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Abstract. A set of physical theories is represented by a nonempty subset {SVNj | j ∈N} of

the lattice of consequence operators defined on a language Λ. It is established that there
exists a unifying injection � defined on the nonempty set of significant representations for
natural systems M ⊂ Λ. If W ∈M , then �W is a hyperfinite ultralogic and

⋃{SV
Nj
(W) | j ∈

N} = �W(∗W)∩Λ. A “product” hyperfinite ultralogic Π is defined on internal subsets of
the product set ∗Λm and is shown to represent the application of � to {W1, . . . ,Wm} ⊂M .
There also exists a standard unifying injection SW such that �W(∗W)⊂ ∗SW(∗W).
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1. Introduction. As discussed in [7], Tarski [8, pages 60–109] introduced conse-

quence operators as models for various aspects of human thought. Within lattice

theory, there are two such mathematical theories investigated, the general and the

finitary consequence operators [2]. Let L be a nonempty language, � the power set

operator, and � the finite power set operator.

Definition 1.1. A mapping C : �(L)→�(L) is a general consequence operator (or

closure operator) if for each X,Y ∈�(L)
(i) X ⊂ C(X)= C(C(X))⊂ L; and if

(ii) X ⊂ Y , then C(X)⊂ C(Y).
A consequence operator C defined on L is said to be finitary if it satisfies

(iii) C(X)=⋃{C(A) |A∈�(X)}.

Remark 1.2. The above axioms (i), (ii), and (iii) are not independent. Indeed, (i), (iii)

imply (ii). The phrase “defined on L” means formally defined on �(L).

2. Axiomatic consequence operators. Prior to simplification, assume that our con-

sequence operators are axiomatic, where the axioms include appropriate natural laws

or processes. As done in [5, page 12], only consider equivalent representatives as the

members of L. Let �(L) (resp., �f (L)) be the set of all general (resp., finitary) conse-

quence operators defined on L, where A ⊂ L is the set of logical axioms for F ∈ �(L)
(resp., �f (L)).

The use of axiomless operators (see [2, page 3]) leads to an important simplification.

For F ∈ �(L) (resp., �f (L)), let A∪N ⊂ L and suppose that F(∅) ⊃ A∪N . (Note that

N does not denote the natural numbers.) Then ∅ ⊂ A∪N yields F(∅) ⊂ F(A∪N),
and A∪N ⊂ F(∅) yields that F(A∪N) ⊂ F(F(∅)) = F(∅). Hence, F(∅) = F(A∪N).
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Further, if B ⊂ A∪N , then since ∅ ⊂ B, it follows that F(∅) = F(A∪N) ⊂ F(B) ⊂
F(F(A∪N)) = F(A∪N) and F(B) = F(A∪N). The objects in F(A∪N) behave as if

they are axioms for F . Can this axiomatic behavior be used to generate formally a

specific consequence operator C , where C(∅) = ∅, and the only results displayed

by this model are conclusions not members of F(A∪N)? If such a meaningful con-

sequence operator exists, then this approach is acceptable since if natural laws or

processes, as represented by N , are stated correctly, such as always including any

physical circumstances that might restrict their application, then they behave like

physical “tautologies” for our universe. For such a basic consequence operator F , the

set F(∅) is composed of all of the restatements ofN that are considered as “logically”

equivalent, and all of the pure “logical” theorems.

In general, various forms of scientific argument are modeled by consequence oper-

ators. The axioms are but inserted into an argument after which the actual rules of

inference are applied that might yield some x ∈ L−F(∅). It is this x that may yield

something not trivial. In the physical case, this x may represent some aspect of an

actual physical object distinct from the natural laws or processes.

3. Rules that generate consequence operators. In this investigation, the term

“deduction” is broadly defined. Informally, the pre-axioms A∪N form a subset of

our language L, where N represents natural laws or processes, and there exists a fixed

finite set RI= {R1, . . . ,Rp} of n-ary relations (n≥ 1) on L. The term “fixed” means that

no member of RI is altered by any set X of hypotheses that are used as discussed be-

low. (It is possible that some of these Ri areN dependent.) It can be effectively decided

when an x ∈ L is a member of A∪N or a member of any of the fixed 1-ary relations.

Further, for any finite B ⊂ L and a (j + 1)-ary Ri ∈ RI, j > 1, and any f ∈ Ri, it is

assumed that it can be effectively decided whether the kth coordinate value f(k)∈ B,

k= 1, . . . ,j. It is further assumed that a mental or equivalent activity called deduction

from a set of hypotheses can be represented by a finite (partial) sequence of numbered

(in order) steps b1, . . . ,bm with the final step bm the conclusion of the deduction. All

of these steps are considered as represented by objects from the language L. Any such

representation is composed either of the zero step, indicating that there are no steps

in the representation, or one or more steps with the last numbered step being some

m> 0. In this inductive step-by-step construction, a basic rule used to construct this

representation is the insertion rule. If the construction is at the step number m ≥ 0,

then the insertion rule, I, is the “insertion of a hypothesis from X ⊂ L, or insertion of

a member from the set A∪N , or the insertion of any member of any 1-ary relation,

and denoting this insertion by the next step number.” If the construction is at the step

number m> 0, then the rules of inference, RI, are used to allow for an insertion of a

member from L as a step number m+1, in the following manner. For any (j+1)-ary

Ri ∈ RI, 1 ≤ j, and any f ∈ Ri, if f(k) ∈ {b1, . . . ,bm}, k = 1, . . . ,j, then f(j+1) can

be inserted as a step number m+1. Note, in particular, how specific “choices” are an

essential part of the process here termed as deduction.

There may exist special binary relations J that are members of RI. These relations

are identity styled relations in that the first coordinate and second coordinates are

identical. In scientific theory building, these are used to indicate that a particular
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set of natural laws or processes does not alter a particular premise that describes

a natural-system characteristic. The statement represented by this premise remains

part of the final conclusion. Scientifically this can be a significant fact. The deduction

is constructed only from the rule of insertion or the rules of inference as described

in this and the previous paragraph.

If you apply these procedures to obtain the final step as your deduction, then these

procedures are modeled by a finitary consequence operator. For the language L, a set

of pre-axioms A∪N , a set RI and any X ⊂ L, define the set map CN , by letting CN(X)
be the set of all members of L that can be obtained from X by “deduction.” Clearly, by

insertion X ⊂ CN(X). Since CN(X)⊂ L, then consider the statement CN(CN(X)). Since

no member of the set RI is altered by introducing a different set of hypotheses such

as CN(X), then this composition is defined. Let x ∈ CN(CN(X)). By definition, x is the

final step in a finite list {bi} of members from L. The steps in this finite “deduction”

from which x ∈ L is obtained are the I steps, where added to these insertions are only

members fromCN(X), while the RI steps, as defined above, are fixed. Suppose that bi ∈
CN(X) is any of these additional insertions. Simply construct a new finite sequence of

steps by substituting for each such bi the finite sequence of steps from which bi is

the final step in deducing that bi ∈ CN(X). The resulting finite collections of steps are

then renumbered. The final step in this new finite deduction is x. Since the reasons

for all of the steps are either the original I or RI, and RI contains predetermined n-

ary relations that are not dependent upon any deduction, then the finite sequence

obtained in this manner is a deduction for a member of CN(X). Hence, x ∈ CN(X).
Consequently, CN(CN(X)) = CN(X). The finitary requirement is obvious since there

are only a finite number of steps in any deduction. Note that CN(∅) ⊃ B, where B is

the set of all x ∈ L such that x is a step obtained only by the rule I. Throughout the

remainder of this paper, it is assumed that all “deductions” follow these procedures

and the corresponding consequence operator is defined as in this paragraph.

4. Intrinsic natural laws or processes. For “scientific deduction” for a fixed

science-community, i, consider as our rules of inference a collection Ri = RI of all

of the “rules of inference used by this specific scientific-community and allowed by

their scientific method” as they are applied to a specified language Σi, the language for

“their science.” At present, this definition for Ri is rather vague. Hence, the existence

of such a set Ri, the rules of inference for a science-community, is an assumption.

From this, a specific “science” consequence operator SNi is generated for each set of

pre-axioms Ai∪Ni, where Ai are the basic logical axioms and Ni the natural laws or

processes. For proper application, the science consequence operator is applied to spe-

cific natural-systems, not those generally described. Thus SNi has physical meaning

only when SNi is applied to an X where every member of X and SNi(X) is a “tagged”

statement that identifies a specific natural-system [1].

The axiomatic consequence operator SNi : �(Σi) → �(Σi), where SNi(∅) ⊃ (Ai ∪
Ni), can be reduced, formally, to an axiomless consequence operator on the language

Σi−SNi(Ai∪Ni) as shown by Tarski [8, page 67]. In this paper, this single process is

termed relativization. Let V = {Ai,Ni}. For each X ⊂ Σi−SNi(Ai∪Ni), let SVNi(X) =
(Σi−SNi(Ai∪Ni))∩SNi(X). For this SNi , the operator SVNi is a consequence operator
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on Σi−SNi(Ai∪Ni) and has the property that SVNi(∅) = ∅. Thus, using SNi(Ai∪Ni)
as a set of axioms, logical and physical, SVNi behaves as if it is axiomless, where the

explicit natural laws or processes Ni behave as if they are implicit. Since, in general,

SNi(Ai ∪Ni) ⊂ SNi(X), the only consequences that are not but specific deductions

from the pre-axioms Ai∪Ni are members of SNi(X)−SNi(Ai∪Ni), where the explicit

X should not include members of SNi(Ai∪Ni). Physically, SVNi is the exact operator

that, using implicitly such axioms as SNi(Ai∪Ni), characterizes the coalescing of a

given fundamental collection of named and tagged objects in X and that creates a

different natural-system or that alters natural-system behavior. The use of axiomless

consequence operators is an important simplification.

5. A hyperfinite unification for physical theories. Although all that follows can

be applied to arbitrary science-communities, for notational convenience, consider but

one science-community. Assume that there is one language for science Σ and one

sequentially represented countable family of natural laws or processes and logical

axioms Aj ∪Nj as well as one family of sequentially represented rules of inference

Rj that generate each specific theory. Let the sequentially represented V = {Aj∪Nj |
j ∈ N}. This yields the sequentially represented countable set of physical theories

{SNi | j ∈N} and the countable set {SVNj | j ∈N} of intrinsic sequentially represented

consequence operators defined on Σ−(⋃{SNj (Aj∪Nj) | j ∈N})=Λ.

Definition 5.1. A nonempty X ∈ �(Λ) is called a significant member of �(Λ) if

there exists some i∈N such that X ≠ SVNi(X). Let the nonempty M ⊂�(Λ) be the set

of all significant members of �(Λ).

Definition 5.2. Suppose that we have a nonempty finite set {C1, . . . ,Cm} of general

consequence operators, each defined on a language Li, 1≤ i≤m where, at least, one

member is axiomless. Define the operator ΠCm as follows: for any X ⊂ L1×···×Lm,

using the projection pri, 1≤ i≤m, define ΠCm(X)= C1(pr1(X))×···×Cm(prm(X)).

(Note that if ∅ ≠ X ⊂ L1 × ··· × Lm, then for each i, pri(X) ≠ ∅. The converse

also holds. For the case that X =∅, since no Li is empty, choose for each projection

the only function that exists with empty domain and nonempty codomain, the empty

function. Each of these projections has an empty range [1, page 11].)

Theorem 5.3. The operator ΠCm defined on the subsets of L1×···×Lm is an ax-

iomless consequence operator. If each Ci is finitary, then ΠCm is finitary. Otherwise,

ΠCm is, at least, a general consequence operator.

Proof. (a) Let X ⊂ L1×···×Lm. Then for each i, 1≤ i≤m, pri(X)⊂ Ci(pri(X))⊂
Li. But, X ⊂ pr1(X)×···×prm(X) ⊂ C1(pr1(X))×···×Cm(prm(X)) ⊂ L1×···×Lm.

Suppose that X ≠∅, then ∅≠ΠCm(X)= C1(pr1(X))×···×Cm(prm(X))⊂ L1×···×
Lm. Hence, ∅≠ pri(ΠCm(X))= Ci(pri(X)), 1≤ i≤m, implies that Ci(pri(Πm(X)))=
Ci(Ci(pri(X))) = Ci(pri(X)), 1 ≤ i ≤ m. Hence, ΠCm(ΠCm(X)) = ΠCm(X). Let X =
∅. Then each pri(X) = ∅. But there is some j such that Cj is axiomless. Hence,

Cj(prj(X)) = ∅ implies that C1(pr1(X)) × ··· × Cm(prm(X)) = ∅ implies that
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Cj(prj(Cj(prj(X))))=∅. Consequently,

C1(pr1(C1(pr1(X))))×···×Cm(prm(Cm(prm(X))))=∅. (5.1)

Thus, ΠCm(ΠCm(X))=∅ and (i) holds. Also, ΠCm is axiomless.

(b) Let X ⊂ Y ⊂ L1×···Lm. If X = ∅, then ∅ = ΠCm(X) ⊂ ΠCm(Y). Suppose

that X ≠∅, then for each i, pri(X) ⊂ pri(Y). Hence, Ci(pri(X)) ⊂ Ci(pri(Y)). There-

fore, ΠCm(X) = C1(pr1(X))×···×Cm(prm(X)) ⊂ C1(pr1(Y))×···×Cm(prm(Y)) =
ΠCm(Y) and (ii) holds.

(c) Assume that each Ci is finitary and let x ∈ ΠCm(X) for nonempty X. Then for

each i, pri(x) ∈ Ci(pri(X)). Since each Ci is finitary, then there is some finite Fi ⊂
pri(X) such that pri(x) ∈ Ci(Fi) ⊂ Ci(pri(X)). Finite F = F1 × ··· × Fm ⊂ pr1(X)×
··· × prm(X). Then for each i, pri(F) = Fi implies that finite F = F1 × ··· × Fm =
pr1(F)×···×prm(F)⊂ pr1(X)×···×prm(X). From (ii), x ∈ΠCm(F)= C1(F1)×···×
Cm(Fm) ⊂ ΠCm(pr1(X)×···×prm(X)) = C1(pr1(X))×···×Cm(prm(X)) = ΠCm(X).
This completes the proof.

In what follows, consider all of the previously defined notions but only with respect

to this informal V and the language Λ. (Although, the consequence operators are be-

ing restricted to a special collection that is of interest to various science-communities,

Theorem 5.4 will hold, with obvious modifications, for any sequentially represented

set of consequence operators.) Although strictly not necessary, in order for the follow-

ing results to correlate with the results in [7], embed all of these informal results into

the formal superstructure � = 〈�,∈,=〉 as done in [4, page 70] where � is isomorphic

to the real numbers. Further, consider the structure ∗� = 〈∗�,∈,=〉 a nonstandard

and elementary extension of � that is a 2|�|-saturated enlargement (|· | denotes car-

dinality). Finally, consider the superstructure �, the Extended Grundlegend Structure.

A unifying consequence operator approach seems at first to be rather obvious. In

actual physical practice, a set of physical theories is applied to a specific W ⊂Λ. The

result C(W)=⋃{SVNj (W) | j ∈N} is most certainly a unification for all of the physical

science theories SNj . But, define the consequence operator B on �({A,B,C,D,E}) by

two relations (A,B,C), (D,E). Then B({A,B}) = {C} and B({D}) = {E}. Define R on

�({A,B,C,D,E}) by one relation (A,B,D). Hence, R({A,B}) = {D}. The union oper-

ator K is defined for each X ∈ �({A,B,C,D,E}) by K(X) = B(X)∪R(X). However,

K({A,B}) = {A,B,C,D} and K(K({A,B})) = {A,B,C,D,E} and (i) does not hold. The

union operator, even in the simplest sense, is not a consequence operator. How can

this actual physical practice be considered as a rational process? This is done by ad-

joining the choice aspect of intelligence to the process. Applying this additional step,

there is a standard consequence operator styled unification and more than one ul-

tralogic styled unification.

The following ultralogic styled unification is consistent with the modeling of the

ultralogic generation of probabilistic behavior [7, 5] and minimal in the hyperfinite

sense. In ultralogic theory, attempts are made to stay within the bounds of the “fi-

nite” or “hyperfinite.” In all known cases, the set of hypotheses selected from M is a
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finite set. For such selections of finite sets of significant hypotheses, the standard con-

sequence operator P used to establish Theorem 5.4 is a finitary consequence operator.

It is a practical consequence operator.

Theorem 5.4. Given the language Λ and the sequentially represented set of conse-

quence operators {SVNj | j ∈N}.
(i) There exists an injection � on nonemptyM , the set of all significant subsets of Λ,

into ∗(�(Λ)) such that for each W ∈M , �W is a hyperfinite consequence operator, an

ultralogic, such that
⋃{SV

Nj
(W) | j ∈ N} ⊂ ⋃{∗SV

Nj
(∗W) | j ∈ N} = ⋃{∗(SV

Nj
(W)) | j ∈

N} ⊂�W(∗W) and
⋃{SV

Nj
(W) | j ∈N} =�W(∗W)∩Λ.

(ii) If ∅ ≠ {W1, . . . ,Wm} ⊂ M , then there exists a hyperfinite consequence oper-

ator Π defined on internal subsets of the product set ∗Λm such that for each i =
1, . . . ,m,�Wi(

∗Wi)= ∗pri(Π(∗W1×···×∗Wm)). If each Wi, 1≤ i≤m, is finitary, then

Π is hyperfinitary.

(iii) For each W , A∈M , if W ⊂A then �W(∗W)⊂�W(∗A)⊂�A(∗A).

Proof. (i) In [6, page 4], special sets of consequence operators are defined. For this

application and for a given X ∈M , the set is HX = {P(Y ,X) | Y ⊂Λ}. Each of the con-

sequence operators in HX is defined as follows: for each Z ⊂ Λ, P(Y ,X)(Z) = Y ∪Z ,

if X ⊂ Z ; and P(Y ,X)(Z) = Z otherwise. It is shown in [6] that P is a general conse-

quence operator; if X is nonempty, then P is axiomless; if X is finite, then P is finitary.

Let ∅ ≠ � ⊂ �(Λ). Suppose that X ⊂ Z , then P(∪�,X)(Z) = (∪�)∪Z = ⋃{A∪Z |
A ∈ �} = ⋃{P(A,X)(Z) | A ∈ �}. Now suppose that X 
⊂ Z , then P(∪�,X)(Z) = Z =
⋃{P(A,X)(Z) |A∈�} ∈HX . Thus HX is closed under the arbitrary union operator.

Consider the entire set of intrinsic consequence operators {SVNj | j ∈N}. Define by

induction, with respect to the sequentially represented {SVNi | j ∈N}, P1= P(SVN1
(X),X),

P2 = P(SVN1
(X)∪SVN2

(X),X), . . . ,Pn = P(SVN1
(X)∪···∪SVNn(X),X). From this definition,

it follows that for any n∈N the relation

Pn(X)= SVN1
(X)∪···∪SVNn(X) (5.2)

holds for each X ⊂Λ. The Pn, therefore, unify the finite partial sequences of {SVNj | j ∈
N}. This restriction to but finite unions is the aspect that allows for a type of minimal

ultralogic to be generated.

All of the above is now embedded into � and then considered as embedded into the

superstructure �. Since {SVNi} is sequentially represented, there is a fixed sequence g
such that g(i) = SV

Ni
, g[N] = {SV

Nj
| j ∈ N} and g(i)(X) = SV

Ni
(X). Hence for arbitrary

X ⊂ Λ, utilizing g, the above inductive definition yields a sequence fX : N→ HX such

that fX(j)= Pj and fX(j)(X)= Pj(X) and, as embedded into �, relation (5.2) holds.

Let X ⊂Λ, then the following sentence holds in �:

∀x∀i((x ∈Λ)∧(i∈N) �→ (x ∈ fX(i)(X)

←→∃j((j ∈N)∧(1≤ j ≤ i)∧(x ∈ g(j)(X))))). (5.3)

By ∗-transfer, the sentence

∀x∀i((x ∈ ∗Λ)∧(i∈ ∗N
)
�→ (x ∈ ∗(fX(i)(X))

←→∃j((j ∈ ∗N
)∧(1≤ j ≤ i)∧(x ∈ ∗(g(j)(X))

)))) (5.4)
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holds in ∗�. Due to our method of embedding and identification, sentence (5.4) can

be re-expressed as

∀x∀i((x ∈ ∗Λ)∧(i∈ ∗N) �→ (x ∈ ∗fX(i)(∗X)

←→∃j((j ∈ ∗N)∧(1≤ j ≤ i)∧(x ∈ ∗g(j)(∗X))))).
(5.5)

Next consider ∗fX : ∗N→ ∗HX and any λ ∈ ∗N−N. Then hyperfinite ∗fX(λ) ∈ ∗HX is

a nonstandard consequence operator, an ultralogic, that is, hyperfinite in the sense

that it hyperfinitely generates each of the ∗Pj and it satisfies statement (5.5). Hence,

arbitrary j ∈ N and w ∈ ∗g(j)(∗X) = ∗SV
Nj
(∗X) = ∗(SV

Nj
(X)) ⊂ ∗Λ imply that w ∈

∗fX(λ)(∗X) since 1≤ j < λ. Observe that σ (SVNj (X))⊂ ∗(SVNj (X)). However, under our

special method for embedding σ (SV
Nj
(X))= SV

Nj
(X), for an arbitrary X⊂Λ.

The final step is to vary the X ∈M . It is first shown that for two distinct X, Y ∈M
there is an m ∈ N such that PXm = P(SVN1

(X)∪···∪ SVNm(X),X) ≠ PYm = P(SVN1
(Y)∪

···∪SVNm(Y),Y). Since X, Y are nonempty, distinct and arbitrary, assume that X 
⊂ Y .

Hence there is some i ∈ N and j ∈ N such that X ⊂ SVNi(X) ≠ X and Y ⊂ SVNj (Y) ≠ Y .

Consider some m ∈ N such that i, j ≤m. Let Y ⊂ X, then PXm(X) = P(SVN1
(X)∪···∪

SVNm(X),X)(X) = SVN1
(X)∪···∪SVNm(X) ≠ X ⊂ PXm(X). But PYm(X) = X ⊂ PXm(X) ≠ X.

Thus PYm(X) ≠ PXm(X). Now further suppose that Y 
⊂ X, then there is some y ∈ Y
such that {y} 
⊂X. Since X ⊂X∪{y} and Y 
⊂X∪{y}, then PXm(X∪{y})= (SVN1

(X)∪
··· ∪ SVNm(X))∪{y}. Since Y 
⊂ X ∪{y}, then PYm(X ∪{y}) = X ∪{y}. Again since

SVN1
(X)∪···∪SVNm(X)≠X, then PYm(X∪{y})≠ PXm(X∪{y}). For consequently, PYm ≠

PXm. Further, for any (†) k∈N,m≤ k, PYk ≠ P
X
k . Consider these results formally stated.

Then by∗-transfer, for each distinct pair X, Y ∈M there exists somem∈ ∗N such that
∗fX(m) ≠ ∗fY(m). Thus for X, Y ∈ M, X ≠ Y, A(X,Y) = {m | (m ∈ ∗N)∧∗fX(m) ≠
∗fY(m)} is nonempty. The Axiom of Choice from the general set theory [3, page 2]

used to construct � is now applied. Hence, there exists a set B, within our structure,

containing one and only member from each A(X,Y).
The internal binary relation {(x,y) | (x ∈ ∗N)∧ (y ∈ ∗N)∧ (x ≤ y)} is, from ∗-

transfer of N properties, a concurrent relation with respect to the range ∗N. Since ∗�

is a 2|�|-saturated enlargement and |B|< 2|�|, there is some λ∈ ∗N such that for each

i ∈ B, i ≤ λ. Considering this λ as fixed, then by ∗-transfer of (†), it follows that for

any distinct X, Y ∈M ∗fX(λ) ≠ ∗fY(λ). Since M is injectively mapped onto M, there

exists an injection � on the set M such that each W ∈ M , �W = ∗fW(λ) ∈ ∗(�(Λ)).
Considering the general properties for such an ∗fW(λ) as discussed above, it follows

that
⋃{SV

Nj
(W) | j ∈N} ⊂�W(∗W)∩Λ.

Now assume that standard a ∈�W(∗W)−⋃{SV
Nj
(W) | j ∈N}. (For our identification

and embedding, ∗a = a.) Then the sentence

∀x∀i((x ∈Λ)∧(i∈N)∧x ∈ g(i)(W) �→ x ≠ a) (5.6)

holds in � and, hence,

∀x∀i((x ∈ ∗Λ)∧(i∈ ∗N)∧x ∈ ∗g(i)(∗W) �→ x ≠ a) (5.7)

holds in ∗�. But since a ∈ ∗fW(λ)(∗W), then statement (5.7) contradicts statement

(5.5) and this completes the proof of (i).
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(ii) Note that for each W ∈M , ∗fW(λ) is axiomless by ∗-transfer since every mem-

ber of ∗HW is axiomless. Consider nonempty {W1, . . . ,Wm} ⊂M . Use Definition 5.2 and

define Π on the internal X ∈ ∗(�(Λ)m) = ∗�(∗Λm) by Π(X) = ∗fW1(λ)(∗pr1(X))×
···× ∗fWm(λ)(∗prm(X)). It is easily seen by ∗-transfer of Theorem 5.3 that Π is a

hyperfinite ultralogic. Or, more directly, notice that the properties of the projection

maps ∗pri on internal sets are the same as the standard projection maps. Since each

member of ∗HWi satisfies the ∗-transfer of axioms (i) and (ii) on internal sets, then for
∗fWi (λ) as appear in the proof of Theorem 5.3 for parts (a) (b). Since the finite Carte-

sian product of hyperfinite objects is hyperfinite, then Π is hyperfinite. Therefore,

Π is a hyperfinite ultralogic and for each i, 1 ≤ i ≤m, ∗pri(Π(∗W1×···×∗Wm)) =
∗fWi (λ)(

∗Wi) = �Wi(
∗Wi). Finally, if each Wi is finitary, then each ∗fWi (λ) satisfies

the ∗-transfer of axiom (3). This means that in the place of the “finite” sets, hyperfi-

nite sets are utilized. Again, since the finite Cartesian product of hyperfinite sets is

hyperfinite, then Π is hyperfinitary.

(iii) For each j ∈ N, W,A ∈ M , where W ⊂ A, it follows that PWj (W) ⊂ PWj (A) =
SVNi(W)∪···∪ S

V
Nj (W)∪A. But, PAj (A) = SVN1

(A)∪···∪ SVNj (A)∪A = S
V
N1
(A)∪···∪

SVNj (A). Since for each i ∈ N, SVNi(W) ⊂ S
V
Ni(A), then PWj (A) ⊂ PAj (A). Thus, after em-

bedding, fW(j)(W) ⊂ fW(j)(A) ⊂ fA(j)(A). By ∗-transfer, this yields that �W(∗W) =
∗fW(λ)(∗W) ⊂ �W(∗A) = ∗fW(j)(∗A) ⊂ �A(∗A) = ∗fA(j)(∗A). This completes the

proof.

Corollary 5.5. If {SVNj | j ∈N} represents all of the physical theories that describe

natural world behavior, then the choice function and the last equation in part (i) of

Theorem 5.4 and part (ii) correspond to an ultralogic unification for {SVNj | j ∈N}.

Remark 5.6. Obviously, the results of Theorem 5.4(i), (iii) and Corollary 5.5(i) do

not require that the standard theory consequence operators be axiomless. Further,

in proofs such as that of Theorem 5.4, some of the results can be obtained without

restricting the construction to members of HX . Simply define, for X ⊂ Λ, P ′n(X) =
SVN1

(X)∪···∪SVNn(X). One obtains a hyperfinite ∗hW(λ) from this definition. The use

of the HX objects is to further identify ∗fW(λ) as an ultralogic that is also hyperfinite

and of the type used in [7, 5] and, hence, allows for the modeling of certain aspects

of intelligence. In general, a basic aspect of intelligence is to select a specific member

of M to which to apply a specific physical theory while rejecting other members of

M as applicable. This special aspect of intelligence is not usually modeled. But, this

additional aspect of intelligence is modeled by the choice procedures in the proof of

Theorem 5.4 and the specific selection of a member of HX .

Of significance is that Corollary 5.5 is technically falsifiable. The most likely falsi-

fying entity would be the acceptance of a physical theory that does not use the rules

of inference as setout in Section 3. In particular, when different hypotheses are con-

sidered, the requirement that the rules of inference RI cannot be altered.

6. A standard consequence operator unification. In practical science, each SVNj is

applied to a finite X ⊂ Λ. In [6, Theorem 5.1], is the same as Theorem 5.4 part (i) in

this paper. There is a major difference, however, in how the results are obtained. In



HYPERFINITE AND STANDARD UNIFICATIONS . . . 101

Theorem 5.4, a considerably different standard consequence operator P is used. Since,

in general, the union operator does not generate a consequence operator, any unify-

ing consequence operator standard or nonstandard would have additional charac-

teristics. These characteristics considered from the physical theory viewpoint might

be rather undesirable. For example, the standard consequence operator CXm used in

[6, Theorem 5.1] when applied at any nonempty Y ⊂ X, where Y , X ∈ M , has the

property that CXm(Y)= CXm(X)= SVN1
(X)∪, . . . ,∪SVNm(X). Although the choice function

does not allow an application to objects distinct from X, the fact that CXm satisfies the

consequence operator axioms does require such an application. Can such necessary

secondary requirements be ignored based upon practical physical usage? What actu-

ally is assumed to occur is that such a unification is applied throughout the entire

universe at each moment in cosmic time. Under the assumption that all scientific the-

ories must be consistent in combined form, then a practical union operator should

share the same rationality as the individual SVN operators.

Theorem 6.1. Define for each X ∈ �(Λ), the operator PX∞ = P(
⋃{SVNj (X) | j ∈

N},X)∈HX .

(i) There is an injection S on M such that for each W ∈M , SW = PW∞ .

(ii) For each W ∈ M , and SW(W), the set SW(A), A ≠ W , A ∈ M , is consistent with

the alterations in natural-system behavior modeled by SW(W). Further, if W ⊂A, then

SW(W)⊂ SW(A)⊂ SA(A).
(iii) If ∅≠ {W1, . . . ,Wm} ⊂M , then there exists a consequence operator Π defined on

�(Λm) such that for each i = 1, . . . ,m, SWi(Wi) = pri(Π(W1×···×Wm)). If each Wi,
1≤ i≤m, is finitary, then Π is finitary.

(iv) For each W ∈M , �W(∗W)⊂ ∗SW(∗W).

Proof. (i) The proof in Theorem 5.4 that shows that for distinct W , Y ∈M , PWm ≠
PYm also holds for PW∞ and PY∞. Hence, simply define a map S on M by SW = PW∞ . This

map is an injection.

(ii) If W ∈ M , then PW∞ (W) =
⋃{SVNj (W) | j ∈ N} follows from the definition of

the P consequence operator. Now assume that A ∈ M , W ≠ A. First, let W ⊂ A,

thus W represents a subsystem of the natural-system A that is distinct from A. Then

PW∞ (W)(A)=
⋃{SVNj (W) | j ∈N}∪A. Is this adjoined A of any physical concern? Since

W ⊂ A is a very general statement without any other characterizing requirements, it

is not known whether A ⊂⋃{SVNj (W) | j ∈N}. Thus the results can be interpreted as

stating that when PW∞ is applied to a subsystemW ⊂A the result contains those mem-

bers A that are not altered by any of the SVNj applied to W . Of course, one may also

assume that at the same instant PA∞ is applied to A. This yields that PW∞ (W) ⊂ PA∞(A)
which is exactly as one would expect. In the case that W 
⊂ A, then PW∞ (A) = A. This

is consistent with the lack of a specific characterizing sharing relation between the

W and A natural-systems. Of course, PA∞(PW∞ (A)) = PA∞(A) =
⋃{SVNj (A) | j ∈ N}. Thus

neither of these results appears to have any significant physical inconsistencies. The

statement that if W ⊂ A, then SW(W) ⊂ SW(A) ⊂ SA(A) is established in the same

manner as part (iii) of Theorem 5.4.

(iii) Theorem 5.3.
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(iv) From Theorem 5.4, for each W ∈M , �W(∗W) = ∗fW(λ)(∗W). From the defini-

tion of the sequence f the following

∀i∀x((x ∈Λ)∧(i∈N)∧(x ∈ fW(i)(W)
)
�→ x ∈ SW(W)

)
(6.1)

holds in �. Hence, by ∗-transfer

∀i∀x((x ∈ ∗)Λ∧(i∈ ∗N
)∧(x ∈ ∗fW(i)(∗W)

)
�→ x ∈ ∗SW(∗W)

)
. (6.2)

However, letting i = λ and noting that ∗fW(λ)(∗W) = �W(∗W), then this completes

the proof.

Remark 6.2. From ∗-transfer, the basic results in Theorem 6.1(ii) also hold for
∗SW(∗W) and ∗SA(∗A) as well as internal arguments in general.
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