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Abstract. The systematic analysis of convergence conditions, used in comparison theo-
rems proven for different matrix splittings, is presented. The central idea of this analysis
is the scheme of condition implications derived from the properties of regular splittings of
a monotone matrix A =M1−N1 =M2−N2. An equivalence of some conditions as well as
an autonomous character of the conditions M−1

1 ≥M−1
2 ≥ 0 and A−1N2 ≥ A−1N1 ≥ 0 are

pointed out. The secondary goal is to discuss some essential topics related with existing
comparison theorems.
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1. Introduction. The main objective of this expository paper is to present the

systematic analysis of convergence conditions derived from their implications for the

regular splitting case and discussed in the subsequent sections. The secondary goal

is to survey, compare and further develop properties of matrix splittings in order to

present more clearly some aspects related with the results known in the literature.

Consider the iterative solution of the linear equation system

Ax = b, (1.1)

where A∈ Cn×n is a nonsingular matrix and x,b ∈ Cn.

Traditionally, a large class of iterative methods for solving (1.1) can be formulated

by means of the splitting

A=M−N with M nonsingular, (1.2)

and the approximate solution x(t+1) is generated, as follows

Mx(t+1) =Nx(t)+b, t ≥ 0 (1.3)

or equivalently

x(t+1) =M−1Nx(t)+M−1b, t ≥ 0, (1.4)

where the starting vector x(0) is given.

The iterative method is convergent to the unique solution

x =A−1b (1.5)

for each x(0) if and only if �(M−1N) < 1, which means that the used splitting of

A =M−N is convergent. The convergence analysis of the above method is based on
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the spectral radius of the iteration matrix �(M−1N). For large values of t, the solution

error decreases in magnitude approximately by a factor of �(M−1N) at each iteration

step; the smaller is �(M−1N), the quicker is the convergence. Thus, the evaluation of

an iterative method focuses on two issues:M should be chosen as an easily invertible

matrix and �(M−1N) should be as small as possible.

General properties of a splitting of A = M −N (not necessary convergent), useful

for proving comparison theorems, are given in the following theorem [20].

Theorem 1.1. Let A=M−N be a splitting of A∈ Cn×n. If A andM are nonsingular

matrices, then

M−1NA−1 =A−1NM−1, (1.6)

the matrices M−1N and A−1N commute, and the matrices NM−1 and NA−1 also com-

mute.

Proof. From the definition of splitting of A, it follows that

M−1 = (A+N)−1 =A−1(I+NA−1)−1 = (I+A−1N
)−1A−1 (1.7)

or

A−1 =M−1+M−1NA−1 =M−1+A−1NM−1 (1.8)

which implies the equality (1.6) and hence,

M−1NA−1N =A−1NM−1N or NM−1NA−1 =NA−1NM−1. (1.9)

From the above theorem, the following results can be deduced.

Corollary 1.2. LetA=M−N be a splitting ofA∈ Cn×n. IfA andM are nonsingular

matrices, then by the commutative property, both matricesM−1N and A−1N (or NM−1

and NA−1) have the same eigenvectors.

Lemma 1.3. LetA=M−N be a splitting ofA∈ Cn×n. IfA andM are nonsingular ma-

trices, and λs and τs are eigenvalues of the matricesM−1N andA−1N , respectively, then

λs = τs
1+τs

. (1.10)

Proof. By Corollary 1.2 we have

M−1Nxs = λsxs, (1.11)

A−1Nxs = τsxs. (1.12)

The last equation can be written as

A−1Nxs =
(
I−M−1N

)−1M−1Nxs = τsxs (1.13)

or equivalently

M−1Nxs = τs
1+τs

xs (1.14)

and the result (1.10) follows by the comparison of (1.11) with (1.14).
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From the above lemma, the following results can be concluded.

Corollary 1.4. Let A = M −N be a splitting of A ∈ Cn×n, where A and M are

nonsingular matrices, and λs and τs are eigenvalues of the matrices M−1N and A−1N ,

respectively.

(a) If τs ∈R, then the corresponding eigenvalue λs ∈R, and conversely.

(b) If τs ∈ C, then the corresponding eigenvalue λs ∈ C, and conversely.

Remark 1.5. Let A = M −N be a splitting of A ∈ Cn×n, where A and M are non-

singular matrices, and λs and τs are eigenvalues of the matrices M−1N and A−1N , re-

spectively. If the eigenvalue spectrum of A−1N is real, that is, τs ∈R for all 1≤ s ≤n,

then the corresponding eigenvalues λs ∈R, and conversely.

Theorem 1.6. Let A =M−N be a splitting of A ∈ Cn×n, where A and M are non-

singular matrices, and λs and τs are eigenvalues of the matrices M−1N and A−1N ,

respectively; and let the eigenvalue spectrum of A−1N be complex with the conjugate

complex eigenvalues τs = as+bsi and τs+1 = as−bsi. The splitting is convergent if and

only if

[
as
(
1+as

)+b2
s(

1+as
)2+b2

s

]2

+
[

bs(
1+as

)2+b2
s

]2

< 1 (1.15)

for all s = 1,3,5, . . . ,n−1.

Proof. By the relation (1.10), we have

λs = as+bsi
1+as+bsi

= as
(
1+as

)+b2
s(

1+as
)2+b2

s
+ bs(

1+as
)2+b2

s
i,

λs+1 = as−bsi
1+as−bsi

= as
(
1+as

)+b2
s(

1+as
)2+b2

s
− bs(

1+as
)2+b2

s
i.

(1.16)

Since for a convergent splitting

�
(
M−1N

)=max
s

∣∣λs∣∣< 1 (1.17)

hence, inequality (1.15) follows immediately.

Two particular cases of Theorem 1.6 are presented in the following lemmas.

Lemma 1.7. LetA=M−N be a splitting ofA∈ Cn×n, whereA andM are nonsingular

matrices, and λs and τs are eigenvalues of the matricesM−1N and A−1N , respectively.

If the eigenvalue spectrum of A−1N is real, then the splitting is convergent if and only

if τs >−1/2 for all 1≤ s ≤n.

Proof. Since in this case λs ∈R and τs ∈R, then inequality (1.17) is satisfied when

−1< λs = τs
1+τs

< 1 (1.18)

which implies that τs >−1/2 for all 1≤ s ≤n.



254 ZBIGNIEW I. WOŹNICKI

Lemma 1.8. LetA=M−N be a splitting ofA∈ Cn×n, whereA andM are nonsingular

matrices, and λs and τs are eigenvalues of the matricesM−1N and A−1N , respectively.

If the eigenvalue spectrum of A−1N is complex with the purely imaginary eigenvalues

τs = bsi and τs+1 =−bsi, then the splitting is convergent.

Proof. It is evident that for this case inequality (1.15) reduces to the form

b2
s

1+b2
s
< 1 (1.19)

which is satisfied for an arbitrary bs ∈R.

In the convergence analysis of iterative methods, the Perron-Frobenius theory of non-

negative matrices plays an important role. This theory provides many theorems con-

cerning the eigenvalues and eigenvectors of nonnegative matrices and its main results

are recalled in the following two theorems [14].

Theorem 1.9. If A≥ 0, then

(1) A has a nonnegative real eigenvalue equal to its spectral radius,

(2) To �(A) > 0, there corresponds an eigenvector x ≥ 0,

(3) �(A) does not decrease when any entry of A is increased.

Theorem 1.10. Let A≥ 0 be an irreducible matrix. Then

(1) A has a positive real eigenvalue equal to its spectral radius,

(2) To �(A) > 0, there corresponds an eigenvector x > 0,

(3) �(A) increases when any entry of A increases,

(4) �(A) is a simple eigenvalue of A.

In the case of nonnegative matrices the following theorem holds.

Theorem 1.11. Let A = M −N be a splitting of A ∈ Rn×n, where A and M are

nonsingular matrices. If both matrices M−1N and A−1N are nonnegative, then the

splitting is convergent and

�
(
M−1N

)= �
(
A−1N

)
1+�(A−1N

) . (1.20)

Moreover, all complex eigenvalues τs of the matrix A−1N , if they exist, satisfy the in-

equality

[
as
(
1+as

)+b2
s(

1+as
)2+b2

s

]2

+
[

bs(
1+as

)2+b2
s

]2

≤ �2(M−1N
)
< 1 (1.21)

and all real eigenvalues τt of the matrix A−1N , if they exist, satisfy the inequality

− �
(
M−1N

)
1+�(M−1N

) ≤ τt ≤ �
(
M−1N

)
1−�(M−1N

) . (1.22)

Proof. From Theorem 1.9, we conclude that both nonnegative matrices M−1N
and A−1N have nonnegative dominant eigenvalues λ1 and τ1, respectively, equal

to their spectral radii, and by Corollary 1.2 corresponding to the same nonnegative
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eigenvector x1 ≥ 0. Hence, by Lemma 1.3 the result (1.20) follows immediately. The

same result (1.20) has been obtained by Varga [14] for regular splittings forty years ago.

Since |λs| ≤ λ1 = �(M−1N) for all 2 ≤ s ≤ n, then the complex eigenvalues satisfy

inequality (1.15) as is shown in (1.21).

In the case of real eigenvalues λt , inequality (1.18) is replaced by

−�(M−1N
)≤ λt = τt

1+τt
≤ �(M−1N

)
(1.23)

which is satisfied when inequality (1.22) holds.

Remark 1.12. Since �(M−1N)= �(NM−1) and �(A−1N)= �(NA−1), Theorem 1.11

holds when only both matrices NM−1 and NA−1 are nonnegative.

Historically, the idea of matrix splittings has its scientific origin in the regular split-

ting theory introduced in 1960 by Varga [14] and extended in 1973 by the results

of the author’s thesis [15] (recalled in [20]). These first results, given as comparison

theorems for regular splittings of monotone matrices and proven under natural hy-

potheses by means of the Perron-Frobenius theory of nonnegative matrices [14], have

been useful tools in the convergence analysis of some iterative methods for solving

systems of linear equations [15, 16, 17, 18, 20, 26].

Further extensions for regular splittings have been obtained by Csordas and Varga

[4] in 1984, and from this time a renewed interest with comparison theorems, proven

under progressively weaker hypotheses for different splittings, is permanently ob-

served in the literature. These new results lead to successive generalizations, but on

the other hand are accompanied with an increased complexity with the verification

of hypotheses; therefore, some comparison theorems may have a more theoretical

than practical significance. Theorems proven under different hypotheses, for a few

types of splittings of monotone matrices representing a large class of applications,

are reviewed in [22].

The Varga’s definition of regular splitting became the standard terminology in the

literature, whereas other splittings are usually defined as a matter of author’s taste.

The definitions of splittings, with progressively weakening conditions and consistent

from the viewpoint of names, are collected in the following definition.

Definition 1.13. Let M,N ∈Rn×n. Then the decomposition A=M−N is called:

(a) a regular splitting of A if M−1 ≥ 0 and N ≥ 0,

(b) a nonnegative splitting of A if M−1 ≥ 0, M−1N ≥ 0, and NM−1 ≥ 0,

(c) a weak nonnegative splitting of A if M−1 ≥ 0, and either M−1N ≥ 0 (the first

type) or NM−1 ≥ 0 (the second type),

(d) a weak splitting of A if M is nonsingular, M−1N ≥ 0 and NM−1 ≥ 0,

(e) a weaker splitting of A ifM is nonsingular, and eitherM−1N ≥ 0 (the first type)

or NM−1 ≥ 0 (the second type),

(f) a convergent splitting of A if �(M−1N)= �(NM−1) < 1.

The above definition of splittings is a modification of that given in [22, 23, 24, 25].

The splittings defined in the successive items extend successively a class of split-

tings of A = M −N for which the matrices N and M−1 may lose the properties of
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nonnegativity. Distinguishing both types of weak nonnegative and weaker splittings

leads to further extensions allowing us to analyze cases when M−1N may have nega-

tive entries, even if NM−1 is a nonnegative matrix, for which Lemma 2.4 may be used

as well. Climent and Perea [3], after the inspection of the author’s work [20], have the

same conclusion.

The definition assumed in item (b) is equivalent to the definition of weak regular

splitting of A, introduced originally by Ortega and Rheinboldt [11]. However, it is nec-

essary to mention that some authors (Berman and Plemmons [2], Elsner [5], Marek

and Szyld [9], Song [12]), using the same name “weak regular splitting,” restrict this

definition to its weaker version based on the conditions M−1 ≥ 0 and M−1N ≥ 0 with-

out the condition NM−1 ≥ 0, and corresponding to a weak nonnegative splitting of

the first type. The neglect of the condition NM−1 ≥ 0 in the definition of weak regular

splitting leads to a confusion with the interpretation of some comparison theorems,

and it will be discussed in detail in the next sections. It should be remarked that the

use of the Ortega-Rheinboldt’s terminology “weak regular” in item (b) causes a con-

fusion in using the splitting name in item (c); therefore, it seems that assuming the

terms “nonnegative” and “weak nonnegative” allows us to avoid this confusion. The

term “weak” has been introduced by Marek and Szyld [9] for the case of the first type

weaker splitting of A of Definition 1.13, but it is again called as a splitting of positive

type by Marek [8] and nonnegative splitting by Song [12]. It seems that the proposed

terminology in items (d) and (e), by an analogy to items (b) and (c), allows us again to

avoid a confusion in splitting names.

It is evident that, with the above definition of splittings, the following corollary

holds.

Corollary 1.14. A regular splitting is a nonnegative splitting, a nonnegative split-

ting is a weak nonnegative splitting and a weak splitting, a weak nonnegative splitting

and weak splitting are a weaker splitting, but the contrary is not true.

The majority of comparison theorems have been proven for matrix problems, and

their extension and/or generalization can be done in a trivial way in many cases, but it

may also lead to incorrect results, as will be shown later. Generalizations are desired

results for further developments, and they strengthen the meaning of the original

result inspiring to its generalization. The author finds the Varga’s Theorem 2.1 (given

in the next section) as the most fundamental result in the convergence analysis of

iteration methods, and just this result was an inspiration for many generalizations

[1, 2, 3, 8, 11, 12] (see also item (4) of Theorem 3.1).

Marek and Szyld [9] generalized some earlier results for general Banach spaces and

rather general cones. Climent and Perea [3], following the Marek and Szyld’s approach

[9], extended some author’s results [20] as well as Csordas and Varga results [4] to

bounded operators in the general Banach space and rather general cones and in the

Hilbert space. However, results obtained in both the above papers are illustrated only

by matrix problems for which original results are fulfilled. The Climent and Perea

paper [3], developed with Daniel Szyld’s assistance, seems to be an incapable attempt

of improving some author’s results [20], therefore, in the present paper a special

attention is paid to some of their results and conclusions.
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As can be seen in the example of the Lanzkron-Rose-Szyld’s theorem [7], discussed

in detail in Section 3, the properties of some splittings are not sufficiently examined.

In Section 2 basic results for regular splittings are given together with the deriva-

tion of the scheme of condition implications. Results obtained for nonnegative, weak

nonnegative, weak and weaker splittings are discussed in Sections 3 and 4, respec-

tively. Finally, supplementary discussion about the utility of conditions is presented

in Section 5.

2. Regular splittings and the scheme of condition implications. At the beginning

we recall two basic results of Varga [14].

Theorem 2.1. Let A=M−N be a regular splitting of A. If A−1 ≥ 0, then

�
(
M−1N

)= �
(
A−1N

)
1+�(A−1N

) < 1. (2.1)

Conversely, if �(M−1N) < 1, then A−1 ≥ 0.

Theorem 2.2. Let A = M1 −N1 = M2 −N2 be two regular splittings of A, where

A−1 ≥ 0. If N2 ≥N1, then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (2.2)

In particular, if N2 ≥N1 with N2 ≠N1, and if A−1 > 0, then

�
(
M−1

1 N1
)
< �

(
M−1

2 N2
)
. (2.3)

Theorem 2.2 allows us to compare spectral radii of iteration matrices only in the

Jacobi and Gauss-Seidel methods [14]. The advantageous convergence properties of

prefactorization AGA algorithms developed by the author, observed in numerical ex-

periments [15, 16, 18, 20, 26], encouraged to further studies, the result of which is

the following theorem.

Theorem 2.3. Let A = M1 −N1 = M2 −N2 be two regular splittings of A, where

A−1 ≥ 0. If M−1
1 ≥M−1

2 , then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (2.4)

In particular, if A−1 > 0 and M−1
1 >M−1

2 , then

�
(
M−1

1 N1
)
< �

(
M−1

2 N2
)
. (2.5)

This theorem, published in the external report [15] and recalled in [20], have been

popularized in 1984 by Csordas and Varga [4] as the “useful but little known results

of Woźnicki,” and six years later it was recognized by Marek and Szyld [9] as “the

less known result of Woźnicki,” and recently by Climent and Perea [3] as “the lesser

known ones introduced by Woźnicki in his unpublished dissertation (1973), although

these results are being cited by Csordas and Varga.” It seems to be an unusual or even

funny matter that Theorem 2.3, on the one hand recognized as a less known result,
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on the other hand became the subject of extensions or generalizations done just by

the authors mentioned above as well as other authors.

One of the important applications of Theorem 2.3 is the generalization of the the-

orem of Stein-Rosenberg for iterative prefactorization methods in an irreducible case

[15, 20].

It is easy to verify that for regular splittings of a monotone matrix A (i.e., A−1 ≥ 0),

A=M1−N1 =M2−N2, (2.6)

the assumption of Theorem 2.2

N2 ≥N1 ≥ 0 (2.7)

implies the equivalent condition

M2 ≥M1 (2.8)

but the last inequality implies the condition of Theorem 2.3, that is,

M−1
1 ≥M−1

2 ≥ 0. (2.9)

From inequality (2.7), one obtains the inequality A−1N2 ≥A−1N1 ≥ 0. Since by rela-

tion (1.20), �(M−1N) is a monotone function with respect to �(A−1N), the result of

Theorem 2.2 follows immediately.

In case of the proof of Theorem 2.3, condition (2.9) can be expressed as follows

(
I+A−1N1

)−1A−1 ≥A−1(I+N2A−1)−1
(2.10)

which, after relevant multiplications, is equivalent to

A−1N2A−1 ≥A−1N1A−1 ≥ 0. (2.11)

From the above inequality, one obtains

A−1N2A−1N1 ≥
(
A−1N1

)2 ≥ 0, (2.12)(
A−1N2

)2 ≥A−1N1A−1N2 ≥ 0. (2.13)

Hence,

�2(A−1N2
)≥ �(A−1N1A−1N2

)= �(A−1N2A−1N1
)≥ �2(A−1N1

)
(2.14)

which gives us

�
(
A−1N2

)≥ �(A−1N1
)

(2.15)

and by result (1.20), the inequality

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)

(2.16)

can be deduced.
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In case of the strict inequality in (2.9), similar considerations lead to the strict in-

equality in (2.16) [15, 20].

On the other hand, from inequality (2.7), one obtains

A−1N2 ≥A−1N1 ≥ 0, (2.17)

which implies inequalities (2.11), (2.12), and (2.13), and additionally

A−1N1A−1N2 ≥
(
A−1N1

)2 ≥ 0, (2.18)(
A−1N2

)2 ≥A−1N2A−1N1 ≥ 0. (2.19)

Inequality (2.8) gives us

A−1M2 ≥A−1M1 ≥ 0, (2.20)

since for each splitting of A

A−1M = I+A−1N, (2.21)

hence, it is evident that both conditions (2.17) and (2.20) are equivalent.

Each of the above conditions (except (2.13) and (2.19) as is discussed later) leads

to proving inequality (2.16); however, as can be shown in simple examples of regular

splittings, the reverse implications may fail. Thus, the above inequalities are progres-

sively weaker conditions which are used as hypotheses in comparison theorems to

provide successive generalizations of the results.

The scheme of implications of the above conditions is demonstrated in Figure 2.1.

The equivalence of conditions (A) and (B) follows immediately from relation (2.6). Both

conditions (D) and (E) are equivalent by relation (2.21). Conditions (C) and (D) imply

conditions (G) and (F) which are equivalent by relation (2.21). Condition (C) implies

indirectly only conditions (H1) and (H2), whereas condition (E) implies directly all

conditions (H1), (H2), (H3), and (H4). It is evident that condition (D) implies that

conditions (K1), (K2), (K3), and (K4) equivalent to conditions (L1), (L2), (L3), and

(L4), respectively.

It seems to be interesting to ask, does a dependence exist between condition (C),

playing the essential role in the conjugate type iterative solvers [19], and condition

(E)? To give the answer to the above question, we consider for the following example

of a matrix [20]

A=




1 −1 0

0 1 −1

−1 0 2


 , where A−1 =




2 2 1

1 2 1

1 1 1


 , (2.22)

some regular splittings of A=Mi−Ni given below.

M1 =




1 −1 1

0 1 −1

−1 0 2


 , N1 =




0 0 1

0 0 0

0 0 0


 , (2.23)
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where

M−1
1 =




1 1 0
1
2

3
2

1
2

1
2

1
2

1
2


 , M−1

1 N1 =




0 0 1

0 0
1
2

0 0
1
2



, A−1N1 =




0 0 2

0 0 1

0 0 1


 ,

M2 =




1 0 0

0 1 −1

0 0 2


 , N2 =




0 1 0

0 0 0

1 0 0


 ,

(2.24)

where

M−1
2 =




1 0 0

0 1
1
2

0 0
1
2


 , M−1

2 N2 =




0 1 0
1
2

0 0

1
2

0 0


 , A−1N2 =




1 2 0

1 1 0

1 1 0


 ,

M3 =




1 −1 0

0 1 −1

0 0 2


 , N3 =




0 0 0

0 0 0

1 0 0


 ,

(2.25)

where

M−1
3 =




1 1
1
2

0 1
1
2

0 0
1
2



, M−1

3 N3 =




1
2

0 0

1
2

0 0

1
2

0 0



, A−1N3 =




1 0 0

1 0 0

1 0 0


 ,

M4 =




2 −1 0

0 1 −1

−1 0 2


 , N4 =




1 0 0

0 0 0

0 0 0


 ,

(2.26)

where

M−1
4 =




2
3

2
3

1
3

1
3

4
3

2
3

1
3

1
3

2
3



, M−1

4 N4 =




2
3

0 0

1
3

0 0

1
3

0 0



, A−1N4 =




2 0 0

1 0 0

1 0 0


 . (2.27)

As can be easily noticed for M−1
1 ≥M−1

2 (M2 �≥M1), �(M−1
1 N1)= 1/2< �(M−1

2 N2)=
1/
√

2, whereas A−1N2 �≥A−1N1; and for A−1N4 ≥A−1N3, �(M−1
3 N3)=1/2< �(M−1

4 N4)
= 2/3, whereas M−1

3 �≥M−1
4 . Thus, the above regular splitting examples show us that

both conditions (C) and (E) have an autonomous character, and there is no even a

precursor relation between them.
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Some results for condition (C) and regular splittings of monotone matrices, derived

with a different fineness of block partitions, have been recently obtained in [21].

It is evident that the scheme of condition implications given in Figure 2.1 could be

derived at the properties of regular splittings of a monotone matrix A, characterized

by the conditions M−1 ≥ 0 and N ≥ 0. However, particular conditions of this scheme

can be used for different types of splittings. For example, for regular splittings Csor-

das and Varga [4], assuming condition (G) and following the methodology used in the

proof of Theorem 2.3, represented by the inequalities from (2.10) to (2.15), show in-

equality (2.16). In the case of weaker splittings of the first type, condition (E) has been

considered by Marek [8] and the equivalent condition (D) by Song [12, 13]; conditions

(H1), (H2), (H3), and (H4) have been originally used by Beauwens [1] as separate condi-

tions, but it appears that only (H1) and (H3) can be used as such separate conditions

[1, (Erratum)] [12, 25].

In the literature there are many comparison theorems proven under the hypotheses

presented in Figure 2.1 as well as more composed hypotheses. For instance, for the

regular splitting case Csordas and Varga [4] consider the hypothesis

(
A−1N2

)jA−1 ≥ (A−1N1
)jA−1 ≥ 0, j ≥ 1 (2.28)

derived from condition (G); for the case of weaker splittings, Miller and Neumann [10]

analyze the condition

(
A−1N2

)j(A−1N1
)l ≥ (A−1N1

)j+l ≥ 0, j ≥ 1, l≥ 1 (2.29)

derived from condition (H1) and Song [12, 13] considers some conditions of the type

of

(
A−1M2

)j(A−1M1
)l ≥ (A−1M1

)j+l ≥ 0, j ≥ 1, l≥ 1 (2.30)

derived from conditions (K1), (K2), (K3), and (K4).

Only Csordas and Varga [4] present a simple example of regular splittings satisfying

inequality (2.28) with j > 1, but their example satisfies much simple hypotheses (f) and

(h) of Lemma 3.4 given in the next section. Song [12, 13] illustrates his results only in

examples of regular splittings, with j = 1 and l= 1, for which the Varga Theorem 2.2

is satisfied.

Another class of conditions, based on the knowledge of the eigenvectors of M−1
1 N1

andM−1
2 N2 corresponding to �(M−1

1 N1) and �(M−1
2 N2), respectively, have been intro-

duced by Marek and Szyld [9].

Finally, it should be noted that the conditions of regular splitting of a monotone

matrix A=M−N

M−1 ≥ 0, (2.31)

N ≥ 0 (2.32)

imply

M−1N ≥ 0, (2.33)

A−1N ≥ 0 (2.34)
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and the extra conditions

NM−1 ≥ 0, (2.35)

NA−1 ≥ 0 (2.36)

which are important in convergence analysis as well. Thus, the principle of regular

splitting is based on the six above conditions.

Both matrices M−1N and NM−1 (as well as A−1N and NA−1) have the same eigen-

values because they are similar matrices. It may occur that for the splittings (2.6) none

of the conditions given in Figure 2.1 is not satisfied but the following lemma holds.

Lemma 2.4 (see [20]). LetA=M1−N1 =M2−N2 be two regular splittings ofA, where

A−1 ≥ 0. If M−1
2 N2 ≥ N1M−1

1 ≥ 0 (or N2M−1
2 ≥ M−1

1 N1 ≥ 0) or A−1N2 ≥ N1A−1 ≥ 0 (or

N2A−1 ≥A−1N1 ≥ 0), then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (2.37)

3. Nonnegative and weak nonnegative splittings. The first extension of the reg-

ular splitting case is due to Ortega and Rheinboldt [11] who introduced the class of

weak regular splittings, based on the conditions (2.31), (2.33), and (2.35), for which

Theorem 2.2 [11] and Theorem 2.3 (see as well, Theorem 3.5) hold. However, as it was

already mentioned, some authors [2, 5, 9, 12], using the same name “weak regular

splitting,” restrict this definition to its weaker version based on conditions (2.31) and

(2.33) only. It seems that this simplification of the Ortega-Rheinboldt definition is due

to Berman and Plemmons [2] and it leads to a confusion in the interpretation of some

comparison theorems. It is rather an unusual case that the same name “weak reg-

ular splitting” is used in the literature for two different definitions, it should be at

least distinguished as the Ortega-Rheinboldt’s weak regular splitting and the Berman-

Plemmons’ weak regular splitting. It seems that this unclear definition of weak regular

splitting is eliminated by using the terminology of items (b) and (c) of Definition 1.13

Conditions ensuring that a splitting of A =M−N will be convergent are unknown

in a general case. As was pointed out in [20], the splittings defined in the first three

items of Definition 1.13 are convergent if and only if A−1 ≥ 0.

The properties of weak nonnegative splittings, extensively analyzed in [20] for the

conditions of implication scheme demonstrated in Figure 2.1, are summarized in the

following theorem.

Theorem 3.1 (see [20]). Let A = M −N be a weak nonnegative splitting of A. If

A−1 ≥ 0, then

(1) A−1 ≥M−1,

(2) �(M−1N)= �(NM−1) < 1,

(3) if M−1N ≥ 0, then A−1N ≥M−1N and if NM−1 ≥ 0, then NA−1 ≥NM−1,

(4) �(M−1N)= �(A−1N)/(1+�(A−1N))= �(NA−1)/(1+�(NA−1)) < 1,

(5) Conversely, if �(M−1N) < 1, then A−1 ≥ 0.

The relation in item (4), similar to the result of Theorem 2.1, follows from Theorem

1.11 and Remark 1.12. From Theorem 3.1 we have the following result.
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Corollary 3.2. Each weak nonnegative (as well as by Corollary 1.14 nonnegative

and regular) splitting ofA=M−N is convergent if and only ifA−1 ≥ 0. In other words, if

A is not a monotone matrix, it is impossible to construct a convergent weak nonnegative

splitting.

It is obvious by Theorem 3.1 that when both weak nonnegative splittings of a mono-

tone matrix A=M1−N1 =M2−N2 are of the same type, the inequality

N2 ≥N1 (3.1)

implies either

A−1N2 ≥A−1N1 ≥ 0 (3.2)

or

N2A−1 ≥N1A−1 ≥ 0. (3.3)

When both weak nonnegative splittings are of different types, one of the matrices

A−1N2 and A−1N1 or N2A−1 and N1A−1 may have negative entries, which does not

allow us to conclude that the inequality �(M−1
1 N1) ≤ �(M−1

2 N2) is satisfied. Let us

assume thatM−1
1 N1 ≥ 0 and N2M−1

2 ≥ 0 which implies by Theorem 3.1 that A−1N1 ≥ 0

and N2A−1 ≥ 0, then from (3.1) we have

A−1N2 ≥A−1N1 ≥ 0, N2A−1 ≥N1A−1 �≥ 0, (3.4)

which leads to the conclusion that the second splitting should be a nonnegative split-

ting. In the case when N1M−1
1 ≥ 0 and M−1

2 N2 ≥ 0, implying that N1A−1 ≥ 0 and

A−1N2 ≥ 0, then from (3.1) one obtains,

N2A−1 ≥N1A−1 ≥ 0, A−1N2 ≥A−1N1 �≥ 0, (3.5)

hence, it can be concluded again that the second splitting should be a nonnegative

splitting.

Thus, the above considerations allow us to prove the following theorem.

Theorem 3.3. Let A=M1−N1 =M2−N2 be two weak nonnegative splittings of the

same type, where A−1 ≥ 0. If N2 ≥N1, then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (3.6)

The result of this theorem, proven originally by Varga [14] for regular splittings,

carries over to the case when both weak nonnegative splittings are of the same type.

Some results (see [20, Theorems 3.3 and 3.16 ]) are summarized in the following

lemma.

Lemma 3.4 (see [20]). Let A=M1−N1 =M2−N2 be two weak nonnegative splittings

of A, where A−1 ≥ 0. If one of the following inequalities:

(a) A−1N2 ≥A−1N1 ≥ 0 (or M−1
2 N2 ≥M−1

1 N1 ≥ 0),
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(b) A−1N2 ≥N1A−1 ≥ 0 (or M−1
2 N2 ≥N1M−1

1 ≥ 0),

(c) N2A−1 ≥N1A−1 ≥ 0 (or N2M−1
2 ≥N1M−1

1 ≥ 0),

(d) N2A−1 ≥A−1N1 ≥ 0 (or N2M−1
2 ≥M−1

1 N1 ≥ 0),

(e) A−1N2 ≥ (A−1N1)T ≥ 0 (or M−1
2 N2 ≥ (M−1

1 N1)T ≥ 0),

(f) A−1N2 ≥ (N1A−1)T ≥ 0 (or M−1
2 N2 ≥ (N1M−1

1 )T ≥ 0),

(g) N2A−1 ≥ (N1A−1)T ≥ 0 (or N2M−1
2 ≥ (N1M−1

1 )T ≥ 0),

(h) N2A−1 ≥ (A−1N1)T ≥ 0 (or N2M−1
2 ≥ (M−1

1 N1)T ≥ 0)

is satisfied, then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (3.7)

In the case of the weaker conditionM−1
1 ≥M−1

2 , the contrary behaviour is observed.

As is demonstrated in the examples in [20], when both weak nonnegative splittings of

a monotone matrix A are of the same type, with M−1
1 ≥M−1

2 (or even M−1
1 > M−1

2 ), it

may occur that �(M−1
1 N1) > �(M−1

2 N2). In the case of nonnegative splittings we have

the following result.

Theorem 3.5 (see [20]). Let A=M1−N1 =M2−N2 be two nonnegative splittings of

A, where A−1 ≥ 0. If M−1
1 ≥M−1

2 , then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (3.8)

In particular, if A−1 > 0 and M−1
1 >M−1

2 , then

�
(
M−1

1 N1
)
< �

(
M−1

2 N2
)
. (3.9)

But for different types of weak nonnegative splittings there is a similar result.

Theorem 3.6 (see [20]). Let A =M1−N1 =M2−N2 be two weak nonnegative split-

tings of different types, that is, either M−1
1 N1 ≥ 0 and N2M−1

2 ≥ 0 or N1M−1
1 ≥ 0 and

M−1
2 N2 ≥ 0, where A−1 ≥ 0. If M−1

1 ≥M−1
2 , then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (3.10)

In particular, if A−1 > 0 and M−1
1 >M−1

2 , then

�
(
M−1

1 N1
)
< �

(
M−1

2 N2
)
. (3.11)

Remark 3.7. Obviously, the case of two mixed splittings of A=M1−N1 =M2−N2

(i.e., when one of them is nonnegative and the second is weak nonnegative) is fulfilled

by the assumptions of Theorem 3.6.

When both splittings are of the same type, there is not a general recipe for the choice

of additional conditions to the assumption M−1
1 ≥M−1

2 in order to ensure inequality

(2.16). However, some additional natural conditions, appearing in many applications,

are illustrated by the following result.

Theorem 3.8 (see [20]). Let A =M1−N1 =M2−N2 be two weak nonnegative split-

tings of a symmetric matrix A, where A−1 ≥ (>)0. If M−1
1 ≥ (>)M−1

2 and at least one of

M1 and M2 is a symmetric matrix, then

�
(
M−1

1 N1
)≤ (<)�(M−1

2 N2
)
. (3.12)
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In the case of the Berman-Plemmons weak regular splitting, corresponding to the

weak nonnegative splitting of the first type, Elsner [5] showed that the assumption

M−1
1 ≥M−1

2 ≥ 0 may not be a sufficient hypothesis for ensuring inequality (2.16), and

he stated the result of Theorem 3.6 for the case when one of the splittings is a regular

one. This means that Elsner restored the need of condition (2.35) sticking originally

in the Ortega-Rheinboldt’s definition of weak regular splitting. It is evident that the

Elsner’s result is a particular case of Theorem 3.6. This topic is discussed in detail in

[25].

The Ortega-Rheinboldt’s definition of weak regular splitting is used by Lanzkron,

Rose, and Szyld [7], but Szyld in his earlier paper of Marek and Szyld [9] uses the

Berman-Plemmons’ definition of weak regular splitting and he just refers it to the

Ortega-Rheinboldt’s paper [11]. Lanzkron, Rose, and Szyld [7] have proven the follow-

ing theorem for Ortega-Rheinboldt’s weak regular splittings.

Theorem 3.9 (see [7, Theorem 3.1]). Let A=M1−N1 =M2−N2 be convergent weak

regular splittings (i.e., nonnegative splittings) such that

M−1
1 ≥M−1

2 , (3.13)

and let x and z be the nonnegative Frobenius eigenvectors of M−1
1 N1 and M−1

2 N2,

respectively. If N2z ≥ 0 or if N1x ≥ 0 with x > 0, then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (3.14)

As can be deduced from Theorem 3.1, the term “convergent” is equivalent to the

assumption that A−1 ≥ 0. Since M−1 ≥ 0, M−1N ≥ 0, and �(M−1N) < 1 by the assump-

tion, then

A−1 = [I−M−1N
]−1M−1 = [I+M−1N+(M−1N

)2+(M−1N
)3+···]M−1 ≥ 0 (3.15)

and conversely, if A−1 ≥ 0, then �(M−1N) < 1.

As follows from Theorem 3.5, the hypothesisM−1
1 ≥M−1

2 is a sufficient condition in

this theorem, and the assumptions N2z ≥ 0 or N1x ≥ 0 with x > 0 are superfluous be-

cause they follow from the properties of nonnegative splittings reported in [6] as well.

For each nonnegative splitting of A=M−N , where A−1 ≥ 0 and 1> λ= �(M−1N)≥ 0,

one can write

M−1Nx = λx, where x ≥ 0 (3.16)

or equivalently

Nx = λMx, NM−1Mx = λMx, NM−1y = λy. (3.17)

Since NM−1 is also a nonnegative matrix, then its eigenvector y =Mx ≥ 0, hence

Nx = λy ≥ 0. (3.18)

Thus, this theorem supplied with additional but completely superfluous conditions,

used frequently as a reference in Marek-Szyld [9] and other papers, is equivalent to

Theorem 3.5.
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In the case of condition (G) A−1N2A−1 ≥A−1N1A−1 ≥ 0, equivalent to condition (F)

A−1M2A−1 ≥A−1M1A−1 ≥ 0, we have the following results.

Theorem 3.10 (see [20]). Let A=M1−N1 =M2−N2 be two nonnegative splittings,

or two weak nonnegative splittings of different types, that is, either M−1
1 N1 ≥ 0 and

N2M−1
2 ≥ 0 or N1M−1

1 ≥ 0 and M−1
2 N2 ≥ 0, where A−1 ≥ 0. If A−1N2A−1 ≥A−1N1A−1 ≥

0, then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (3.19)

In particular, if A−1 > 0 and A−1N2A−1 >A−1N1A−1 ≥ 0, then

�
(
M−1

1 N1
)
< �

(
M−1

2 N2
)
. (3.20)

Another class of conditions with transpose matrices have been considered by the

author in [20] and the results are summarized below.

Theorem 3.11 (see [20]). Let A=M1−N1 =M2−N2 be two weak nonnegative split-

tings of A but of the same type, that is, eitherM−1
1 N1 ≥ 0 andM−1

2 N2 ≥ 0 or N1M−1
1 ≥ 0

and N2M−1
2 ≥ 0, where A−1 ≥ 0. If NT2 ≥N1 or (M−1

1 )T ≥M−1
2 , then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (3.21)

Climent and Perea [3] showed in simple examples of regular splittings that this

theorem as well as its counterparts for weak and weaker splittings (Theorems 6.8,

6.9, and 6.10 given in [20]) fail. In the first example (see [3, Example 3]) they consider

the condition NT2 ≥ N1, and in the second case (see [3, Example 4]) the condition

(M−1
1 )T ≥M−1

2 . The example of regular splittings given below shows that when both

these conditions are simultaneously fulfilled, Theorem 3.11 is also not true. For the

monotone matrix

A=




4 −2 −1

−4 8 −2

−8 −4 12


 , (3.22)

we consider regular splittings A=M1−N1 =M2−N2, where

M1 =




4 0 0

−4 8 0

−8 −4 12


 , N1 =




0 2 1

0 0 2

0 0 0


 , M−1

1 =




1
4

0 0

1
8

1
8

0

5
24

1
24

1
12



, (3.23)

M2 =




4 −2 −1

0 8 −2

0 0 12


 , N2 =




0 0 0

4 0 0

8 4 0


 , M−1

2 =




1
4

1
16

1
32

0
1
8

1
48

0 0
1
12



. (3.24)
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Hence

M−1
1 N1 =




0
1
2

1
4

0
1
4

3
8

0
5
12

7
24



, M−1

2 N2 =




1
2

1
8

0

2
3

1
12

0

2
3

1
3

0



. (3.25)

Evidently NT2 ≥N1 and (M−1
1 )T ≥M−1

2 , but

�
(
M−1

1 N1
)= 2

3
≈ 0.6667> �

(
M−1

2 N2
)= 7+√73

24
≈ 0.6477. (3.26)

The above splittings of matrix (3.22) show not only that Theorem 3.11 fails, but it

also illustrates the behavior of the Gauss-Seidel method used in the algorithms of the

SOR method which its performance is studied in [29].

Usually a diagonally dominant matrix A is defined by the following decomposition:

A=D−L−U, (3.27)

whereD, L, andU are nonsingular diagonal, strictly lower triangular and strictly upper

triangular parts of A respectively, and the standard iterative schemes are defined as

follows.

The Jacobi method.

MJ =D, NJ = L+U, �1 =M−1
J NJ =D−1(L+U). (3.28)

The forward Gauss-Seidel method.

MfG =D−L, NfG =U, �
f
1 =M−1

fGNfG = (D−L)−1U. (3.29)

The backward Gauss-Seidel method.

MbG =D−U, NbG = L �b
1 =M−1

bGNbG = (D−U)−1L. (3.30)

As can be seen, unlike the Jacobi iteration, the Gauss-Seidel iteration depends on

the ordering of the unknowns. Forward Gauss-Seidel begins the update of x with

the first component, whereas for backward Gauss-Seidel with the last component.

Usually, when A is a nonsymmetric matrix, the spectral radii �(�f
1 ) and �(�b

1) may

have different values as is just illustrated by the splittings of the matrix (3.22); the first

splitting represents the forward Gauss-Seidel method and the second one represents

the backward Gauss-Seidel method.

However, for the symmetric case we have the following result.

Theorem 3.12 (see [29]). Let A=D−L−U be a symmetric matrix with the nonsin-

gular matrix D, then

�
(
�
f
1

)= �(�b
1

)
. (3.31)
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Proof. We can write

�
f
1 = (D−L)−1U = (D−UT )−1U, (3.32)

�b
1 = (D−U)−1L= (D−U)−1UT . (3.33)

Then we have

�
(
�b

1

)= �((D−U)−1UT
)= �(UT (D−U)−1)

= �
([
UT(D−U)−1]T)= �([(D−U)−1]TU)

= �((D−UT )−1U
)= �(�f

1

) (3.34)

which completes the proof.

Comments on Climent-Perea’s results (see [3]). The authors of [3] try not

only to extend the author’s results given in [20] to bounded operators in a general

Banach space and in some cases to a Hilbert space, but they want to apply the Perron-

Frobenius theory of nonnegative matrices for proving results with matrices that may

not be nonnegative, as it appears in the proof of [3, Theorem 5].

The trivial Corollary 1.14 of this paper, summarizing results of Corollaries 3.1 and

6.1 given in [20], became [3, Theorem 1]. [3, Theorems 2, 3, and 4] contain only the

well-known results.

In [3, Theorem 5] Climent and Perea want to prove the result of Theorem 3.3 for the

assumption N2 ≥N1 when both weak nonnegative splittings of A=M1−N1 =M2−N2

are just of different types for A−1 ≥ 0. Since their proof is based on an “interesting”

methodology; therefore, it is worth to present their approach.

If A=M1−N1 is a splitting of the first type, then from the assumption N2 ≥N1

A−1N2 ≥A−1N1 ≥ 0. (3.35)

For �(A−1N1) there exists an eigenvector x ≥ 0 such that A−1N1x = �(A−1N1)x (as

can be concluded from Theorem 3.1), then by (3.35), one obtains,

A−1N2x−�
(
A−1N1

)
x ≥ 0 (3.36)

and from Lemma 1 given in [3], it follows

�
(
A−1N1

)≤ �(A−1N2
)
, (3.37)

and by Theorem 3.1, the inequality �(M−1
1 N1)≤ �(M−1

2 N2) can be concluded.

On the other hand, if A=M2−N2 is a weak nonnegative splitting of the second type

for which N2A−1 ≥ 0 and A−1N2 �≥ 0, then there is a contradiction to inequality (3.35),

but this does not disturb to conclude by Climent and Perea that inequality (3.37) is

equivalent to

�
(
A−1N1

)≤ �(N2A−1). (3.38)

How Climent and Perea conclude the result (3.38), is not shown in [3]. Inequal-

ity (3.37) is deduced from inequality (3.36) by means of the results of the Perron-

Frobenius theory of nonnegative matrices. As an illustration, consider the following
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matrix examples:

A−1N1 =
[

1 0

1 0

]
, A−1N2 =

[
0 −1

0 2

]
, N2A−1 =

[
0 0

1 2

]
. (3.39)

Obviously, �(A−1N1) ≤ �(A−1N2), but this inequality cannot be deduced from (3.36)

because inequality (3.36) is not satisfied for both of the above matrices A−1N2 and

N2A−1.

From inequality (3.35), it follows that the second splitting should be a weak non-

negative splitting of the first type. Since for each weak nonnegative splitting we have

A−1N ≥ M−1N or NA−1 ≥ NM−1, it may occur that, for instance, NA−1 ≥ 0 with

NM−1 �≥ 0. Just such an example of splitting, considered in [6], has been submitted to

the author by Daniel Szyld for the following matrix

A=




1 −2 1

0 2 −2

−1 0 2


=M1−N1=M2−N2, where A−1=




2 2 1

1
3
2

1

1 1 1


>0, (3.40)

M1 =




1 −3
2

3
4

0 2 −201
100

−1 −1
2

3



, N1 =




0
1
2

−1
4

0 0 − 1
100

0 −1
2

1



,

M−1
1 = 1

696




999 825 303

402 750 402

400 400 400


 , M2 =




1 −3
2

3
4

0 2 −2

0 −1
2

3


 ,

N2 =




0
1
2

−1
4

0 0 0

1 −1
2

1


 , M−1

2 = 1
40




40 33 12

0 24 16

0 4 16


 ,

M−1
1 N1 = 1

696




0 348 45

0 0 309

0 0 296


 , N1M−1

1 = 1
696




101 275 101

−4 −4 −4

199 25 199


 ,

M−1
2 N2 = 1

20




6 17 1

8 −4 8

8 −4 8


 , N2M−1

2 = 1
40




0 11 4

0 0 0

40 17 20


 ,

A−1N2 =




1
1
2

1
2

1 0
3
4

1 0
3
4



≥A−1N1 =




0
1
2

23
50

0 0
147
200

0 0
74
100



≥ 0,
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N2A−1 =




1
4

1
2

1
4

0 0 0
5
2

9
4

3
2


≥N1A−1 =




1
4

1
2

1
4

− 1
100

− 1
100

− 1
100

1
2

1
4

1
2



�≥ 0.

(3.41)

In this example the first splitting is weak nonnegative of the first type withN1A−1 �≥
0, but the second splitting is weak nonnegative of the second type with A−1N2 ≥ 0 and

N2A−1 ≥ 0. Since in this example the assumption N2 ≥ N1 is satisfied and moreover,

A−1N2 ≥A−1N1 ≥ 0, one can conclude that

0.4253= �(M−1
1 N1

)
< �

(
M−1

2 N2
)= 0.6531. (3.42)

However, in this case some contradiction appears with the Perron-Frobenius theory

of nonnegative matrices again. Namely, the relation

�
(
M−1N

)= �
(
A−1N

)
1+�(A−1N

) < 1 (3.43)

have been derived with the assumption that M−1N and A−1N are nonnegative matri-

ces. In the above example we have M−1
2 N2 �≥ 0 and A−1N2 ≥ 0, but this does not allow

us to derive a conclusion from the above relation. Since we have �(A−1N)= �(NA−1)
as well as �(M−1N)= �(NM−1), and the second splitting is a weak nonnegative split-

ting of the second type, the result (3.42) can be concluded by the relation

�
(
NM−1)= �

(
NA−1)

1+�(NA−1
) < 1. (3.44)

The above result indicates that there exists a subclass of weak nonnegative split-

tings with stronger conditions A−1N ≥ 0 and NA−1 ≥ 0 which allows us to prove

inequality (3.38) when both splittings of A are weak nonnegative splittings of differ-

ent types [6]. But this requires proving that A−1N and NA−1 are nonnegative matrices

at least for one of these splittings, which seems to be a difficult or even impossible

task. Thus, we see that the above approach does not allow us to prove Theorem 3.3

for the case when both weak nonnegative splittings of A = M1 −N1 = M2 −N2 are

of different types and accompanied by N1A−1 �≥ 0 and A−1N2 �≥ 0 or A−1N1 �≥ 0 and

N2A−1 �≥ 0. However, in such a case Theorem 3.3 is valid and this fact can be proved

in a simple way as can be seen below.

Theorem 3.13. Let A = M1−N1 = M2−N2 be two weak nonnegative splittings of

the same or different type, where A−1 ≥ 0. If N2 ≥N1, then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (3.45)

Proof. The case when both splittings are of the same type has been proven in

Theorem 3.3. Assume that both splittings of A are of different types. The condition

N2 ≥N1 implies that

M2 ≥M1. (3.46)
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Since M−1
1 ≥ 0 and M−1

2 ≥ 0 by the assumption, then from (3.46) we have

M−1
1 ≥M−1

2 ≥ 0 (3.47)

which is the hypothesis of Theorem 3.6, and the result of this theorem follows immedi-

ately from Theorem 3.6 valid for weak nonnegative splittings of different types.

As can be easily verified, condition (3.47) is satisfied in the examples of splittings

of matrix (3.40) with M−1
1 >M−1

2 ≥ 0 which implies the strict inequality in (3.42).

Referring to the remaining Climent-Perea’s results, it should be mentioned that

Theorems 6 and 7 in [3] are trivial extensions of Theorems 3.4 and 3.7 (given in [20]

as Theorems 3.7, 3.8, 5.3, and 5.4), respectively.

Theorems 8, 9, and 10 in [3] are an attempt for improving the result of Theorem 3.11

and Climent and Perea claim that A must be a symmetric matrix as a necessary con-

dition.

First, such an assumption is completely useless in the convergence analysis of non-

symmetric problems.

Second, there are examples of splittings of nonsymmetric matrices A showing that

Theorem 3.11 holds, for instance, for the splittings of the Gauss-Seidel method, de-

rived from both Climent-Perea’s examples (see [3, Examples 3 and 4]), Theorem 3.11

holds, which is a contradiction to the Climent-Perea’s necessary condition thatAmust

be a symmetric matrix. It is worth to think about additional conditions ensuring that

with the hypotheses

NT2 ≥N1 (3.48)

or

(
M−1

1

)T ≥M−1
2 . (3.49)

Theorem 3.11 will be held, of course, when A is a nonsymmetric monotone matrix.

Third, assuming that M−1
2 N2 ≥ 0 and let A =M3−N3 be such a splitting for which

M3 =MT
2 and N3 =NT2 , then

(
M−1

2 N2
)T =NT2 (M−1

2

)T =N3M−1
3 ≥ 0 (3.50)

hence, it can be concluded that �(M−1
2 N2)= �(N3M−1

3 )= �(M−1
3 N3). Thus, the second

and third splittings are equivalent and we see that when A is a symmetric mono-

tone matrix, the use of conditions (3.48) and (3.49) does not provide new results in

comparison to the classic conditions N3 ≥ N1 and M−1
1 ≥M−1

3 used as hypotheses in

Theorem 3.8.

Fourth, using the Climent-Perea’s language, one can say that they assumed again a

false hypothesis in Theorem 8 in [3]. As follows from (3.48), when A = M1−N1 is a

weak nonnegative splitting of the first type (M−1
1 N1 ≥ 0), one obtains

A−1NT2 ≥A−1N1 ≥ 0, (3.51)

since A=AT , hence

A−1NT2 =
(
N2A−1)T ≥A−1N1 ≥ 0 or N2A−1 ≥ (A−1N1

)T ≥ 0. (3.52)
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When A = M1−N1 is a weak nonnegative splitting of the second type (N1M−1
1 ≥ 0),

one obtains

NT2 A−1 ≥N1A−1 ≥ 0, (3.53)

hence

NT2 A−1 = (A−1N2
)T ≥N1A−1 ≥ 0 or A−1N2 ≥

(
N1A−1)T ≥ 0. (3.54)

Then, by item (f) or (h) of Lemma 3.4, the result of [3, Theorem 8] follows immediately.

Thus, as can be concluded from the above considerations, this result of Climent-Perea,

being a particular case of the more general Lemma 3.4 (or [20, Theorem 3.16]) holds if

both weak nonnegative splittings of a symmetric monotone matrix A are of different

types. When both splittings are of the same type, then condition (3.48) may implies

difficulties in the proof, similar to those of [3, Theorem 5] and discussed above.

The equivalence of [3, Theorems 9 and 10] with Theorems 3.6 and 3.11 can be shown

in a similar way, where passing to conditions (3.28) and (3.29) is accompanied with

the change of splitting types.

[3, Theorems 11 and 12] are again particular cases of Lemma 4.4, and [3, Theorem

3] is an example of manipulation of the author’s results [20] because all assumptions

considered in this theorem were just analyzed in detail in [20]. In the last six theorems

of Section 4 in [3], Climent and Perea collect conditions and duplicate the results

known already.

The author finds in Climent-Perea’s paper [3] only one valuable result showing that

Theorem 3.11 and its versions for weak and weaker splittings given in [20] fail. The

inspection of theorems in [3] shows that there are no new results or ideas useful for

matrix splitting applications, except the trivial extension of known results to bounded

operators. Theorems 8 and 10 in [3] are an attempt in saving Theorem 3.11 for sym-

metric monotone matrices; however, as was already shown these theorems are par-

ticular cases of known results. Thus, it seems that a generalization of existing results

was the main intention of Climent and Perea and all examples in [3] are given only

for matrix splittings for which the original results are satisfied. It is interesting that

in a rich collection of splitting examples given in [3], which seems to be a challenge

for making exercises with matrix operations and finding inverse matrices by poten-

tial readers, there is no any example illustrating Theorem 5 in [3] for the assumption

N2 ≥N1 when both weak nonnegative splittings are of different types.

Finally we have the following corollary.

Corollary 3.14. Let A = M1−N1 = M2−N2 be two weak nonnegative splittings,

where A−1 ≥ 0, then

(a) the assumption N2 ≥N1 allows us to prove that �(M−1
1 N1)≤ �(M−1

2 N2) for an

arbitrary type of splittings,

(b) if both splittings are of the same type, then the assumption M−1
1 ≥M−1

2 ≥ 0 is

not a sufficient condition for proving that �(M−1
1 N1)≤ �(M−1

2 N2).

4. Weak and weaker splittings. As was stated in the previous section, weak non-

negative splittings, determined by conditions (2.31) and either (2.33) or (2.35), are
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convergent if and only if A−1 ≥ 0, which means that both conditions A−1 ≥ 0 and

�(M−1N) = �(NM−1) < 1 are equivalent. In the case of weak and weaker splittings

(based on conditions (2.33) and/or (2.35)), the assumption A−1 ≥ 0 is not a sufficient

condition in order to ensure the convergence of a given splitting of A; it is also pos-

sible to construct a convergent weak or weaker splitting when A−1 �≥ 0. Moreover, as

can be shown in examples, the conditions A−1N ≥ 0 or NA−1 ≥ 0 may not ensure that

a given splitting of A will be a weak or weaker splitting.

As a result of [20, Theorem 6.1] we have

Theorem 4.1. LetA=M−N be a weaker splitting ofA. IfA−1N≥0 orNA−1≥0, then

(1) if M−1N ≥ 0, then A−1N ≥M−1N and if NM−1 ≥ 0, then NA−1 ≥NM−1,

(2) �(M−1N)= �(A−1N)/(1+�(A−1N))= �(NA−1)/(1+�(NA−1)) < 1.

Thus, in this case of a convergent weaker splitting there are three conditionsM−1N
≥ 0 (or NM−1 ≥ 0), A−1N ≥ 0 (or NA−1 ≥ 0) and �(M−1N) = �(NM−1) < 1, and any

two conditions imply the third. However, the two last conditions may also imply a

convergent splitting for which M−1N �≥ 0 and NM−1 �≥ 0.

Theorem 4.2. Let A = M1 −N1 = M2 −N2 be two weaker splittings of A of the

same type, that is, either M−1
1 N1 ≥ 0 and M−1

2 N2 ≥ 0 or N1M−1
1 ≥ 0 and N2M−1

2 ≥ 0. If

A−1N2 ≥A−1N1 ≥ 0 or N2A−1 ≥N1A−1 ≥ 0, then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (4.1)

Remark 4.3. Obviously, when A−1 ≥ 0, the condition N2 ≥ N1 is included in the

hypotheses of Theorem 4.2

The first part of the relation in item (2) of Theorem 4.1 has been proven in 1970

by Marek [8] using the name “splitting of a positive type” and corresponding to the

weaker splitting of the first type, and he stated the result of Theorem 4.2 for the

hypothesis A−1N2 ≥A−1N1 ≥ 0.

It is interesting to ask if Theorem 4.2 is valid for the condition N2 ≥N1 when both

weaker splittings of a monotone matrix A (i.e., A−1 ≥ 0) are of different types. As

was discussed in Section 3 for weak nonnegative splittings, considering the inequali-

ties such as the assumptions of Theorem 4.2 does not lead for proving the inequality

�(M−1
1 N1) ≤ �(M−1

2 N2). The proof of Theorem 3.13 is based on considering the con-

dition M2 ≥M1 implied by N2 ≥N1. In the case of weaker splittings we may have that

M−1
1 �≥ 0 and M−1

2 �≥ 0 and the condition (3.47) may not be valid. Thus, Theorem 4.2

may not hold when both weaker splittings are of different types.

Weak splittings are analyzed in [1, 8, 9, 10, 12, 13, 20]. In [20, Section 6], some

comparison theorems for convergent weak splittings of a monotone matrix A are

proven under the conditions considered previously for weak nonnegative splittings

as well as with more composed hypotheses. It is evident that Lemma 3.4, Theorems

3.5, and 3.6, Remark 3.7, Corollary 3.14, and Theorem 3.10 have their counterparts

for weak and weaker splittings, as is given below.

Lemma 4.4 (see [20]). Let A = M1−N1 = M2−N2 be two weaker splittings of A. If

one of the following inequalities:

(a) A−1N2 ≥A−1N1 ≥ 0,
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(b) A−1N2 ≥N1A−1 ≥ 0,

(c) N2A−1 ≥N1A−1 ≥ 0,

(d) N2A−1 ≥A−1N1 ≥ 0,

(e) A−1N2 ≥ (A−1N1)T ≥ 0,

(f) A−1N2 ≥ (N1A−1)T ≥ 0,

(g) N2A−1 ≥ (N1A−1)T ≥ 0,

(h) N2A−1 ≥ (A−1N1)T ≥ 0,

is satisfied, then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (4.2)

Theorem 4.5 (see [20]). LetA=M1−N1 =M2−N2 be two convergent weak splittings

of A, where A−1 ≥ 0. If M−1
1 ≥M−1

2 , then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (4.3)

In particular, if A−1 > 0 and M−1
1 >M−1

2 , then

�
(
M−1

1 N1
)
< �

(
M−1

2 N2
)
. (4.4)

Theorem 4.6 (see [20]). Let A = M1 −N1 = M2 −N2 be two convergent weaker

splittings of different types, that is, either M−1
1 N1 ≥ 0 and N2M−1

2 ≥ 0 or N1M−1
1 ≥ 0

and M−1
2 N2 ≥ 0, where A−1 ≥ 0. If M−1

1 ≥M−1
2 , then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (4.5)

In particular, if A−1 > 0 and M−1
1 >M−1

2 , then

�
(
M−1

1 N1
)
< �

(
M−1

2 N2
)
. (4.6)

Remark 4.7. Obviously, the case of two mixed splittings of A=M1−N1 =M2−N2

(i.e., when one of them is weak and the second is weaker) is fulfilled by the assumptions

of Theorem 4.6.

Corollary 4.8. Let A = M1−N1 = M2−N2 be two convergent weaker splittings,

where A−1 ≥ 0, then

(a) the assumption N2 ≥N1 allows us to prove that �(M−1
1 N1)≤ �(M−1

2 N2) if both

splittings are of the same type, this assumption may not be valid when both

splittings are of different types,

(b) if both splittings are of the same type, then the assumption M−1
1 ≥M−1

2 ≥ 0 is

not a sufficient condition for proving that �(M−1
1 N1)≤ �(M−1

2 N2).

Theorem 4.9 (see [20]). Let A = M1−N1 = M2−N2 be two convergent weak split-

tings, or two convergent weaker splittings of different types, that is, either M−1
1 N1 ≥

0 and N2M−1
2 ≥ 0 or N1M−1

1 ≥ 0 and M−1
2 N2 ≥ 0, where A−1 ≥ 0. If A−1N2A−1 ≥

A−1N1A−1 ≥ 0, then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (4.7)

In particular, if A−1 > 0 and A−1N2A−1 >A−1N1A−1 ≥ 0, then

�
(
M−1

1 N1
)
< �

(
M−1

2 N2
)
. (4.8)
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Some conditions and comparison theorems for convergent weaker splittings were

considered by Song [12], where he uses the terminology “nonnegative splitting” for

the weaker splitting of the first type. His result is given in the following lemma.

Lemma 4.10 (see [12]). LetA=M−N be a weaker splitting of a nonsingular matrixA.

If A−1M ≥ 0, then

�
(
M−1N

)= �
(
A−1M

)−1
�
(
A−1M

) < 1. (4.9)

Conversely, if �(M−1N) < 1, then A−1M ≥ 0.

The condition A−1M ≥ 0, ensuring by Lemma 4.10 that a given weaker splitting is

convergent suggests some generality of results presented in [12]. However, as can be

easily shown, this condition is equivalent to the conditions A−1M ≥ I and A−1N ≥ 0.

In reality,

A−1M =A−1[A+N]= I+A−1N ≥ 0, (4.10)

which means that some diagonal entries of A−1N may be negative with values ≥ −1.

But on the other hand for a convergent weak splitting of A we have

A−1N = [I+M−1N
]−1M−1N =


 ∞∑
i=0

(
M−1N

)iM−1N ≥M−1N ≥ 0, (4.11)

which implies thatA−1N ≥ 0, henceA−1M = I+A−1N ≥ I as follows from (4.10), which

gives us �(A−1M) = 1+�(A−1N). Thus, Lemma 4.10 is completely equivalent to the

following result.

Lemma 4.11. Let A = M −N be a weaker splitting of a nonsingular matrix A. If

A−1M ≥ 0 orMA−1 ≥ 0, thenA−1N ≥ 0 andA−1M = I+A−1N orNA−1 ≥ 0 andMA−1 =
I+NA−1, and

�
(
M−1N

)= �
(
A−1M

)−1
�
(
A−1M

) = �
(
A−1N

)
�
(
A−1N

)+1
< 1. (4.12)

Conversely, if �(M−1N) < 1, then A−1N ≥ 0 or NA−1 ≥ 0.

As follows from the scheme of condition implications shown in Figure 2.1, both con-

ditions (D) and (E) are equivalent and comparison theorems based on the hypothesis

A−1M2 ≥A−1M1 ≥ 0 (or M2A−1 ≥M1A−1 ≥ 0) are equivalent to Theorem 4.2.

Both equivalent conditions A−1M ≥ 0 and A−1N ≥ 0 imply by Lemma 4.11 that

a weaker splitting of A is convergent but, as will be shown in the examples, these

conditions do not ensure that each splitting will be a weak or weaker splitting.

The verification of both mentioned conditions requires the explicit form of A−1

which may be cumbersome or impracticable. However, in this case of a monotone

matrix A, we have the following useful results based on simply verifiable conditions.

Lemma 4.12. Let A = M −N be a weaker splitting A, where A−1 ≥ 0. If M ≥ A or

equivalently N ≥ 0, then the splitting is a convergent weak splitting of A, characterized

by M−1N ≥ 0 and NM−1 ≥ 0.
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Proof. Since A−1 ≥ 0, then the simple condition

M ≥A (4.13)

or M =A+N ≥A; giving equivalently

N ≥ 0 (4.14)

implies that

A−1M ≥ I ≥ 0, MA−1 ≥ I ≥ 0, (4.15)

A−1N ≥ 0, NA−1 ≥ 0. (4.16)

Hence, by Lemma 4.11, it is evident that the splitting of A is convergent, and by

Theorem 4.1, is a weak splitting.

Theorem 4.13. Let A=M1−N1 =M2−N2 be two weak splittings of A, where A−1 ≥
0. If M2 ≥M1 ≥A or equivalently N2 ≥N1 ≥ 0, then

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (4.17)

Moreover, if A−1 > 0, then

�
(
M−1

1 N1
)
< �

(
M−1

2 N2
)
. (4.18)

In order to illustrate the above results, consider some splittings for the following

example of the monotone matrix

A=
[

2 −1

−1 2

]
=Mi−Ni, where A−1 = 1

3

[
2 1

1 2

]
,

M1 =
[

4 1

1 4

]
, N1 =

[
2 2

2 2

]
, M−1

1 N1 = 1
15

[
6 6

6 6

]
, �

(
M−1

1 N1
)= 4

5
,

M2 =
[

4 2

2 4

]
, N2 =

[
2 3

3 2

]
, M−1

2 N2 = 1
6

[
1 4

4 1

]
, �

(
M−1

2 N2
)= 5

6
,

M3 =
[

4 3

3 4

]
, N3 =

[
2 4

4 2

]
, M−1

3 N3 = 1
7

[
−4 10

10 −4

]
, �

(
M−1

3 N3
)= 2

√
29

7
,

M4 =
[
−2 2

1 −2

]
, N4 =

[
−4 3

2 −4

]
, M−1

4 N4 =

2 1

0
5
2


 , �(M−1

4 N4)= 5
2
,

M5 =
[

3 −2

1 4

]
, N5 =

[
1 −1

2 2

]
, M−1

5 N5 = 1
14

[
8 0

5 7

]
, �

(
M−1

5 N5
)= 4

7
.

(4.19)

As can be easily noticed, conditions (4.13) and (4.14) are satisfied only in the first

three splittings. The first two splittings are convergent weak splittings, while the third
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splitting is not either weaker or convergent. The fourth splitting is a disconvergent

weak splitting. The fifth is a convergent weaker splitting of the first type because

N5M−1
5 �≥ 0. The first two splittings illustrate the results of Theorem 4.13, where for

M2 ≥M1 > 0 (or equivalentlyN2 ≥N1 > 0) we have �(M−1
1 N1) < �(M−1

2 N2). Lemma 4.4

is illustrated by the first, second, and fifth splittings for which A−1N2 ≥ A−1N1 ≥
A−1N5 ≥ 0 and �(M−1

5 N5) < �(M−1
1 N1) < �(M−1

2 N2).
As can be seen in the above examples of splittings, the inequalities M ≥ A or N ≥

0 are not either sufficient or necessary conditions for existing weak and weaker or

convergent weak and weaker splittings of monotone matrices. It is evident that the

inequalities A−1N ≥ 0 or NA−1 ≥ 0, implying A−1M = I +A−1N ≥ 0 or MA−1 = I +
NA−1 ≥ 0, are necessary conditions by Lemma 4.11, but as can be seen in the third

splitting these inequalities are not sufficient conditions for existing convergent weak

and weaker splittings. Thus, the criteria for the construction of convergent weak and

weaker splittings of even monotone matrices remain an open question.

Comparison theorems for convergent weaker splittings of the first type, using the

eigenvectors of M−1
1 N1 and/or M−1

2 N2 in hypotheses, are considered by Marek and

Szyld [9], where in the case of matrix splittings their theorem has the following form.

Theorem 4.14 (see [9, Theorem 3.11]). Let A=M1−N1 =M2−N2 be weaker split-

tings with T1 =M−1
1 N1, T2 =M−1

2 N2, and �(T1) < 1, �(T2) < 1. Let x ≥ 0 and z ≥ 0 be

such that T1x = �(T1)x, T2z = �(T2)z. If either N1x ≥ 0 or N2z ≥ 0 with z > 0, and if

M−1
1 ≥M−1

2 , (4.20)

then

�
(
T1
)≤ �(T2

)
. (4.21)

Moreover, if M−1
1 >M−1

2 and if N1 �=N2, then

�
(
T1
)
< �

(
T2
)
. (4.22)

In the proof for the assumption N1x ≥ 0, Marek and Szyld obtained the following

relation

M1x = 1
�
(
T1
)N1x ≥ 0. (4.23)

Consider the following example of regular splitting

A=
[
−1 2

2 0

]
=M1−N1 =

[
0 2

2 0

]
−
[

1 0

0 0

]
, (4.24)

for which

T1 =M−1
1 N1 =


0 0

1
2

0


 , �(T1)= 0. (4.25)

Thus, for the above example of regular splitting, relation (4.23) fails.
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Theorem 4.14 is illustrated in the example of nonnegative splittings of a monotone

matrix A (see [9, Example 3.10]) for which Marek and Szyld notice that the Lanzkron-

Rose-Szyld Theorem 3.9 (accompanied by superfluous assumptions as was shown in

the previous section and equivalent to Theorem 3.5) holds. Similarly as in the case of

Theorem 3.9, it can be easily shown that for A−1 ≥ 0 Theorem 4.14 is equivalent to

Theorem 4.5 when both splittings of A are weak splittings or to Theorem 4.6 when

both splittings are weaker splittings of different types. But in this case, additional

hypotheses of Theorem 4.14 are evidently superfluous.

Moreover, Marek and Szyld comment (see [9, Remark 3.12]) that the author’s result

Theorem 2.3 does not hold for weak regular splittings without additional hypothesis.

As was already mentioned Marek and Szyld use the weaker Berman-Plemons’ defini-

tion of weak regular splitting [2] but they refer it to the Ortega-Rheinboldt’s paper [11],

where there is the original definition of weak regular splitting for which Theorem 2.3

holds. Thus, this comment of Marek and Szyld is a next example of the confusion

following from unjustified removing the condition NM−1 ≥ 0 existing in the Ortega-

Rheinboldt’s definition of weak regular splitting.

In the recent study of weak and weaker splittings for the case when A−1 ≤ 0, the

author obtained the following results [27, 28] being counterparts to Theorems 3.3,

4.5, and 4.6.

Theorem 4.15 (see [27]). Let A = M1 −N1 = M2 −N2 be two convergent weaker

splittings of the same type, where A−1 ≤ 0. If N2 ≥N1, then

�
(
M−1

1 N1
)≥ �(M−1

2 N2
)
. (4.26)

Theorem 4.16 (see [27]). Let A =M1−N1 =M2−N2 be two convergent weak split-

tings of A, where A−1 ≤ 0. If M−1
1 ≥M−1

2 , then

�
(
M−1

1 N1
)≥ �(M−1

2 N2
)
. (4.27)

In particular, if A−1 < 0 and M−1
1 >M−1

2 , then

�
(
M−1

1 N1
)
> �

(
M−1

2 N2
)
. (4.28)

Theorem 4.17 (see [27]). Let A = M1 −N1 = M2 −N2 be two convergent weaker

splittings of different types, that is, eitherM−1
1 N1 ≥ 0 and N2M−1

2 ≥ 0 or N1M−1
1 ≥ 0 and

M−1
2 N2 ≥ 0, where A−1 ≤ 0. If M−1

1 ≥M−1
2 , then

�
(
M−1

1 N1
)≥ �(M−1

2 N2
)
. (4.29)

In particular, if A−1 < 0 and M−1
1 >M−1

2 , then

�
(
M−1

1 N1
)
> �

(
M−1

2 N2
)
. (4.30)

Thus, we see that passing from the assumption A−1 ≥ 0 to the assumption A−1 ≤ 0

changes the inequality sign in the inequalities for spectral radii.

Consider the case of conditions (H) of Figure 2.1. As can be seen, conditions (H1) and

(H2) are implied indirectly by condition (C), on the other hand all conditions (H1), (H2),
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(H3), and (H4) are implied directly by condition (E). Both conditions (H1) and (H2) allow

us to prove Theorem 2.3 for regular splittings as is shown by relations (2.9) to (2.16).

Now it seems to be interesting to ask, is it possible to use the separation of conditions

(H1) and (H2) as well as (H3) and (H4) in order to prove the inequality �(M−1
1 N1) ≤

�(M−1
2 N2)? Beauwens [1] assumed all these conditions as separate hypotheses and he

stated for weaker splittings of the first type the following results.

Theorem 4.18 (see [1, page 342]). Let A = M1 −N1 = M2 −N2 be two splittings

of A such that M1 and M2 are nonsingular, M−1
1 N1 and M−1

2 N2 are nonnegative and

convergent. Then, any of the four assumptions

(a) (A−1N2−A−1N1)A−1N1 ≥ 0, (H1)

(b) (A−1N2−A−1N1)A−1N2 ≥ 0, (H2)

(c) A−1N1(A−1N2−A−1N1)≥ 0, (H3)

(d) A−1N2(A−1N2−A−1N1)≥ 0. (H4)

implies

�(M−1
1 N1)≤ �(M−1

2 N2). (4.31)

Corollary 4.19 (see [1, page 342]. Let A = M1−N1 = M2−N2 be two splittings

of A such that M1 and M2 are nonsingular, M−1
1 N1 and M−1

2 N2 are nonnegative and

convergent. Then, any of the two assumptions

(a) (M−1
1 −M−1

2 )N1 ≥ 0,

(b) (M−1
1 −M−1

2 )N2 ≥ 0 implies

�
(
M−1

1 N1
)≤ �(M−1

2 N2
)
. (4.32)

It appears that Beauwens succeeded only with assumptions (a) and (c) of Theorem

4.18, and (a) of Corollary 4.19, and in 1986 he has corrected his results [1, (Erratum)].

Later in 1991 Song [12] has shown in the example of regular splittings derived from

a 3×3 diagonal matrix A that these results fail for the remaining assumptions. This

allows us to conclude that only conditions (H1) and (H3) can be considered as separate

hypotheses but in the case of conditions (H2) and (H4), it is necessary to use additional

assumptions.

This topic is discussed in detail in [25] and it was shown that when A−1N2 is a non-

singular matrix, which corresponds to the nonsingularity ofN2, conditions (H2) or (H4)

are sufficient hypotheses. Song [12] showed that if at least one of A−1N1 and A−1N2

is an irreducible matrix, then Theorem 4.18 is valid with items (b) and (d) as well.

As can be seen in the scheme of condition implications, condition (D) implies further

conditions (K1), (K2), (K3) and (K4) equivalent to (L1), (L2), (L3), and (L4), respectively.

Since A−1M1 and A−1M2 are nonsingular matrices, conditions (K) can be used as sep-

arate hypotheses of weak splittings in comparison theorems proven by means of the

methodology presented in [25]. In the case of conditions (L) the nonsingular matrices

I+A−1N1 and I+A−1N2 can be extracted in both hand-sides of the inequality, which al-

lows us to prove comparison theorems under the separate hypotheses (L) using again

the same methodology [25].

Further generalizations for weaker splittings of A=M1−N1 =M2−N2 with A−1N1

≥ 0 and A−1N2 ≥ 0 may be proven under composed hypotheses derived from some

power combinations of conditions (H) and (K) or (L).
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Comparison theorems for weaker splittings of the first type are considered in Miller

and Neumann [10] with the following hypothesis

(
A−1N1

)i+j ≤ (A−1N1
)i(A−1N2

)j , (4.33)

and in Song [12] for such hypotheses as, for instance

(
A−1M1

)i+j ≤ (A−1M1
)i(A−1M2

)j , (4.34)

where i ≥ 1 and j ≥ 1. In the case of condition (4.34), Song [12] assumed that non-

singular matrices A−1M1 ≥ 0 and A−1M2 ≥ 0 are irreducible. However, as is shown in

[25] only the nonsingularity of these matrices is a sufficient condition for proving the

inequality �(M−1
1 N1)≤ �(M−1

2 N2).

5. Conclusion. The splittings defined in the successive items of Definition 1.13 ex-

tend successively a class of splittings of A=M−N for which the matrices N andM−1

may lose the properties of nonnegativity. Distinguishing both types of weak nonneg-

ative and weaker splittings leads to further extensions allowing us to analyze cases

when M−1N may have negative entries even if NM−1 is a nonnegative matrix.

Conditions ensuring that a splitting of A=M−N will be convergent are discussed

in Section 1 for a general case. The main result of this section, Theorem 1.1, shows

that for an arbitrary splitting of A =M−N with the nonsingular matrices A and M ,

the matrices M−1N and A−1N (as well as NM−1 and NA−1) commute. These commu-

tative properties of M−1N and A−1N allowed us to determine the dependence of the

eigenvalue spectra of both matrices, as is shown in the results of Section 1.

As follows from Theorem 3.1, the splittings defined in first three items of

Definition 1.13 are convergent if and only ifA−1 ≥ 0, which means that both conditions

A−1 ≥ 0 and �(M−1N)= �(NM−1) < 1 are equivalent. In the case of weak and weaker

splittings, the assumption A−1 ≥ 0 is not a sufficient condition in order to ensure the

convergence of a given splitting ofA; it is also possible to construct a convergent weak

or weaker splitting when A−1 �≥ 0. Moreover, the conditions A−1N ≥ 0 or NA−1 ≥ 0

may not ensure that a given splitting of A will be a weak or weaker splitting. As can be

seen from Theorem 4.1, for a convergent weaker splitting there are three conditions

M−1N ≥ 0 (or NM−1 ≥ 0), A−1N ≥ 0 (or NA−1 ≥ 0), and �(M−1N)= �(NM−1) < 1, and

any two conditions imply the third; however, as was already mentioned in Section 4,

two last conditions may imply, not necessarily a weak splitting. Thus, the criteria for

the construction of convergent weak or weaker splittings of even monotone matrices

remain an open question.

Comparison theorems, proven under the progressively weakening conditions pre-

sented in the scheme of condition implications shown in Figure 2.1, provide successive

generalizations, but it is accompanied with an increased complexity in the verification

of hypotheses.

The conditions N2 ≥N1 and progressively weakerM−1
1 ≥M−1

2 may be considered as

natural conditions appearing in many applications. It should be emphasized that for

verifying the last condition, it is not always necessary to compute inverses because the

validity of this inequality can be very often deduced from the structure of the matrices

M1 and M2 (cf. [20, Section 4], which justifies a natural character of this condition.
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For the verification of condition (E) A−1N2 ≥ A−1N1 ≥ 0 (and similar conditions of

Lemmas 3.4 and 4.4) equivalent to (D) A−1M2 ≥ A−1M1 ≥ 0, the Csordas-Varga’s con-

dition (G) A−1N2A−1 ≥ A−1N1A−1 ≥ 0 equivalent to Song’s condition (F) A−1M2A−1 ≥
A−1M1A−1 ≥ 0 as well as conditions (H1) to (H4) used by Beauwens [1] in Theorem 4.15,

it is necessary to know explicitly the matrix A−1 which can be a cumbersome or im-

practical task when the matrix A has a large order. On the other hand, when A−1 is

known, the solution can be obtained directly from the equation x = A−1b, and the

convergence analysis based on the above conditions becomes an aimless task.

However, condition (E) A−1N2 ≥A−1N1 ≥ 0 (as well as similar conditions of Lemmas

3.4 and 4.4) has an important theoretical meaning. Just, showing the validity of this

condition allows us to prove many comparison theorems.

Marek and Szyld [9] introduced conditions with verification based on the knowledge

of eigenvectors of iterative matrices, and similar conditions are also used as hypothe-

ses of comparison theorems in [20]. However, the arithmetical effort for verification

of such hypotheses may be comparable to the arithmetical effort required for the iter-

ative or direct solution of the equation Ax = b. The hypotheses of Theorem 4.14 are

based on the knowledge of the eigenvectors x ≥ 0 and/or z ≥ 0 such that M−1
1 N1x =

�(M−1
1 N1)x and M−1

2 N2z = �(M−1
2 N2)z. If the condition N1x ≥ 0 is not satisfied,

then it is necessary to find the second eigenvector z ≥ 0, that is, both spectral radii

�(M−1
1 N1) and �(M−1

2 N2) are known now, and their direct comparison provides the

sought result, not necessarily satisfying the theorem thesis, but this weakens the

meaning of such theorems in applications. As was already pointed out, in the case

of monotone matrices A, the Marek-Szyld’s Theorem 4.14 reduces to simpler Theo-

rems 4.5 and/or 4.6.

Csordas and Varga [4], introducing condition (2.21), that is,(
A−1N2

)jA−1 ≥ (A−1N1
)jA−1 ≥ 0, j ≥ 1 (5.1)

for regular splittings, in some sense opened a new category of composed conditions,

and their work was continued by Miller and Neumann [10], who considered hypothesis

(4.14), and by Song [12, 13] in the case of hypothesis (4.15), where i ≥ 1 and j ≥ 1.

However, the authors of [10, 12, 13] did not give any simple examples of splittings

showing that conditions (4.14) and (4.15) are not satisfied with i = 1 and j = 1 but

they hold for i > 1 and/or j > 1. Song [12, 13] illustrates his results only in examples

of regular splittings, with j = 1 and l= 1, for which Varga’s Theorem 2.2 is satisfied.

Thus, the results obtained under these hypotheses have only a theoretical meaning.

Finally, it is worth to mention that only the comparison theorems based on the

conditions N2 ≥N1 and M−1
1 ≥M−1

2 found applications in actual practice [14, 15, 16,

20, 30].
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