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Abstract. We make some remarks concerning the invariant subspace problem for hy-
ponormal operators. In particular, we bring together various hypotheses that must hold
for a hyponormal operator without nontrivial invariant subspaces, and we discuss the
existence of such operators.
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Let � be a separable, infinite-dimensional, complex Hilbert space and denote by

�(�) the algebra of all linear and bounded operators on �. An operator T ∈�(�) is

called hyponormal (notation: T ∈H(�)) if [T∗,T ] := T∗T −TT∗ ≥ 0, or equivalently,

if ‖T∗x‖ ≤ ‖Tx‖ for every x ∈�.

The purpose of this paper is to use several results that may be applied to the

invariant subspace problem (ISP) for hyponormal operators and thus to bring into

focus what remains to be done to solve the problem completely. We begin by recalling

some standard notation and terminology to be used. For a (nonempty) compact subset

K ⊂ C, we denote by C(K) the Banach algebra of all continuous complex-valued func-

tions on K with the supremum norm, by Rat(K) the subalgebra of C(K) consisting

of all rational functions with poles off the set K, and by R(K) the closure in C(K) of

Rat(K). For T ∈�(�), the spectrum of T is denoted by σ(T) and the algebra {r(T) :

r ∈ Rat(σ(T))} by Rat(T). The rational cyclic multiplicity of T (notation: m(T)) is the

smallest cardinal numbermwith the property that there arem vectors {xi}0≤i<m in �

such that∨{Axi | 0≤ i <m, A∈ Rat(T)} =�. For a bounded (nonempty) open subset

U ⊂ C, one denotes by H∞(U) the Banach algebra of those analytic complex-valued

functions on U with the property that ‖f‖∞,U := supz∈U |f(z)| < ∞. The ideal of all

compact operators on � will be denoted by K =K(�). Since K is a two-sided, norm-

closed ideal in �(�), the quotient algebra �(�)/K is a C∗-algebra, which is called

the Calkin algebra, and the quotient map from �(�) to �(�)/K will be denoted by

π . For T in �(�), we write σe(T) (resp., σre(T),σle(T)) for the essential (resp., r ight-,

left-essential) spectrum of T (i.e., the spectrum (resp., right, left spectrum) of π(T)).
An operator A∈K(�) is called a trace-class operator (notation: A∈ �1(�)) if the se-

ries tr(|A|) := ∑i∈N〈|A|ei,ei〉 is convergent, where |A| = (A∗A)1/2 and {ei}i∈N is an

orthonormal basis of �. An operator A∈K(�) is Hilbert-Schmidt operator (notation:

A ∈ �2(�)) if A∗A ∈ �1(�). For a selfadjoint operator A ∈ �(�), A− will denote its

negative part (|A|−A)/2. Finally, µ will denote planar Lebesgue measure defined on

the Borel subsets of R2.
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A beautiful generalization of the Berger-Shaw inequality for hyponormal operators

[3] was given by Voiculescu.

Theorem 1 (see [17]). If [T∗,T ]− ∈ �1(�) and X ∈ �2(�) is such that m(T +X) <
+∞, then [T∗,T ]∈�1(�) and π tr([T∗,T ])≤m(T +X)µ(σ(T +X)).

For purposes of finding a nontrivial invariant subspace (n.i.s.) for an arbitrary

operator T ∈ �(�), one may assume that every nonzero vector in � is cyclic for

T , and hence thatm(T)= 1. Thus the following corollary (of Theorem 1 or the earlier

Berger-Shaw inequality) is useful.

Corollary 2. Every hyponormal operator T in �(�) with a rational cyclic vector

(i.e.,m(T)= 1) is essentially normal (i.e.,π(T) is normal in the Calkin algebra).

When looking for a n.i.s. for an arbitrary T in �(�), one knows (cf. [10]) from a

deep theorem of Apostol, Foiaş, and Voiculescu [2] that T may be assumed to belong

to the class ���(�) of biquasitriangular operators, (see [10] for the definition and a

characterization). If we denote by ��(�) the collection of essentially normal operators

on � and by (N+K)(�) the collection of those operators in �(�)which can be written

as a sum of a normal and a compact operator, then a deep result of Brown-Douglas-

Fillmore can also be applied.

Theorem 3 (see [5]). The equality ���(�)∩��(�)= (N+K)(�) holds.

It is thus immediate from Theorems 1 and 3 and Corollary 2 that if there exists T
in H(�) without a n.i.s., then [T∗,T ]∈�1(�) and T ∈ (N+K)(�).

A hyponormal operator is called pure if it does not have a nonzero reducing sub-

space to which its restriction is a normal operator. Obviously an operator in H(�)
without a n.i.s. is pure. The following result of Putnam [14] leads to another reduction

of the ISP for hyponormal operators.

Theorem 4. Let T ∈�(�) be a pure hyponormal operator. If ∆⊂ C is an open set,

then µ(∆∩σ(T)) > 0 whenever ∆∩σ(T)≠∅.

This says that each point of the spectrum of such a T has positive planar density,

and thus we may assume of a hyponormal operator T without a n.i.s. that σ(T) has

not only positive µ-measure but positive planar density at each point.

Let A∈�(�) be a selfadjoint operator and denote by E the spectral measure of the

operator A. To every vector x ∈� one may associate the Borel measure νx on R de-

fined by νx(Ω)= 〈E(Ω)x,x〉 for every Borel setΩ ⊂R. The vector x is called absolutely

continuous with respect to A if the measure νx is absolutely continuous with respect

to Lebesgue measure on R. The selfadjoint operator A is called absolutely continuous

if every vector of � is absolutely continuous with respect to A. The following result

can be found in [13], (see also [9, page 135]).

Proposition 5. If T = X + iY ∈ �(�) is the Cartesian decomposition of a pure

hyponormal operator, then X and Y are both absolutely continuous operators.

Next, recall that a subset ∆ of a nonempty open set U in C is called dominating for

U if ‖f‖∞,U = supλ∈∆ |f(λ)|, f ∈H∞(U).
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The deep invariant subspace theorem for hyponormal operators obtained by Brown

in [6] on the basis of the beautiful structure theorem for such operators by Putinar

[12] is the following.

Theorem 6. Let T ∈ �(�) be a hyponormal operator. If there is a nonempty open

set U ⊂ C such that σ(T)∩U is dominating for U , then T has a n.i.s.

Since one knows (cf. [1] or [6]) that if K is a (nonempty) compact set in C such that

R(K)≠ C(K), thenK is dominating on some nonempty open set, one gets immediately

the following corollary.

Corollary 7 (see [6]). Any hyponormal operator T ∈�(�)withR(σ(T))≠C(σ(T))
has a n.i.s.

Thus if there exist hyponormal operators T without a n.i.s., then as noted above, T ∈
(N+K)(�) and σ(T)must satisfy R(σ(T))= C(σ(T)). Moreover, it is a consequence

of elementary Fredholm theory (cf. [10]) that if T ∈�(�) and σle(T)≠ σ(T), then T∗

has point spectrum and thus T has a n.i.s. Hence when looking for invariant subspaces

for an arbitrary operator T we may always suppose that σle(T)= σre(T)= σ(T). This

allows one to apply a result of Stampfli [16] to the problem.

Theorem 8. Suppose T ∈ ��(�) is such that σ(T) = σle(T) and the Calkin map

π : Rat(T)→�(�)/K is bounded below. Then T has a n.i.s.

Proof. By hypothesis, there exists a constant M > 0 such that ‖π(r(T))‖e ≥
M‖r(T)‖ for every r ∈ Rat(σ(T)), where ‖ · ‖e is the norm in the Calkin algebra.

On the other hand,

∥∥π
(
r(T)

)∥∥
e =

∥∥r
(
π(T)

)∥∥
e = sup

z∈σe(T)

∣∣r(z)
∣∣= sup

z∈σ(T)

∣∣r(z)
∣∣. (1)

Thus ‖r(T)‖ ≤ (1/M)‖r‖σ(T), r ∈ Rat(σ(T)), so σ(T) is a (1/M)-spectral set for T .

The result now follows from [16].

Corollary 9. If T ∈H(�) and T has no n.i.s., then there exist sequences {rn(T)}n∈N
in the algebra Rat(T) and {Kn}n∈N in K such that ‖rn(T)‖ = 1, n ∈ N, and ‖rn(T)−
Kn‖ → 0. Moreover, any such sequence {rn(T)}n∈N has no subnet converging in the

weak operator topology (WOT) to a nonzero operator.

Proof. Since T ∈ H(�) has no n.i.s., m(T) = 1, and according to Corollary 2,

T ∈ ��(�). According to Theorem 8, π : Rat(T) → �(�)/K must not be bounded

below. Thus, there are sequences {rn(T)}n∈N in the algebra Rat(T) and {Kn}n∈N in K
such that ‖rn(T)‖ = 1, n ∈ N, and ‖rn(T)−Kn‖ → 0. Moreover, if there is a subnet

{rnk(T)}k∈N converging in the WOT to a nonzero operator, then T has a nontrivial

hyperinvariant subspace according to [8].

The following proposition simply summarizes the results mentioned above.

Proposition 10. If there exists T ∈H(�) such that T has no n.i.s., then T has the

following properties:

(a) σle(T)= σre(T)= σ(T),
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(b) σ(T) is a connected and perfect subset of C such that every point of σ(T) has

positive planar density,

(c) R(σ(T)) = C(σ(T)), and, more generally, for every nonempty bounded open

set U ⊂ C, U∩σ(T) is not dominating for U ,

(d) T =N+K, where N is a normal operator and K is compact,

(e) T =X+iY , where X and Y are absolutely continuous selfadjoint operators,

(f) [T∗,T ] is a positive semi-definite operator in �1(�) with tr([T∗,T ]) > 0,

(g) m(T)= 1,

(h) there exist sequences {rn(T)}n∈N ⊂ Rat(T) and {Kn}n∈N ∈ K such that

‖rn(T)‖ = 1, n ∈ N, and ‖rn(T)−Kn‖ → 0. Moreover, any such sequence has

no subnet converging in the WOT to a nonzero operator.

This proposition raises the interesting question:

Problem 11. Are there any operators in H(�) satisfying (a)–(h)?

This is perhaps a difficult question, which we are unable to answer at present. More-

over, the list of necessary conditions for a hyponormal operator that has no n.i.s. is

larger and, of course, not all results are included in this paper. The remainder of this

paper is devoted to making some progress on this question. We first recall a result

from [11].

Proposition 12. Given a nonempty compact set K ⊂ C with positive density at

each point, there is an irreducible, hyponormal operator with rank one self-commutator

whose spectrum is K.

This proposition shows that to make a start toward answering Problem 11 in the

affirmative, we need to construct a compact set K which has properties (b) and (c) of

Proposition 10 (with K = σ(T)). A collection of such sets K may be constructed by

slight variation of the following.

Example 13. We first specify a Cantor set C{θn} ⊂ [0,1] which has positive linear

Lebesgue measure and, in fact, has positive linear density at each point. For this pur-

pose we follow the notation and terminology of [4, Example 6P] and set θn = 1/3n for

each n ∈ N. Note that for each n the closed intervals in the collection 	n have the

same length—say ln. Let p ∈ C{θn} and let (a,b) be an open interval containing the

point p. Since C{θn} = ∩n(∪{I : I ∈ 	n}) and ln → 0, there exists n0 sufficiently large

that some interval I0 ∈	n0 satisfies p ∈ I0 ⊂ (a,b). Since C{θn}∩I0 is another Cantor

set, its measure can be easily calculated to be greater than [ln0−ln0(
∑
k∈N1/3n0+k)]=

ln0(1−1/(2·3n0)) > 0, and thus C{θn} has positive density at each point p. Let now

z0 be the point (1/2,1) in C, and consider the planar set

K1 := {tp+(1−t)z0 | 0≤ t ≤ 1, p ∈ C{θn}
}
. (2)

We will show that K1 has the properties (b) and (c) above. By construction, the

set K1 is arcwise connected and perfect (since C{θn} is perfect). Next, we show that

every point q of K1 has positive planar density. Let ∆ be an open disc in C such that

q ∈ ∆. Since K1 is perfect, there exists a point t0p0+ (1− t0)x0 ∈ ∆∩K1 such that
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0< t0 < 1. Clearly there exist positive real numbers t1, t2 such that 0< t1 < t0 < t2 < 1

and some nondegenerate interval [a,b] with p0 ∈ [a,b] such that the trapezoid-like

figure Γ := {tp+(1−t)z0 : t1 ≤ t ≤ t2, p ∈ C{θn}∩[a,b]} is contained in ∆. Let α> 0 be

the linear measure of the set C{θn}∩[a,b]. Then the intersection of the set K1∩Γ with

each horizontal line y = t, t1 ≤ t ≤ t2 has (linear) measure (1−t)α. Thus, by Fubini’s

theorem, the µ-measure of the set K1∩Γ is
∫ t2
t1 (1−t)α dt = (t2−t1)(1−(t1+t2)/2)α >

0, and hence K1 has property (b). To check that K1 has property (c), the following

lemma is useful.

Lemma 14. If U is any bounded open set such thatU∩K1 ≠∅, then there exist a point

p0 belonging to the outer boundary of U , an ε > 0, and a disc D = {z ∈ C : |z−p0|< ε}
such that D∩K1 =∅.

Proof. By construction, [0,1] \C{θn} = ∪∞n=1(an,bn) where {(an,bn)}∞n=1 is the

disjoint sequence of “excluded” open intervals. Thus each open triangular domain

Tn = {tz0+(1−t)p :−∞< t < 1, p ∈ (an,bn)} in C is disjoint from K1. Since U∩K1 ≠
∅ and every point of C{θn} is a limit point of end points of arbitrarily short excluded

intervals, there exists some triangular domain Tn0 such that U∩Tn0 ≠∅, and clearly

any half-line joining a point of U∩Tn0 to the ideal point |z| = +∞ and lying entirely in

Tn0 must intersect ∂U in some last point (since ∂U is compact), which clearly satisfies

the desired conclusions.

We next show that K1 satisfies (c) of Proposition 10. Let U be a bounded open set

in C such that U ∩K1 ≠∅ and set C = U−. Then the outer boundary of C coincides

with the outer boundary of U , and applying Lemma 14 to U , we get a point p0 of the

outer boundary of U and an open disc D centered at p0 with radius ε > 0 such that

D∩K1 =∅. By [7, Corollary 13.3], p0 is a peak point of R(C), that is, there exists an

f0 ∈ R(C) such that f0(p0) = 1 and |f0(z)| < 1 for z ∈ C \{p0}. Clearly f0 ∈ H∞(U)
and supλ∈U |f0(λ)| = 1 (since p0 ∈ ∂U ) while supλ∈K1∩U |f0(λ)| < 1 (since (K1∩U)−
is at positive distance from p0 and |f0| < 1 on (K1∩U)− ⊂ C \D). Thus K1∩U is not

dominating for U , and K1 has property (c).

Let T1 be an irreducible hyponormal operator with rank one self-commutator whose

spectrum σ(T1) is the compact set K1 described in Example 13, and whose exis-

tence is guaranteed by Proposition 12. Thus property (f) is also satisfied. One ob-

serves that property (a) is satisfied too. Indeed, if one assumes that there exists

λ0 ∈ σ(T1)\σle(T1), then T1−λ0 is semi-Fredholm operator with nonpositive index

(since T1 ∈H(�)). Since T1 is pure, σp(T1)=∅, and thus the index is negative, which

implies that σ(T1) contains a nonempty open set. Obviously this is a contradiction

since σ(T1)=K1 has no interior, and thus σ(T1)= σle(T1). In a similar way one shows

that σ(T1)= σre(T1). Moreover, T1 ∈���(�) according to theorem of Apostol, Foiaş,

and Voiculescu [2] since σe(T1) contains no pseudoholes or holes associated with

Fredholm index different from 0. Thus, by Theorem 3, the operator T1 can be written

T1 = N +K, where N is a normal operator and K is a compact operator. Moreover,

since T1 is pure, T1 =X1+iY1, where X1, and Y1 are absolutely continuous selfadjoint

operators according to Proposition 5.

Thus we have shown that the operator T1 has properties (a)–(f) of Proposition 10.

Whether T1 has properties (g) and (h) of this proposition the author is unable to
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conclude. However, techniques and results of Stampfli [15] may be applied to obtain

the following theorem.

Theorem 15. Any hyponormal operator T in �(�) such that σ(T) is the set K1 of

Example 13 has a nontrivial hyperinvariant subspace.

Proof. Consider the operator T − (1/2+ i), which has spectrum K1 − (1/2+ i).
Define K+ := K1 ∩D−1 , where D1 := {z ∈ C : |z− 4| < 4} and K− := K1 ∩D−2 , where

D2 = {z ∈ C : |z+4| < 4}. Then σ(T) = K+ ∪K−, K+ ∩K− = {(0,0)}, and ∂D1∩K1 =
∂D2∩K1 = {(0,0)}. Choosing f1(z) = f2(z) = z2, we may follow [15, Example 1] and

observe that the operators Ai :=
∫
∂Di fi(z)(z− T)−1dz, i = 1,2, commute with any

operator S with which T commutes to conclude that T has a nontrivial hyperinvariant

subspace.

Remark 16. We note that it is quite easy to modify the construction of Example 13

to produce compact sets satisfying properties (b) and (c) of Proposition 10 such that

the techniques of [15] of “integrating through the spectrum” are no longer available

to produce nontrivial invariant subspaces for the corresponding operator T .
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