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THE ABEL-TYPE TRANSFORMATIONS INTO Gy

MULATU LEMMA and GEORGE TESSEMA

(Received 16 January 2001)

ABSTRACT. The Abel-type matrix A, was introduced and studied as a mapping into £ by
Lemma (1999). The purpose of this paper is to study these transformations as mappings
into Gy . The necessary and sufficient conditions for Ayt to be Gy -Gy are established.
The strength of Ayt in the Gy -Gy setting is investigated. Also, it is shown that Ay is
translative in the G, -G, senses for certain sequences.

2000 Mathematics Subject Classification. 40A05, 40D25.

1. Introduction. The Abel-type power series method [1], denoted by Ay, & > —1, is
the following sequence-to-function transformation: if

Z ( za) urxk is convergent, forO<x <1,
k=0 1.1)

o (k+«
; _ ay+l k _
}(1{1?(1 X) kgo( K )ukx L,

then we say u is Ax-summable to L. The matrix analogue of Ay is the Ay matrix [2]
whose nkth entry is given by

k+
Ank = ( k“) th(1—t,)*"", 1.2)

where 0 < t,, < 1 for all n and lim¢,, = 1. Thus, the sequence u is transformed into
the sequence Ay ;u whose nth term is given by

(Ageit) = (1-t,)* > (k;a)ukt’;l. (1.3)
k=0

The matrix Ay, is called the Abel-type matrix [2]. Throughout, > —1 and t will
denote such a sequence: 0 < t,, < 1 for all n, and lim¢t,, = 1.

2. Basic notations and definitions. Let A = (a,x) be an infinite matrix defining a
sequence-to-sequence summability transformation given by

(AX)n = > ankXr, (2.1)
k=0


http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com

104 M. LEMMA AND G. TESSEMA

where (Ax), denotes the nth term of the image sequence Ax. The sequence Ax is
called the A-transform of the sequence x. If X and Z are sets of complex number
sequences, then the matrix A is called an X-Z matrix if the image Au of u under the
transformation A is in Z whenever u is in X.

Suppose that y is a complex sequence; then throughout we use the following basic
notations and definitions:

£ = {y 2> |l is Convergent},

k=0

d(A) = <|y : Z ank Yk is convergent for each n > 0]»,
k=0

0(A) ={y:Ay e t}, (2.2)
Gw =1{y 1y =0(r¥) for some r € (0,w), 0 <w <1},
c(A) = {y:y is summable by A},
Guw(A) = {y: Ay € Gu},

AXg = Xk — Xk+1-

DEFINITION 2.1. The summability matrix A is said to be G,,-translative for a se-
quence u in G4, (A) provided that each of the sequences T;, and Sy, is in G, (A), where
T, = {ui,uz,us,...} and S, = {0, up,uq,...}.

DEFINITION 2.2. The matrix A is said to be G, -stronger than the matrix B provided
Gw(B) € Gy (A).

3. The main results

THEOREM 3.1. The matrix Ay, is a Gy, -G, matrix if and only if (1-t)%*! € G,,.

PROOF. Suppose that x € Gy, then we show that Y € G, where Y is the Ay;-
transform of the sequence x. Since x € G, it follows that |xx| < M;r* for some r €
(0,w) and M; > 0. Now we have

Yol = (1—tn)*" | Y (k;"‘)xkt,’z :
k=0

oﬁ-loo k+« k

Yol < (1=202)7 3 {7 7 ) It
k=0

S s 3.1)
le(l—tn)“”z( ‘X)rktﬁ
k=0 k

<M (1=t)* ™ (1 =7t,) >

)0(+1

<M(1-t, , for some M, > 0.
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Hence if (1 -1t)**! € Gy, then it follows that Y € G,,. Conversely, if (1 —t)%*! is not
in Gy, then the first column of A, is not in G,, because a, o = t, (1 —t,)*"'. Thus,
Ag,t 18 not a Gy, -Gy, matrix. O

REMARK 3.2. In the G,-G,, setting, Ay, being a Gy,-G,, matrix does not imply that
(1-t) € Gy. Also, (1 -t) € Gy does not imply that Ay, is a Gy -Gy matrix.

This can be demonstrated as follows.

(1) Lett, =1-(1/3)", x =1, and w = 1/4. So, we have (1 —t,)*"! = (1/9)" and
hence (1-t)%*! € G,,. This implies that Ay, is a G,,-G,, matrix by Theorem 3.1. But
observe that (1 —t) is not G,,. Hence, Ay being a G, -G,, matrix does not imply that
(1-1t) € Gy.

2)Lett,=1-(1/4)", x=-1/2,and w = 1/3. Then we have (1-t) € G,,. But note
that (1 —t,)**! = (1/2)" and hence (1 —t)**! is not in G,,. This implies that Ay is
not a Gy -Gy, matrix by Theorem 3.1. Hence, (1 —t) € G, does not imply that Ay is
a Gy -Gy matrix.

COROLLARY 3.3. (1) If -1 < x <0, then Ay, is a Gy -G matrix implies that (1 —-t) €
Guy.
(2) If x> 0, then (1 —t) € Gy implies that Ax; 1S a Gy -G, matrix.

PROOF. (1) Since —1 < « < 0 implies that (1 —t,,) < (1 — t,)**1, it follows that
(1-t) € Gy by Theorem 3.1.

(2) If & > 0, then we have (1 —t,,)**! < (1 —t,) and hence by Theorem 3.1, Ay a
Gw-Gy matrix whenever (1 —t) € Gy. O

COROLLARY 3.4. The matrix Ax; is a G-Gy, matrix if and only if Ax; is a Gy -Gy
matrix.

PROOE. Since Gy, is a subset of G, A being a G-G,, matrix yields Ay is a Gy-Gyy
matrix. Conversely, if Ay; is a Gy -G, matrix, then by Theorem 3.1, we have (1 —
t)**! € G,,. Now using the same technique used in the proof of Theorem 3.1, we can
easily show that Ay is a G-G,, matrix. Thus, the corollary follows. O

The next results indicate that the Ay; matrix is a strong method in the G,-Gy
setting. The A matrix is Gy, -stronger than the identity matrix.

THEOREM 3.5. Suppose that —1 < x <0 and A is a Gy, -G matrix; then Gy, (Axt)
contains the class of all sequences x whose partial sums are bounded.

PROOF. The theorem follows using a similar argument as in the proof of [2, Theo-
rem 8. O

REMARK 3.6. Although Theorem 3.5 is stated for —1 < & < 0, it is also true for
all @ > —1 for some sequences, which we will demonstrate as follows. Let x be the
unbounded sequence defined by

Xy = (_l)kw_

oa+1 (3.2)
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Let Y be the Ay ;-transform of x. Then we have

(1 _tn)o(+1

Tt <(1-tn)™. (3.3)

Yo =

Thus, if Ay, is a Gy -G, matrix, then by Theorem 3.1, (1—t)%*! € Gy, 80 X € Gy (Ant).

COROLLARY 3.7. Suppose that—1 < «x < 0 and Ayt i a Gy -Gy, matrix; then Gy, (Ax,t)
contains the class of all sequences x such that Y ;;_, Xy is conditionally convergent.

Our next results deal with the G, -translativity of the A, ; matrix. We will show that
the Ay, matrix is G, -translative for some sequences in G, (Ax,t)-

THEOREM 3.8. Every Gy, -Gy Ay matrix is Gy, -translative for each sequence x €
Guw (Ax,t) for which {xy/k} € Gy, k=1,2,3,....

PROOF. Let x € Gy (Ax,). Then we will show that
(1) Tx € Gy (Ans) and
(2) Sx € Guw(Axt)-
We first show that (1) holds. Note that

S (k+«
‘(Alx,th)n‘=(1—tn)M1 Z( X )xkﬂt,’;
k=0
1-1,)" | & (k+«
:( tn) Z( ; Xk+1t£fl+l
n k=0
x+1 0
_(1-tw) 5 (k—l+o<>x n
tn o1 k-1 (3.4)
CA-t)" | S (kv K
B gl k)
C0-t)™" | S [k k( « )
a ty l;l k thn 1 k+
<A, +B,,
where
o+1 ©
AHZM Z k+0( xktfl ,
e |2\ k
3.5)
B || (1= t,) """ i k+o\ xx J
n tn S\ k kv

The use of the triangle inequality is legitimate as the radii of convergence of the two
power series are at least 1. Now if we show both A and B are in G,,, then (1) holds.
But the conditions that A € G,, and B € G, follow easily from the given hypothesis
that x € G (Ax,r) and {xi/k} € Gy, respectively.
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Next we will show that (2) holds. Observe that

S (k+
| (AaeS)u| = (1=ta)*" Z( k )xk-lt,’i
k=1
_ _ x+1 S (k+a+1 kil
*(1 tn) ;;0( k+1 )X t,
_ _ x+1 S (k+« kﬂ(M) (3.6)
=(1-t,) go( v )xktn 1
=(1-t)" > (kza>xkt,’§“<l+>
k=0 1
<E,+Fy,
where
> (k+
Ep=(1-1t,)*" Z( ‘ )xktﬁ,
k=0

(3.7)
Fy = (l_tn)DH—l‘o“

> (M) ek
k=0

Now the given hypothesis that x € Gy, (Ax,) and {xx/k} € G, implies that both E and
F are in G,,. Consequently, (2) holds and hence the theorem follows. O

THEOREM 3.9. Suppose that —1 < « < 0; then every Gy, -G, matrix Ay is Gy -
translative for each Ax-summable sequence x in Gy (Ax)-

PROOF. Since the case o = 0 can be easily proved using the technique used in
the proof of [4, Theorem 4.1], here we only consider the case —1 < x < 0. Let x €
c(Ax) NGy (Agt). Then we will show that

(1) Tx € Gy (Ans) and
(2) Sx € G (Aqy).
We first show that (1) holds. Note that

o+1 k+0(
otdx)pn| = —tn +1ly
Ant T 1-t Xk+1b
— k
k=0
o+1 ©
1-t k+«
_ ( 11) Z xk+1tk+l
tn o\ Kk

(l—tn)OHI i

tn =\ k-1 (3.8)
(= t)" | S (k) k
RS k; P

_ (-t i k

tn

< Ay +By,
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where
l—t x+1 0
Ay = t” > ( )xktii
¢x+1: (3.9)
_x(l-ty,) o (k+a
Bn = tn ; ( ) k+«

The use of the triangle inequality is legitimate as the radii of convergence of the two
power series are at least 1. Now if we show that both A and B are in G,,, then (1) holds.
The condition A € G, follows from the hypothesis that x € Gy, (A4), and B € G, will
be shown as follows. Observe that

. o(1—t,)"" o (k+o\ Xk g
Bn_—itn xltn+k§2 B
—x(1—t,)"" | & (k+ | xx (3.10)
1—t x+1 0(( n tk
< —afal(l-t)" + tn gz kK Jkram
<Cp+Dy,
where
Cp=—o|x1] (1=,
b :_a(l—tn o<+1 i k+0( x (3.11)
" tn = k+a nie

By Theorem 3.1, the hypothesis that Ay is G -Gy implies that C € Gy, hence there
remains only to show D € G, to prove that (1) holds. Now using the same techniques
used in the proof of [3, Theorem 2], we can show that

MM,

o+1
DHST(I—tn) SR (1 —t,) (3.12)

where M; and M, are some positive real numbers. Note that A, ; being a G,-G,, matrix
implies that (1 —t)**! € G, by Theorem 3.1, and —1 < & < 0 yields (1 —t) € Gy.
Consequently, we have D € G,, and hence (1) holds. Next we show that (2) holds. We
have

S (k+ o
)(Aa,tsx)n‘ = (l—tn)a+l Z ( k )xkltﬁ
k=1
S (k+x+1
= (l—tn)oprl Z ( )X tk+1
o\ k+1 n
_ (1 arl| w— (k+« kH(M) (3.13)
=(1-ty) kzo( v )xktn 1
ol | — (k+a Kl
=(1-ty) > et (1
k=0 1
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where

En _ (1_tn)a+1

k+
(e
i(kﬂx) Xk e |
o\ k Jk+1

The hypothesis that x € Gy, (Aq,t) implies that E € G, and by proceeding as in the
proof of (1) above, we can easily show that F € G,,. Thus, (2) holds and hence our
assertion follows. O

k=0 (3.14)

Fp=—-(1-tn)""'«

THEOREM 3.10. Suppose that & > 0 and (1 —t) € Gy; then every Ay; matrix is
Gy -translative for each Ax-summable sequence x in Gy (Ax).

PROOF. The theorem follows easily by using similar argument used in the proof of
Theorem 3.9. O

Our next result is a Tauberian theorem for Ay matrix in the G,,-G,, setting.

THEOREM 3.11. Let Ay be a Gy, -G, matrix. If x is a sequence such that Ax:x and
Ax are in Gy, then x is in Gy,.

PROOF. The theorem easily follows by an argument similar to the proof of [4, Theo-
rem 2.1]. O
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