ON THE ZEROS AND CRITICAL POINTS OF A RATIONAL MAP

XAVIER BUFF

(Received 23 January 2001)

ABSTRACT. Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree *d*. It is well known that *f* has *d* zeros and 2d - 2 critical points counted with multiplicities. In this note, we explain how those zeros and those critical points are related.

2000 Mathematics Subject Classification. 30C15.

In this note, $f : \mathbb{P}^1 \to \mathbb{P}^1$ is a rational map. We denote by $\{\alpha_i\}_{i \in I}$ the set of zeros of f, and by $\{\omega_j\}_{j \in J}$ the set of critical points of f which are not zeros of f (the sets I and J are finite). Moreover, we denote by n_i the multiplicity of α_i as a zero of f and by m_j the multiplicity of ω_j as a critical point of f. The local degree of f at α_i is n_i and the local degree of f at ω_j is $d_j = m_j + 1$. In particular, when $\omega_j \neq \infty$ and $f(\omega_i) \neq \infty$, the point ω_j is a zero of f' of order m_j .

Our goal is to understand the relations that exist between the points α_i and the points ω_j .

PROPOSITION 1. Given a finite collection of distinct points $\alpha_i \in \mathbb{P}^1$ with multiplicities n_i and $\omega_j \in \mathbb{P}^1$ with multiplicities m_j , there exists a rational map f vanishing exactly at the points α_i with multiplicities n_i and having extra critical points exactly at the points ω_j with multiplicities m_i if and only if

- (i) $\sum (n_i + 1) \sum m_i = 2$, and
- (ii) for any k such that $\alpha_k \in \mathbb{C}$,

$$\operatorname{res}\left(\frac{\prod_{\omega_j\in\mathbb{C}} (z-\omega_j)^{m_j}}{\prod_{\alpha_i\in\mathbb{C}} (z-\alpha_i)^{n_i+1}} dz, \alpha_k\right) = 0.$$
(1)

We will give a geometric interpretation of (ii) in the case where α_k is a simple zero of f: working in a coordinate where $\alpha_k = \infty$, the barycentre of the remaining zeros weighted with their multiplicities is equal to the barycentre of the critical points of f weighted with their multiplicities (see Proposition 3 below).

PROOF. The proof is elementary. It is based on the observation that the 1-forms d(1/f) and

$$\phi = \frac{\prod_{\omega_j \in \mathbb{C}} (z - \omega_j)^{m_j}}{\prod_{\alpha_i \in \mathbb{C}} (z - \alpha_i)^{n_i + 1}} dz$$
(2)

are proportional. The differential equation $d(1/f) = \phi$ has a rational solution if and only if ϕ is exact, if and only if the residues of ϕ at all finite poles are equal to zero.

XAVIER BUFF

LEMMA 2. Let f be a rational map. Denote by α_i its zeros and by n_i their multiplicities. Denote by ω_j the critical points of f which are not multiple zeros of f and by m_j their multiplicities. The zeros of the 1-form d(1/f) are exactly the points ω_j with order m_j and its poles are exactly the points α_i with order $n_i + 1$.

PROOF. A singularity of the 1-form $d(1/f) = -df/f^2$ is necessarily a zero or a pole of f, a zero of f', or ∞ (where ϕ is defined by analytic continuation). Considering the Laurent series of f at each of those points, one immediately gets the result.

Now assume that there exists a rational map f with the required properties. Lemma 2 shows that the 1-forms ϕ and d(1/f) have the same poles and the same zeros in \mathbb{C} , with the same multiplicities. Hence, their ratio is a rational function which does not vanish in \mathbb{C} . Thus, ϕ and d(1/f) are proportional. In particular, ϕ has a singularity at ∞ if and only if d(1/f) has a singularity at ∞ and the singularity is of the same kind for both 1-forms. Since the number of poles minus the number of zeros of any nonzero 1-form on \mathbb{P}^1 is equal to 2 (the Euler characteristic of \mathbb{P}^1), we see that $\sum (n_i + 1) - \sum m_j = 2$ which is precisely condition (i) in Proposition 1. Besides, since ϕ is exact, it follows that the residues at all the poles α_k vanish and condition (ii) is satisfied.

Conversely, the 1-form ϕ has poles of order $n_i + 1$ at the points $\alpha_i \in \mathbb{C}$ and zeros of order m_j at the points $\omega_j \in \mathbb{C}$. Condition (ii) implies that ϕ is exact, that is, there exists a rational map $g : \mathbb{P}^1 \to \mathbb{P}^1$ such that $\phi = dg$. Since the number of poles of ϕ in \mathbb{P}^1 minus the number of zeros of ϕ in \mathbb{P}^1 is equal to 2, condition (i) implies that when ∞ is neither a point α_i nor a point ω_j , it is a regular point of ϕ , when $\infty = \alpha_{i_0}$, it is a pole of ϕ of order n_{i_0} , and when $\infty = \omega_{j_0}$, it is a zero of ϕ of order m_{j_0} . Finally, $\phi = d(1/f)$, with f = 1/g, and Lemma 2 shows that the rational map f = 1/g vanishes exactly at the points α_i with multiplicities n_i and has extra critical points exactly at the points ω_j with multiplicities m_j .

We will now give a geometric interpretation of (ii) when α_k is a simple zero of f. We first work in a coordinate where ∞ is neither one of the points α_i nor a point ω_j . Define

$$R(z) = \frac{\prod_{j} (z - \omega_{j})^{m_{j}}}{\prod_{i \neq k} (z - \alpha_{i})^{n_{i} + 1}}.$$
(3)

Then,

$$\operatorname{res}\left(\frac{\prod_{j}\left(z-\omega_{j}\right)^{m_{j}}}{\prod_{i}\left(z-\alpha_{i}\right)^{n_{i}+1}}dz,\alpha_{k}\right)=\operatorname{res}\left(\frac{R(z)}{\left(z-\alpha_{k}\right)^{2}}dz,\alpha_{k}\right)=R'(\alpha_{k}).$$
(4)

Since $R(\alpha_k) \neq 0$, this residue vanishes if and only if

$$\frac{R'(\alpha_k)}{R(\alpha_k)} = \sum_j \frac{m_j}{\alpha_k - \omega_j} - \sum_{i \neq k} \frac{n_i + 1}{\alpha_k - \alpha_i} = 0.$$
(5)

Let *d* be the number of zeros counted with multiplicities, that is, $d = \sum_i n_i$. The total number of critical points is $2d - 2 = \sum_j m_j + \sum_i (n_i - 1)$ (the critical points of *f* are

the points ω_i and the multiple zeros of f). Then, (5) can be rewritten as

$$\frac{1}{2d-2}\left(\sum_{j}\frac{m_{j}}{\alpha_{k}-\omega_{j}}+\sum_{i\neq k}\frac{n_{i}-1}{\alpha_{k}-\alpha_{i}}\right)=\frac{1}{d-1}\sum_{i\neq k}\frac{n_{i}}{\alpha_{k}-\alpha_{i}}.$$
(6)

This last equality can be interpreted in the following way.

PROPOSITION 3. Assume that f is a rational map having a simple zero at ∞ . Then, the barycentre of the remaining zeros weighted with their multiplicities is equal to the barycentre of the critical points of f weighted with their multiplicities.

REMARK 4. One can prove this proposition directly. We may write f = P/Q, where

$$P = \sum_{k=0}^{d-1} a_k z^k, \qquad Q = \sum_{k=0}^d b_k z^k, \tag{7}$$

are co-prime polynomials with $\deg(Q) = \deg(P) + 1 = d$. Without loss of generality, we may assume that the barycentre of the zeros of *f* is equal to 0. In other words, we may assume that *P* is a centered polynomial, that is, $a_{d-2} = 0$. A simple calculation shows that

$$P'Q - Q'P = \sum_{k=0}^{2d-2} c_k z^k$$
(8)

is a polynomial of degree 2d - 2 and that $c_{2k-1} = 0$. Therefore, the barycentre of the zeros of P'Q - Q'P, that is, the barycentre of the critical points of f, is equal to 0.

Apply this geometric interpretation in order to re-prove two known results. The first corollary is related to the Sendov conjecture (cf. [1] and more particularly Section 4). This conjecture asserts that if a polynomial *P* has all its roots in the closed unit disk, then, for each zero α_i there exists a critical point ω (possibly a multiple zero) such that $|\alpha_i - \omega| \le 1$.

COROLLARY 5. Let $P : \mathbb{C} \to \mathbb{C}$ be a polynomial. Assume the zeros of P are all contained in the closed unit disk and $\alpha_0 \in S^1$ is a zero of P. Then, the closed disk of diameter $[0, \alpha_0]$ contains at least one critical point of f.

PROOF. Denote by *d* the degree of *P*. If α_0 is a multiple zero of *P*, then the result is trivial. Thus, assume α_0 is a simple zero of *P*. We work in the coordinate $Z = \alpha_0/(\alpha_0 - z)$. The rational map $f: Z \mapsto P(\alpha_0 - \alpha_0/Z)$ has a simple zero at $Z = \infty$ and the remaining zeros are contained in the half-plane $\{Z \in \mathbb{P}^1 \mid \Re(Z) \ge 1/2\}$. Thus the barycentre β of those zeros satisfies $\Re(\beta) \ge 1/2$. Moreover, *f* has a critical point of multiplicity *d* at Z = 0. Thus, the barycentre of the *d* remaining critical points is 2β . Since $\Re(2\beta) \ge 1$, we see that *f* has at least one critical point ω contained in the half plane $\{Z \in \mathbb{P}^1 \mid \Re(Z) \ge 1\}$. Then, $\alpha_0 - \alpha_0/\omega$ is a critical point of *P* contained in the closed disk of diameter $[0, \alpha_0]$.

The second corollary has been proved by Videnskii [2]. Our result provides an alternate proof.

XAVIER BUFF

COROLLARY 6. Assume that $f : \mathbb{P}^1 \to \mathbb{P}^1$ is a rational map and $\Delta \subset \mathbb{P}^1$ is a closed disk or a closed half-plane containing all the zeros of f. Then, Δ contains at least one critical point of f.

PROOF. Without loss of generality, we may assume that the zeros are simple and that at least one zero, say α_0 , is on the boundary of Δ . In a coordinate where $\alpha_0 = \infty$, Δ is a closed half-plane. The barycentre of the remaining zeros is contained in this half-plane. Consequently, the barycentre of the critical points is contained in Δ . Thus, Δ contains at least one critical point.

Videnskii also proved that this result is optimal in the sense that there exist rational maps of arbitrary degrees with simple zeros contained in a disk Δ but only one critical point in Δ .

References

- M. Marden, Conjectures on the critical points of a polynomial, Amer. Math. Monthly 90 (1983), no. 4, 267-276. MR 84e:30007. Zbl 535.30010.
- [2] I. Videnskii, On the zeros of the derivative of a rational function and invariant subspaces for the backward shift operator on the Bergman space, in preparation.

XAVIER BUFF: UNIVERSITÉ PAUL SABATIER, LABORATOIRE EMILE PICARD, 118, ROUTE DE NARBONNE, 31062 TOULOUSE CEDEX, FRANCE *E-mail address*: buff@picard.ups-tlse.fr