THE BOOLEAN ALGEBRA AND CENTRAL GALOIS ALGEBRAS

GEORGE SZETO and LIANYONG XUE

(Received 15 March 2001)

ABSTRACT. Let *B* be a Galois algebra with Galois group *G*, $J_g = \{b \in B \mid bx = g(x)b$ for all $x \in B\}$ for $g \in G$, and $BJ_g = Be_g$ for a central idempotent e_g . Then a relation is given between the set of elements in the Boolean algebra $(B_{a, \leq})$ generated by $\{0, e_g \mid g \in G\}$ and a set of subgroups of *G*, and a central Galois algebra Be with a Galois subgroup of *G* is characterized for an $e \in B_a$.

2000 Mathematics Subject Classification. 16S35, 16W20.

1. Introduction. Galois theory of rings have been intensively studied [1, 3, 4, 5, 6, 7]. Let *B* be a Galois algebra with Galois group *G* and $J_q = \{b \in B \mid bx = g(x)b \text{ for all } x \in J_q(x)\}$ B} for each $g \in G$. In [4], it was shown that $BJ_g = Be_g$ for some central idempotent e_g of *B*. Let B_a be the Boolean algebra generated by $\{0, e_g \mid g \in G\}$. In [7], the following structure theorem for *B* was given: there exist $\{e_i \in B_a \mid i = 1, 2, ..., m \text{ for some integer } m\}$ and some subgroups H_i of G such that $B = \bigoplus \sum_{i=1}^m Be_i \oplus B(1 - \sum_{i=1}^m e_i)$ where Be_i is a central Galois algebra with Galois group H_i for each i = 1, 2, ..., m and $B(1 - \sum_{i=1}^{m} e_i) =$ $C(1-\sum_{i=1}^{m}e_i)$ which is a commutative Galois algebra with Galois group induced by and isomorphic with G in case $1 \neq \sum_{i=1}^{m} e_i$, where C is the center of B. We observe that (1) $e_i = \prod_{h \in H_i} e_h$ which is a nonzero monomial in B_a for a maximal subset H_i of G, (2) H_i is a subgroup of G, and (3) Be_i is a central Galois algebra with Galois group H_i . In the present paper, we will discuss a general case: what kind of elements *e* in B_a and subgroups H_e give a central Galois algebra Be with Galois group H_e ? We will show that (1) for any nonzero monomial $e = \prod_{g \in S} e_g$ of B_a for some subset S of *G*, let $H_e = \{g \in G \mid e \leq e_g, \text{ that is, } ee_g = e\}$; then H_e is a subgroup of *G*, (2) when $H_e \neq \{1\}$, Be is a central Galois algebra with Galois group H_e if and only if e is a nonzero minimal element in B_a (i.e., Be is one of the components of B as given in [7, Theorem 3.8]), (3) for a nonzero monomial $e = \prod_{q \in S} e_q$ of B_a for some subset S of *G*, let $T_e = \{g \in G \mid e = e_g\}$; then T_e is a subgroup of *G* if and only if e = 1, and (4) let $H_1 = \{g \in G \mid e_g = 1\}$. Then $e_g = 0$ for each $g \notin H_1$ if and only if B is either a central Galois algebra with Galois group H_1 or a commutative Galois algebra with Galois group G. Thus, $\{Be \mid e \text{ is a nonzero minimal element in } B_a\}$ are the only central Galois algebras with Galois group H_e arising from nonzero monomials e in B_a , and when $B_a = \{0, 1\}, B$ is a central Galois algebra with Galois group H_1 and the center C is a commutative Galois algebra with Galois group G/H_1 . This fact generalizes the DeMeyer theorem for a Galois algebra with an indecomposable center C (see [1, Theorem 1]).

G. SZETO AND L. XUE

2. Definitions and notations. Let *B* be a ring with 1, *C* the center of *B*, *G* an automorphism group of *B* of order *n* for some integer *n*, and *B^G* the set of elements in *B* fixed under each element in *G*. *B* is called a Galois extension of *B^G* with Galois group *G* if there exist elements $\{a_i, b_i \text{ in } B, i = 1, 2, ..., m\}$ for some integer *m* such that $\sum_{i=1}^{m} a_i g(b_i) = \delta_{1,g}$ for each $g \in G$. *B* is called a Galois algebra over *R* if *B* is a Galois extension of *R* which is contained in *C*, and *B* is called a central Galois extension if *B* is a Galois extension of *C*. Throughout this paper, we assume that *B* is a Galois algebra with Galois group *G*. Let $J_g = \{b \in B \mid bx = g(x)b$ for all $x \in B\}$ and $J_g^{(A)} = \{b \in A \mid bx = g(x)b$ for all $x \in A\}$ for each $g \in G$, where $A \subset B$. In [4], it was shown that $BJ_g = Be_g$ for some central idempotent e_g of *B*. We denote by B_a the Boolean algebra generated by $\{0, e_g \mid g \in G; \leq\}$, where $e \leq e'$ if ee' = e.

3. The monomials and subgroups. Let *e* be a nonzero monomial of B_a , $e = \prod_{g \in S} e_g$ for a subset *S* of *G*. We have two subsets of *G*, $H_e = \{g \in G \mid e \leq e_g\}$ and $T_e = \{g \in G \mid e = e_g\}$. We are going to show that H_e is a subgroup of *G*, and that T_e is a subgroup of *G* if and only if e = 1. Let *K* be a subgroup of *G*. Then *K* is called a nonzero subgroup of *G* if $\prod_{k \in K} e_k \neq 0$, and *K* is called a maximal nonzero subgroup of *G* if $K \subset K'$, where *K'* is a nonzero subgroup of *G* such that $\prod_{k \in K} e_k = \prod_{k \in K'} e_k$, then K = K'. We note that each nonzero subgroup is contained in a unique maximal nonzero subgroup of *G*. We will show that there exists a one-to-one correspondence between the following three sets: (1) the set of nonzero monomials in B_a , (2) the set of maximal nonzero subgroups of *G*, and (3) the set of Galois extensions in *B* generated by a nonzero monomial *e* with a maximal Galois subgroup of *G*.

LEMMA 3.1. Let e be a nonzero monomial in B_a and $H_e = \{g \in G \mid e \leq e_g\}$. Then H_e is a subgroup of G.

PROOF. For any $g, h \in H_e, e \leq e_g$, and $e \leq e_h$. Hence $e \leq e_g e_h$. But $J_g J_h \subset J_{gh}$, so $BJ_g J_h \subset BJ_{gh}$. Therefore $Be_g e_h \subset Be_{gh}$. Thus $e_g e_h \leq e_{gh}$; and so $e \leq e_g e_h \leq e_{gh}$. This implies that $gh \in H_e$. Noting that G is finite, we conclude that H_e is a subgroup of G.

THEOREM 3.2. There exists a one-to-one correspondence between the set of nonzero monomials in B_a and the set of maximal nonzero subgroups of G.

PROOF. Define $f : e \to H_e$ for a nonzero monomial e in B_a , where H_e is given in Lemma 3.1. By Lemma 3.1, H_e is a subgroup of G. Also, by the definition of H_e , it is easy to see that H_e is a maximal nonzero subgroup of G. Thus f is well defined. Next we show that f is one to one. Let e and e' be two nonzero monomials in B_a such that f(e) = f(e'), that is, $H_e = H_{e'}$. Then $e = \prod_{h \in H_e} e_h = \prod_{h \in H_{e'}} e_h = e'$. Thus f is one to one. Moreover, let K be a maximal nonzero subgroup of G. Then $e = \prod_{k \in K} e_k \neq 0$ and $K = \{g \in G \mid e \leq e_g\}$ by the definition of a maximal nonzero subgroup of G. Thus f is a bijection.

Let $N(H_e)$ be the normalizer of H_e in G for a nonzero monomial e in B_a . We next show that Be is a Galois extension with a maximal Galois subgroup G(e) where $G(e) = \{g \in G \mid g(e) = e\}$, and $G(e) = N(H_e)$. Consequently, we can establish a one-to-one correspondence between the set of maximal nonzero subgroups of G and the set of

Galois extensions in *B* generated by a nonzero monomial *e* with a maximal Galois subgroup of $N(H_e)$.

LEMMA 3.3. For a nonzero monomial e in B_a , let $G(e) = \{g \in G \mid g(e) = e\}$. Then, (1) $G(e) = N(H_e)$, where $N(H_e)$ is the normalizer of H_e in G, and (2) Be is a Galois extension with a maximal Galois subgroup of $G(e)|_{Be} \cong G(e)$.

PROOF. (1) For any $g \in N(H_e)$, since $Be = B\Pi_{h \in H_e} e_h = B\Pi_{h \in H_e} J_h$, $g(Be) = g(B\Pi_{h \in H_e} J_h) = B\Pi_{h \in H_e} J_{ghg^{-1}} = B\Pi_{h \in gH_eg^{-1}} J_h = B\Pi_{h \in H_e} J_h = Be$ (for $gHg^{-1} = H$). Hence g(e) = e; and so $g \in G(e)$. Conversely, for any $g \in G(e)$,

$$Be = g(Be) = g(B\Pi_{h \in H_e}e_h) = g(B\Pi_{h \in H_e}J_h) = B\Pi_{h \in H_e}J_{ghg^{-1}} = B\Pi_{h \in H_e}e_{ghg^{-1}}.$$
 (3.1)

Thus $e = \prod_{h \in H_e} e_{ghg^{-1}}$. Therefore $e \le e_{ghg^{-1}}$; and so $ghg^{-1} \in H_e$ for each $h \in H_e$. This implies that $g \in N(H_e)$.

(2) Since *B* is a Galois algebra with Galois group *G* and $e \in C^{G(e)}$, *Be* is a Galois extension with a maximal Galois subgroup of $G(e)|_{Be} \cong G(e)$ (see [7, proof of Lemma 3.7]). Moreover, let $g \in G$ but $g \notin G(e)$. Then $g(e) \neq e$. Thus *g* is not an automorphism of *Be*; and so G(e) is the maximal Galois group contained in *G* for *Be*.

THEOREM 3.4. There exists a one-to-one correspondence between the set of maximal nonzero subgroups of *G* and the set of Galois extensions in *B* generated by a nonzero monomial *e* with a maximal Galois subgroup $G(e)|_{Be} \cong G(e)$ such that $G(e) = N(H_e)$.

PROOF. Let $\alpha : e \to Be$ for each nonzero monomial e in B_a . Then, by Lemma 3.3, Be is a Galois extension in B generated by e with a maximal Galois subgroup $G(e)|_{Be} \cong G(e)$ such that $G(e) = N(H_e)$. Clearly, α is a bijection from the set of nonzero monomials in B_a to the set of Galois extensions Be for a nonzero monomial e in B_a with a maximal Galois subgroup $G(e)|_{Be} \cong G(e)$ which is $N(H_e)$. Thus Theorem 3.4 is an immediate consequence of Theorem 3.2.

In the following, we show that the set $T_e = \{g \in G \mid e = e_g\}$ for a nonzero monomial e in B_a is not a subgroup of G unless e = 1.

THEOREM 3.5. Let e be a nonzero monomial in B_a and $T_e = \{g \in G \mid e = e_g\}$. Then T_e is a subgroup of G if and only if e = 1.

PROOF. Assume T_e is a subgroup of G. Then $1 \in T_e$; and so $e = e_1 = 1$. Conversely, assume e = 1. Then $T_e = T_1 = \{g \in G \mid 1 = e_g\}$. But the condition that $1 = e_g$ is equivalent to that $1 \le e_g$, so $T_e = T_1 = H_1$ where H_1 is given in Lemma 3.1. Hence by Lemma 3.1, T_e is a subgroup of G.

4. Central Galois algebras. In Section 3, Lemma 3.1 proves that for a nonzero monomial $e \in B_a$, H_e (= { $g \in G | e \le e_g$ }) is a subgroup of *G*. In [7], it was shown that if *H* is a maximal subset of *G* such that $\Pi_{h \in H} J_h \ne \{0\}$, then *H* is a subgroup of *G*. We will show that the maximal subset *H* is exactly H_e for a minimal nonzero monomial $e \in B_a$. Thus *Be* is a central Galois algebra with Galois group H_e (see [7, Theorem 3.6]). Next is a characterization of the central Galois algebra *Be* with Galois group H_e for a nonzero monomial $e \in B_a$.

THEOREM 4.1. Let *e* be a nonzero monomial in B_a such that $H_e \neq \{1\}$. The following statements are equivalent:

- (1) Be is a central Galois algebra with Galois group H_e .
- (2) $eJ_g = \{0\}$ for each $g \notin H_e$.
- (3) *e* is a minimal nonzero monomial in B_a .

PROOF. (1) \Rightarrow (2). Since *B* is a Galois algebra over a commutative ring *R* with Galois group *G*, *B* = $\oplus \sum_{g \in G} J_g$ (see [4, Theorem 1]). Hence

$$Be = \bigoplus_{g \in G} eJ_g = \left(\bigoplus_{h \in H_e} eJ_h \right) \oplus \left(\bigoplus_{g \notin H_e} eJ_g \right).$$
(4.1)

By hypothesis, *Be* is a central Galois algebra with Galois group H_e , so $Be = \bigoplus \sum_{h \in H_e} J_h^{(Be)}$. But by [7, Lemma 3.3], $J_h^{(Be)} = eJ_h$ for each $h \in H_e$; and so $Be = \bigoplus \sum_{h \in H_e} eJ_h$. Thus $\bigoplus \sum_{g \notin H_e} eJ_g = \{0\}$, that is, $eJ_g = \{0\}$ for each $g \notin H_e$.

(2) \Rightarrow (1). Since $Be = \bigoplus \sum_{g \in G} eJ_g = (\bigoplus \sum_{h \in H_e} eJ_h) \oplus (\bigoplus \sum_{g \notin H_e} eJ_g)$ and $eJ_g = \{0\}$ for each $g \notin H_e$, $Be = \bigoplus \sum_{h \in H_e} eJ_h$. By [7, Lemma 3.3] again, $J_h^{(Be)} = eJ_h$ for each $h \in H_e$. Hence $Be = \bigoplus \sum_{h \in H_e} J_h^{(Be)}$, where $J_h^{(Be)} J_{h^{-1}}^{(Be)} = (eJ_h)(eJ_{h^{-1}}) = eJ_hJ_{h^{-1}} = eC$ which is the center of Be. Moreover, B is a Galois R-algebra, so it is a separable R-algebra. Thus, Be is a separable algebra over Re (see [2, Proposition 1.11, page 46]). Therefore, Be is a central Galois algebra over Ce (see [3, Theorem 1]).

 $(3)\Rightarrow(2)$. Since *e* is a minimal nonzero monomial in B_a , for each $g \in G$, either $e \leq e_g$ or $ee_g = 0$. Since $e \leq e_g$ for each $g \in H_e$, we have that $ee_g = 0$ for each $g \notin H_e$. Therefore, $BeJ_g = Bee_g = \{0\}$; and so $eJ_g = \{0\}$ for each $g \notin H_e$.

 $(2)\Rightarrow(3)$. Suppose *e* is not a minimal nonzero monomial in B_a . Then there exists a $g \in G$ such that $0 < ee_g < e$. By the definition of H_e , $e = \prod_{h \in H_e} e_h$; and so $ee_h = e$ for each $h \in H_e$. Hence $g \notin H_e$. Therefore, $BeJ_g = Bee_g \neq \{0\}$. This implies that $eJ_g \neq \{0\}$ for some $g \notin H_e$. This contradicts hypothesis (2). Thus statement (3) holds.

When *e* is a minimal nonzero monomial in B_a , Theorem 4.1 shows that Be is a central Galois algebra with Galois group H_e . Hence the order of H_e is a unit in Be (see [4, Corollary 3]). Moreover, by Lemma 3.3, Be is a Galois extension with Galois group G(e) which is $N(H_e)$, so we have a structure of Be.

THEOREM 4.2. For a minimal nonzero monomial e in B_a , Be is a central Galois algebra with Galois group H_e and Ce is a commutative Galois algebra with Galois group $G(e)/H_e$.

PROOF. Since *e* is a minimal nonzero monomial in B_a , Be is a central Galois algebra with Galois group H_e by Theorem 4.1. Hence $|H_e|$, the order of H_e , is a unit in *Ce*. Moreover, by Lemma 3.3, Be is a Galois extension with Galois group G(e) which is $N(H_e)$, so H_e is a normal subgroup of G(e). Let $\{a_i, b_i \mid i = 1, 2, ..., m\}$ be a G(e)-Galois system for Be. Then, $\sum_{i=1}^m a_i g(b_i) = \delta_{1,g} e$ for each $g \in G(e)$. Let $x_i = (1/|H_e|) \sum_{h \in H_e} h(a_i)$ and $y_i = \sum_{h \in H_e} h(b_i)$. Then, x_i and y_i are invariant under each element in H_e . Hence, $x_i, y_i \in Ce$ since $(Be)^{H_e} = Ce$. It is straightforward to verify that $\{x_i, y_i\}$ is a $G(e)/H_e$ -Galois system for *Ce*.

Theorem 4.1 characterizes a central Galois algebra Be for a minimal nonzero monomial $e \in B_a$. Next we want to characterize a central Galois algebra B1 for the maximal monomial 1 in B_a .

THEOREM 4.3. Let $H_1 = \{h \in G \mid e_h = 1\}$. Then $e_g = 0$ for each $g \notin H_1$ if and only if *B* is either a central Galois algebra with Galois group H_1 or a commutative Galois algebra with Galois group *G*.

PROOF. (\Rightarrow) Case 1. $H_1 \neq \{1\}$. Since $e_g = 0$ for each $g \notin H_1$, $J_g = \{0\}$ for each $g \notin H_1$. Hence, by (2) \Rightarrow (1) in Theorem 4.1, B (= B1) is a central Galois algebra with Galois group H_1 . Case 2. $H_1 = \{1\}$. By hypothesis, $e_g = 0$ for each $g \neq 1$ in G, so $B = \bigoplus \sum_{g \in G} J_g = J_1 = C$. Thus B is a commutative Galois algebra with Galois group G.

(⇐) Assume *B* is a central Galois algebra with Galois group H_1 . Then $H_1 \neq \{1\}$. Hence, by (1)⇒(2) in Theorem 4.1, $J_g = 1J_g = \{0\}$ for each $g \notin H_1$. Thus $e_g = 0$ for each $g \notin H_1$. Next, assume *B* is a commutative Galois algebra with Galois group *G*. Then $J_g = \{0\}$ for each $g \neq 1$ in *G* (see [3, Proposition 2]). Hence $e_g = 0$ for each $g \neq 1$ in *G*. Therefore $H_1 = \{1\}$ and $e_g = 0$ for each $g \notin H_1$.

As a consequence of Theorem 4.3, the DeMeyer theorem (see [1, Theorem 1]) for central Galois algebras with a connected center is generalized.

COROLLARY 4.4. Let *B* be a Galois algebra with Galois group *G*. If $B_a = \{0, 1\}$, then *B* is a central Galois algebra with Galois group H_1 and *C* is a commutative Galois algebra with Galois group G/H_1 .

PROOF. Since $B_a = \{0, 1\}$, $e_g = 0$ for each $g \notin H_1$; and so the corollary holds.

We conclude the present paper with an example of a Galois algebra *B* such that $B_a = \{0, 1\}$, but its center *C* is not indecomposable.

EXAMPLE 4.5. Let R[i, j, k] be the quaternion algebra over the real field R, $B = R[i, j, k] \oplus R[i, j, k]$, and $G = \{1, g_i, g_j, g_k, g, gg_i, gg_j, gg_k\}$, where $g_i(a_1, a_2) = (ia_1i^{-1}, ia_2i^{-1}), g_j(a_1, a_2) = (ja_1j^{-1}, ja_2j^{-1}), g_k(a_1, a_2) = (ka_1k^{-1}, ka_2k^{-1}), and g(a_1, a_2) = (a_2, a_1)$ for all (a_1, a_2) in B. Then,

(1) *B* is a Galois extension with a *G*-Galois system: { $a_1 = (1,0)$, $a_2 = (i,0)$, $a_3 = (j,0)$, $a_4 = (k,0)$, $a_5 = (0,1)$, $a_6 = (0,i)$, $a_7 = (0,j)$, $a_8 = (0,k)$; $b_1 = (1/4)(1,0)$, $b_2 = -(1/4)(i,0)$, $b_3 = -(1/4)(j,0)$, $b_4 = -(1/4)(k,0)$, $b_5 = (1/4)(0,1)$, $b_6 = -(1/4)(0,i)$, $b_7 = -(1/4)(0,j)$, $b_8 = -(1/4)(0,k)$ }.

(2) $B^G = \{(r, r) \mid r \in R\} \cong R.$

(3) By (1) and (2), *B* is a Galois algebra over *R* with Galois group *G*.

(4) $J_1 = C = R \oplus R$, $J_{g_i} = (Ri) \oplus (Ri)$, $J_{g_j} = (Rj) \oplus (Rj)$, $J_{g_k} = (Rk) \oplus (Rk)$, and $J_g = J_{gg_i} = J_{gg_i} = J_{gg_k} = \{0\}$.

(5) $BJ_1 = BJ_{g_i} = BJ_{g_j} = BJ_{g_k} = B1$ and $BJ_g = BJ_{gg_i} = BJ_{gg_j} = BJ_{gg_k} = \{0\}$. Hence $e_1 = e_{g_i} = e_{g_i} = e_{g_k} = 1$ and $e_g = e_{gg_i} = e_{gg_i} = e_{gg_k} = 0$. Thus $B_a = \{0, 1\}$.

(6) $H_1 = \{1, g_i, g_j, g_k\}$ and *B* is a central Galois algebra with Galois group H_1 .

(7) $C = R \oplus R$ which is a commutative Galois algebra with Galois group $G/H_1 \cong \{1, g\}$.

ACKNOWLEDGEMENT. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank the Caterpillar Inc. for the support.

References

- F. R. DeMeyer, *Galois theory in separable algebras over commutative rings*, Illinois J. Math. 10 (1966), 287-295. MR 33#149. Zbl 216.34001.
- [2] F. R. DeMeyer and E. Ingraham, Separable Algebras over Commutative Rings, Lecture Notes in Mathematics, vol. 181, Springer-Verlag, Berlin, 1971. MR 43#6199. Zbl 215.36602.
- [3] M. Harada, Supplementary results on Galois extension, Osaka J. Math. 2 (1965), 343–350. MR 33#151. Zbl 178.36903.
- [4] T. Kanzaki, On Galois algebra over a commutative ring, Osaka J. Math. 2 (1965), 309–317. MR 33#150. Zbl 163.28802.
- [5] G. Szeto and L. Xue, On three types of Galois extensions of rings, Southeast Asian Bull. Math. 23 (1999), no. 4, 731–736. CMP 1 810 837. Zbl 945.16023.
- [6] _____, On characterizations of a center Galois extension, Int. J. Math. Math. Sci. 23 (2000), no. 11, 753-758. MR 2001c:16061.
- [7] _____, The structure of Galois algebras, J. Algebra 237 (2001), no. 1, 238-246.
 CMP 1 813 896.

GEORGE SZETO: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, IL 61625, USA *E-mail address*: szeto@hilltop.bradley.edu

LIANYONG XUE: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, IL 61625, USA *E-mail address*: lxue@hilltop.bradley.edu