Proof. Property (6.24) follows by combining (dk/duk)ρ̃ ≈ 0 with the statements

in (6.7) and (6.13). This also completes the proof of Theorem 2.7 in Section 2.2.

To establish (6.25), first observe that

X1 = 1
ρ

X= 1
ρ̃

X̃, (6.26)

and then apply the operator d/du successively to the rightmost expression. Since all

derivatives of ρ̃ and X̃ are ≈ 0 and ρ̃ ≈ κ ≠ 0, it is easily seen that (dk/duk)X1 ≈ 0 for

all k ≥ 1. Now property (6.25) of the corollary follows from (6.7).

6.2. Convergence of shape and the Painlevé-Wintner spin problem. In the 3-body

problem, Euler and Lagrange found that if the bodies started initially at rest, with the

shape of a central configuration, then the motion would lead to a triple collision. These

solutions are the archetypical examples of homothetic motions (cf. Section 4.1), that

is, shape invariant motions with vanishing angular momentum. They also motivated

Sundman to determine the possible limiting shapes of triple collision motions in the

general 3-body problem. He proved that there is always a limiting shape and, more-

over, it coincides with the shape of one of those simple solutions discovered by Euler

and Lagrange. Thus, Euler, Lagrange and Sundman partially answered the initial case

n= 3 of Problem 2.12. Namely, in our terminology, the shape curve X∗(t) in M∗ has

a limit as X(t) → 0. The remaining problem is concerned with the actual convergence

of the position (or orientation) of the limiting configuration, or equivalently whether

the unit vector X1(t) has a limit. This problem, which (at least) dates back to Painlevé

in the 19th century and was revived and extended to all n ≥ 3 by Wintner [24], is

described as the Painlevé-Wintner spin problem in [14, 16]. Loosely speaking, can the

collision orbit “spin” about its limiting collision point?

We first recall the case n = 3, where Siegel’s analytical work on triple collisions

around 1940 is tantamount to proving that X1(t) has a limit, cf. [18, 19]. Crucial to

Siegel’s proof are two characteristics of the motion, namely (i) the shape has a limit,

and (ii) there is no rotational contribution to the motion. For the same reasons, Siegel’s

conclusion should hold for all n> 3 as well, in view of the statements in [14, 16]. What

we can say more precisely is expressed by the following lemma.

Lemma 6.4. If the n-body motion X(t) leads to a general collision at t = 0, then

its unit vector curve X1(t) converges as t → 0 if and only if the shape curve X∗(t)
converges.

For the proof we will invoke differential geometric ideas. Recall from Section 2.1.4

and Theorem 2.8 in Section 2.2.2 that X(t) has zero angular momentum and hence a

vanishing rotational velocity component Ẋω, namely

Ẋ= Ẋ
ρ+ Ẋσ = Ẋρ+ρẊ1. (6.27)

We consider the (stratified) Riemannian submersion

M1 = S3n−4 �→M∗ (6.28)

and the connection onM1 whose “horizontal” tangent vectors are those perpendicular
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to the SO(3)-orbits, cf. Section 3.2. Note that the velocity Ẋ1 = (1/ρ)Ẋσ is “horizontal”

and is identified with the velocity Ẋ∗, so X1(t) is a “horizontal” lifting of the shape

curve. It is a standard fact that a lifting is uniquely determined by its initial position

X1(t1). By continuity of the lifting construction, it also follows that X1(t) has a limit

(as t→ 0) if and only if X∗(t) has a limit.

Unfortunately, up to now we cannot claim that the shape curve always has a limit; it

is only proved that the curve approaches the critical set of the function U∗. However,

although it is an open problem whether there are mass distributions for which the

“number” of central configurations is infinite, it is difficult to imagine a total collapse

motion for which the shape does not converge. The following argument may, perhaps,

be useful for the complete proof of the convergence. It follows from property (6.25)

of the last corollary that the motion X(t) and its velocity, acceleration etc. all tend

to align (that is, approaching collinearity as vectors in the configuration space M)

towards a general collision. For example, ifψ is the angle between X and Ẋ, then from

the asymptotic estimates of ρ̇ and kinetic energy T we deduce

cosψ= X· Ẋ
‖X‖‖Ẋ‖ =

ρ̇
‖Ẋ‖ �→ 1. (6.29)

Therefore, the motion is “resembling” a homothetic motion in the limit, namely the

type of motions characterized by the collinearity of X(t) and its velocity, see Section

4.1. This suggests that X(t) is approaching a specific line in M whatsoever.

Finally, we mention the following property of total collapse motions. In their book,

Siegel and Moser [19] showed that for 3-body motions leading to a triple collision, the

motion must be rectilinear if the limiting shape is of collinear type. This result has been

generalized to n-body motions by Hulkower and Saari by considering the dimensions

of stable and unstable manifolds associated with the dynamical equations.

Theorem 6.5 (see [16]). If the limiting shape of a total collapse n-body motion is a

collinear (resp., coplanar)n-configuration, then the motion itself is confined to a straight

line (resp., a plane).
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