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ON AN INFINITE SEQUENCE OF INVARIANT MEASURES
FOR THE CUBIC NONLINEAR SCHRÖDINGER EQUATION
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Abstract. We consider the Cauchy problem periodic in the spatial variable for the usual
cubic nonlinear Schrödinger equation and construct an infinite sequence of invariant mea-
sures associated with higher conservation laws for dynamical systems generated by this
problem on appropriate phase spaces. In addition, we obtain sufficient conditions for the
boundedness of the measures constructed.
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1. Introduction. Consider the Cauchy problem periodic in the spatial variable for

the cubic nonlinear Schrödinger equation

iψt =−ψxx+2κ|ψ|2ψ, x,t ∈R, (1.1)

ψ(x+A,t)=ψ(x,t), (1.2)

ψ
(
x,t0

)=ψ0(x). (1.3)

Here i is the imaginary unit, t0 ∈R, ψ=ψ(x,t) is an unknown complex function, ψ0

is a complex function periodic in x with the period A > 0 and κ = 1 or κ = −1. As it

is well known, (1.1) supplied with condition (1.2) is formally a completely integrable

Hamiltonian system possessing an infinite series of conservation laws Qn(ψ) which

are real functionals quadratic with respect to the highest derivatives of the function

ψ formally satisfying the property d/dtQn(ψ(·, t))= 0, n= 0,1,2, . . . (see Section 2).

Further, it is known that in the finite-dimensional case to any conservation lawQ(p,q)
of a Hamiltonian system of the kind

dp(t)
dt

=∇qH(p,q), dq(t)
dt

=−∇pH(p,q), (1.4)

where H(p,q) is a smooth real function, n is a natural number, and p(·),q(·) ∈ Rn,

there corresponds a family of invariant measures (IMs) with densities f(Q(p,q))
where f(·) is an arbitrary smooth real function. The problem we are interested in

is whether this property is kept for the infinite-dimensional problem (1.1), (1.2), and

(1.3), that is, whether conservation laws Qn(ψ), n≥ 2, generate IMs, too.

Some recent papers are devoted to constructing IMs for dynamical systems (DS’s)

generated by nonlinear evolution partial differential equations of mathematical

physics such as a nonlinear wave equation or a nonlinear Schrödinger equation (NLS)

(cf. [1, 2, 5, 6, 11, 16, 18, 24, 25, 26, 27, 28, 29]). Formally, the early paper in this di-

rection [1] does not contain the proof of the invariance of the measure considered in
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it. However, the invariance easily follows from the results presented in this paper. An

IM for a physical system is considered in [6]. In [11], an IM is presented for a problem

periodic in the spatial variable for the nonlinear wave equation

utt−uxx+u3 = 0. (1.5)

Unfortunately, some details of the proof seem to be not completely satisfactory in

this paper. In [24], a result on IMs is presented for an NLS with a weak nonlinearity.

Paper [26] contains an extension of this result to a nonlinear wave equation. In [27],

a construction of an IM is presented for an abstract DS such that a lot of “soliton”

equations are reducible to that form. Simultaneously, a result for a nonlinear wave

equation similar to the above-described was proved in [18]. In [2], the results from [27]

are reconstructed; the author established more careful proofs of results from [27].

All the above-indicated papers dealt with an NLS or a nonlinear wave equation (ex-

cept [11]) contain results on IMs under severe constraints for nonlinearities. So, the

problem appeared how to extend this approach onto a wider class of nonlinearities.

Treatments of this problem are made in [5, 16, 25, 28, 29]. In [5], Bourgain, using his

result from [3] on the existence of L2-solutions for the Cauchy problem periodic in

the spatial variable for a one-dimensional NLS with the power nonlinearity κ|ψ|p−1ψ,

constructed a bounded IM for κ = −1 and 1 < p < 5. Similar results are contained

in [16, 25, 28] (with 1 < p < 3 if κ = −1 and 1 < p <∞ if κ = 1 in [25]) but in these

papers suitable results on the well-posedness of initial-boundary problems for equa-

tions under consideration are not proved and are contained as hypotheses. In further

publications Bourgain [5] constructed also IMs for a multidimensional NLS and, in [5],

considered an IM for the Korteweg-de Vries equation.

Papers [1, 2, 5, 6, 11, 16, 18, 24, 25, 26, 27, 28] (except [18]) concern only with an IM

associated with the concrete conservation law, the energy. At the same time, now it

is known that certain evolution equations such as the Korteweg-de Vries equation or

the cubic NLS possess countable sets of conservation laws and are formally infinite-

dimensional Hamiltonian systems. Therefore, since in the finite-dimensional case any

conservation law of a Hamiltonian system leads to a family of corresponding IMs, the

question naturally arises whether to higher conservation laws there correspond IMs

in some infinite-dimensional cases. In [9], this question is considered for a discrete

system of Moser-Calogero particles. A construction of an IM corresponding to a higher

conservation law for the sinh-Gordon equation is contained in [18]. In [29], it is proved

for the Cauchy problem periodic in the spatial variable for the Korteweg-de Vries

equation that to any known conservation law of the kind

Ln(u)=
∫ A

0

{
1
2

(
u(n)x

)2+qn
(
u,. . . ,u(n−1)

x

)}
dx, (1.6)

wheren≥ 3 is an integer, there corresponds an IM for a DS generated by this equation.

In the present paper, we continue the investigations began in [29] and present an infi-

nite series of IMs for the problem (1.1), (1.2), and (1.3). This result is also reestablished

(without proofs) in [30].

Now, we want to mention some applications of IMs. First, in [1, 6, 7, 8, 15, 16, 18]

they are used for constructing statistical mechanics of systems described by certain
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nonlinear partial differential equations (in [7, 8, 15], the problem of the invariance

is not considered). Second, at the time when “soliton” equations began to be inten-

sively studied, there arose a question known as the Fermi-Pasta-Ulam phenomenon

(see [20]) which, roughly speaking, consists in the stability according to Poisson of all

trajectories of a DS generated by a “soliton” equation. If one has a bounded IM for that

DS (so that the measure of the whole phase space is finite), then the Poincaré recur-

rence theorem gives a (partial) explanation of this phenomenon. In this connection, it

is important to note that, due to the problem (1.1), (1.2), and (1.3) being completely

integrable, the method of the inverse scattering problem may give a more complete

information about the recurrence and other properties of solutions. For example, such

investigations have been performed by McKean and Trubowitz [17] for C∞-solutions

and Bourgain [4] for L2-solutions periodic in the spatial variable of the Korteweg-de

Vries equation. In these papers, the almost periodicity of solutions is proved. At the

same time, the author of the present paper does not know rigorous mathematical

results implying the Xn-recurrence of solutions of the problem (1.1), (1.2), and (1.3)

given by Theorem 2.5.

2. Notation, preliminaries, and main results. In what follows, by C,C1,C2,C′,
C′′, . . . we denote positive constants. Everywhere t and x are real variables. We fix

a positive integer n and A> 0. Let L2 be the usual Lebesgue space consisting of com-

plex functions u(x) of the argument x periodic with the period A, equipped by the

scalar product

(f ,g)=
∫ A

0
f(x)g(x) dx (2.1)

and the norm ‖f‖ = (f ,f )1/2. Let C∞ be the set of complex functions u(x) periodic

with the period A and infinitely differentiable. Let ∆ be the closure in the space L2 of

the operator −d2/dx2 defined first on the set C∞. It is well known that ∆ is a nonneg-

ative selfadjoint operator in the space L2. Further, let n be a nonnegative integer and

let Hn be the usual Sobolev space which is the completion of the space C∞ taken with

the scalar product

(u,v)n = (u,v)+
(
dnu
dxn

,
dnv
dxn

)
(2.2)

and the norm ‖u‖n = (u,u)1/2n . In fact, L2 = H0 and Hn are Hilbert spaces for n =
0,1,2, . . . . Let Dnx = dn/dxn or Dnx = ∂n/∂xn and Dx =D1

x . Finally, consider a Banach

space X with a norm ‖·‖X and let I be a connected subset of the real line R. Then,

by C(I;X) we denote the Banach space consisting of bounded continuous functions

from I into X, with the norm ‖u(t)‖C(I;X) = supt∈I ‖u(t)‖X .

Now we briefly recall basic facts from the theory of Gaussian measures in Hilbert

spaces (for details, see [10, 21]). Let H be a separable real Hilbert space with a scalar

product (·,·)H and let S be a selfadjoint positive operator of trace class in the space

H. Then, by definition, there exists an orthonormal basis {ek}k=1,2,3,... in the space

H consisting of eigenfunctions of this operator with the corresponding eigenvalues

ωk > 0 where ωk →+0 as k→∞ and, in addition,
∑∞
k=1ωk <∞. We call a set M ⊂H
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the cylindrical set if and only if

M = {f ∈H | [(f ,e1
)
H, . . . ,

(
f ,ek

)
H
]∈ F} (2.3)

for some integer positive k and a Borel set F ⊂ Rk. For a cylindrical set of the above

kind let

w(M)= (2π)−k/2
k∏
i=1

ω−1/2
i

∫
F
e−(1/2)

∑k
i=1ω

−1
i z2

i dz1 ···dzk. (2.4)

Then, it can be easily verified that the set of all cylindrical sets is an algebra and that

the functionw is an additive measure on this algebra. In addition,w(H)= 1. Further,

it is known (see [10] for proofs) that the assumption that the operator S is of trace

class provides the countable additivity of the measure w on the above algebra of all

cylindrical sets. Therefore, this measure can be uniquely extended onto the minimal

sigma-algebra � containing this algebra. In fact, � is the Borel sigma-algebra in the

space H (for proofs, see [10]). The measure w considered on the sigma-algebra �

is called a centered Gaussian measure in the space H. It is essential for us that any

centered Gaussian measure is a Radon measure, that is, for any Borel set Ω ⊂H and

for any ε > 0 there exists a compact set K ⊂ Ω such that w(Ω \K) < ε. Finally, the

following result is also useful for us (for the proof, see [27]).

Statement 1. For any ball Br (a)= {u∈H | ‖u−a‖H < r}, where a∈H and r > 0,

one has w(Br (a)) > 0.

The problem (1.1), (1.2), and (1.3) can be rewritten in the equivalent real form for

real functions u and v , where ψ=u+iv , as follows:

ut =−vxx+2κ
(
u2+v2)v, x,t ∈R,

vt =uxx−2κ
(
u2+v2)u, x,t ∈R,

u(x+A,t)=u(x,t), v(x+A,t)= v(x,t),
u
(
x,t0

)=u0(x)= Reψ0(x), v
(
x,t0

)= v0(x)= Imψ0(x).

(2.5)

We suppose that ψ =ψ(x,t) is a solution of the problem (1.1), (1.2), and (1.3) infin-

itely differentiable with respect to x and t and (u(x,t),v(x,t)) is the corresponding

solution of the problem (2.5). Let w1 =ψ(x,t) and

wn+1 =−idwn

dx
+κψ̄

n−1∑
k=1

wkwn−k. (2.6)

We set

Ln(ψ)= Ln(u,v)=
∫ A

0
ψ̄(x,t)wn(x,t) dx, (2.7)

whereψ=u+iv andn= 1,2,3, . . . . Then, the statement is that the quantities Ln(ψ)=
Ln(u,v) (here ψ = u+iv) are independent of t (see [22]) (i.e., the functionals Ln are
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conservation laws for the problems (1.1), (1.2), (1.3), and (2.5)). Let

Qn(ψ)=Qn(u,v)= 1
2

ReL2n+1(ψ), (2.8)

where n= 0,1,2, . . . . Then, one can easily get from (2.6) and (2.7) that

Qn(ψ)=Qn(u,v)=
∫ A

0

{
1
2

∣∣Dnxψ∣∣2+ 1
2
|ψ|2−qn

(
ψ,ψ̄, . . . ,Dn−1

x ψ,Dn−1
x ψ̄

)}
dx, (2.9)

where the functions qn are polynomials; in particular, they are infinitely differentiable.

In what follows, we write Qn(ψ)=Qn(u,v) and

qn
(
ψ,ψ̄, . . . ,Dn−1

x ψ,Dn−1
x ψ̄

)= qn(u,v, . . . ,Dn−1
x u,Dn−1

x v
)

(2.10)

for simplicity of the notation.

Methods of investigation of the well-posedness of the problems (1.1), (1.2), (1.3), and

(2.5) are proposed in a large number of articles (cf. [12, 14, 23]). In our one-dimensional

case (x ∈R1) these problems become essentially simpler. Now we formulate the result

we need. Its proof is presented later.

Theorem 2.1. For any positive integer n and for any ψ0 ∈ Hn and T > 0 there

exists a unique solution to the problem (1.1), (1.2), and (1.3) of the class ψ(·, t) ∈
C([t0−T ,t0+T];Hn). For any fixed t the function ψ0 →ψ(·, t) is a homeomorphism

as a map from Hn into Hn. Further, fn1 (f
n
1 (ψ,t),τ) = fn1 (ψ,t +τ) for all ψ ∈ Hn

and t,τ ∈ R where fn1 (ψ0, t) =ψ(·, t+ t0). In addition, the quantities Q0(ψ(·, t)), . . . ,
Qn(ψ(·, t)) are independent of t (i.e., they are conservation laws).

Remark 2.2. Sometimes we call solutions given by Theorem 2.1 the Hn-solutions

of the problem (1.1), (1.2), and (1.3) (or (3.1), see further).

Let Hn
Re be the subspace of the space Hn consisting of real functions from Hn and

let Xn = Hn
Re ⊗Hn

Re be the Cartesian product of two samples of this new space. We

equip the space Xn by the usual scalar product

((
u1,v1

)
,
(
u2,v2

))
n =

(
u1,u2

)
n+

(
v1,v2

)
n. (2.11)

Then, we introduce a selfadjoint operator Sn of trace class acting in the space Xn by

the rule

Sn =
(
T−1 0

0 T−1

)
, (2.12)

where T = (I +∆n+1)(I +∆n)−1. Take an arbitrary integer n ≥ 1 and let wn be the

centered Gaussian measure with the correlation operator Sn in the space Xn. Now we

can give the following new formulation of Theorem 2.1.

Theorem 2.3. Let (u0,v0) ∈ Xn where n ≥ 1 is an integer number. Then, for any

T > 0 there exists a unique solution (u(·, t),v(·, t)) ∈ C([t0 − T ,t0 + T];Xn) to the

problem (2.5). For any fixed t the function transforming (u0,v0) into (u(·, t),v(·, t)) is

a homeomorphism as a map from Xn into Xn. If fn(u0,v0, t)= (u(t+t0),v(t+t0)) for

all (u0,v0)∈Xn where (u(t),v(t)) is the corresponding solution of the problem (2.5),
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then fn(fn(u,v,τ),t) = fn(u,v,t+τ) for all (u,v) ∈ Xn and t,τ ∈ R. In addition,

the quantities Q0(u(·, t),v(·, t)), . . . ,Qn(u(·, t),v(·, t)) are independent of t for these

solutions (i.e., they are conservation laws).

In what follows, we set w(x,t) = (u(x,t),v(x,t)) for an arbitrary solution

(u(x,t),v(x,t)) of the problem (2.5). Not discussing various definitions of this con-

cept, we accept that fn(w,t) is the DS with the phase space Xn. We only remark that if

there exists a bounded IM ν for this DS so that ν(Ω)= ν(fn(Ω, t)) for any t ∈R and a

Borel setΩ ⊂Xn, then the Poincaré recurrence theorem takes place for the introduced

DS (for details, see [19, 27]). (It should be remarked that, since the function fn(·, t) is

a homeomorphism as a map from Xn into Xn, it transforms any Borel subset of the

space Xn into a Borel one.) For a Borel set Ω ⊂Xn let

µn(Ω)=
∫
Ω
eΦn(u,v) dwn(u,v), (2.13)

where Φn(u,v)=
∫A
0 qn+1(u,v, . . . ,Dnxu,Dnxv) dx.

Our main result is the following.

Theorem 2.4. For any positive integer n, µn is a Borel measure well defined in the

space Xn and it is an IM for the DS fn. In addition,

0< µn
(
DR
)
<∞ (2.14)

for all sufficiently large valuesR > 0 whereDR = {w ∈Xn | |Q0(w)|<R,. . . ,|Qn(w)|<
R}. Thus, the sets DR can be taken for new phase spaces of the DS fn.

We remark that we do not study the question whether the measure of the whole

phase space is finite, that is, if it is right that µn(Xn) < ∞, but we present in

Theorem 2.4 a weaker statement sufficient for our aims. The following result is a

corollary of Theorem 2.4, Statement 1 from this section and the Poincaré recurrence

theorem (see [19, 27]).

Theorem 2.5. For any positive integer n consider the DS fn. Then, a.a. points (with

respect to the measurewn or µn) of the phase space Xn are stable according to Poisson.

The set of points of the space Xn stable according to Poisson is dense in Xn.

3. Proof of Theorem 2.1. We use standard methods of investigating the well-posed-

ness of the Cauchy problem (1.1), (1.2), and (1.3) as in [12, 14, 23]. The idea of these

methods is the replacement of the problem (1.1), (1.2), and (1.3) by the following

abstract integral equation:

ψ(t)= e−i(t−t0)∆ψ0−2iκ
∫ t
t0
e−i(t−s)∆

[∣∣ψ(s)∣∣2ψ(s)
]
ds. (3.1)

Hereψ(t) is an abstract unknown function defined in segments t ∈ I = [t0−a,t0+b],
where a,b > 0, with values in a functional space (to be interpreted as Hn). Formally,

solutions of (3.1) satisfy the problem (1.1), (1.2), and (1.3). For a more complete in-

formation about relations between solutions of the problem (1.1), (1.2), and (1.3) and

(3.1), see [14]. We accept the following definition.
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Definition 3.1. We call solutions of (3.1) (generalized) solutions of the problem

(1.1), (1.2), and (1.3).

We turn to proving Theorem 2.1. First, let ψ0 ∈H1, then the existence and unique-

ness of a global (defined for all t ∈R) H1-solution to (3.1) can be proved as in [12, 14]

where the Cauchy problem (1.1), (1.2), and (1.3) is considered with initial data vanish-

ing as |x| → ∞; in addition, it can be proved as in these papers that Q0 and Q1 are

conservation laws for H1-solutions. The proof of the existence and uniqueness of a

local Hn-solution to (3.1), where n ≥ 2 is integer, repeats the procedure from these

papers. So, we have that, for any integer n ≥ 2 and ψ0 ∈ Hn, there exist a > 0 and

b > 0 such that (3.1) has a unique solutionψ(t)∈ C([t0−a,t0+b];Hn) and either this

solution can be continued for all t > t0 (resp., for all t < t0) or there exists b0 > 0 (resp.,

a0 > 0) such that this solution can be continued onto the half-open interval [t0, t0+b0)
(resp., onto the half-open interval (t0−a0, t0]) and limsupt→t0+b0−0‖ψ(t)‖n =∞ (resp.,

limsupt→t0−a0+0‖ψ(t)‖n = ∞). In what follows, we show only that our Hn-solution

ψ(t) can be continued onto the whole half-line [t0,+∞) because the statement that it

can be continued onto the half-line (−∞, t0] can be proved by analogy.

Letψ0 ∈Hn and+∞= T1 ≥ T2 ≥ T3 ≥ ··· ≥ Tn > 0 be such numbers that [t0, t0+Tk)
are maximal half-open intervals of the existence ofHk-solutions of (3.1). For the above

goal, it suffices to prove that T1 = ··· = Tn. The following estimate easily follows from

(3.1):

∥∥ψ(t)∥∥k ≤ C1

∥∥ψ0

∥∥
k+C2

(
sup
s∈[t0,t]

‖ψ(s)‖l
)∫ t

t0

∥∥ψ(s)∥∥k ds, (3.2)

where l = k−1 if k ≥ 2 or l = 1 if k = 1, C1 > 0 is independent of t and C2(s) is a

positive continuous function on the half-line 0≤ s <+∞. The inequalities (3.2) easily

imply the equality T1 = ··· = Tn. Thus, the existence and uniqueness of a global Hn-

solution (n≥ 2) are proved.

Let H = ∩n≥1Hn = C∞. Then, we have proved that for any ψ0 ∈ H there exists a

unique global C∞-solution to (3.1). It can be shown as in [14] that these C∞-solutions

satisfy the problem (1.1), (1.2), and (1.3) and are infinitely differentiable with respect

to t, too.

Lemma 3.2. For any positive integer n and d> 0 there exists R > 0 such that ‖g‖n <
R for all g ∈Hn satisfying the conditions

∣∣Q0(g)
∣∣<d,. . . ,∣∣Qn(g)∣∣<d. (3.3)

Proof. We use the known embedding theorem

‖g‖Lp ≤ C‖g‖1/2+1/p(∥∥Dxg∥∥+‖g‖)1/2−1/p (p ≥ 2) (3.4)

which takes place for all g ∈H1 with C > 0 independent of g. Hence, using the func-

tional Q1(g)+Q0(g)= (1/2)
∫A
0 {|Dxg|2+|g|2+κ|g|4} dx, we get the inequality

1
2
‖g‖2

1−C‖g‖3‖g‖1 ≤Q1(g)+Q0(g)≤ 1
2
‖g‖2

1+C‖g‖3‖g‖1 (3.5)
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which implies that for any d > 0 there exists R > 0 such that ‖g‖1 < R for all g ∈Hn

satisfying the condition |Q1(g)| + |Q0(g)| < d. Further, using (2.6), (2.7), and (2.9),

we get

qn
(
ψ,ψ̄, . . . ,Dn−1

x ψ,Dn−1
x ψ̄

)
= q11

n
(
ψ,ψ̄, . . . ,Dn−2

x ψ,Dn−2
x ψ̄

)(
Dn−1
x u

)2

+q12
n
(
ψ,ψ̄, . . . ,Dn−2

x ψ,Dn−2
x ψ̄

)
Dn−1
x uDn−1

x v

+q22
n
(
ψ,ψ̄, . . . ,Dn−2

x ψ,Dn−2
x ψ̄

)(
Dn−1
x v

)2

+q1
n
(
ψ,ψ̄, . . . ,Dn−2

x ψ,Dn−2
x ψ̄

)
Dn−1
x u

+q2
n
(
ψ,ψ̄, . . . ,Dn−2

x ψ,Dn−2
x ψ̄

)
Dn−1
x v

+q0
n
(
ψ,ψ̄, . . . ,Dn−2

x ψ,Dn−2
x ψ̄

)
.

(3.6)

Hence, the inequalities

Qk(g)≥ 1
2
‖g‖2

k−γk
(‖g‖k−1

)
(3.7)

take place for k = 2,n (here γk(s) are positive continuous functions). Now the state-

ment of Lemma 3.2 follows from inequalities (3.5) and (3.7).

So, the functionalsQ0, . . . ,Qn are conservation laws for H-solutions of the problem

(1.1), (1.2), and (1.3). Further, the inequality (n≥ 1)

∥∥ψ(t)−ϕ(t)∥∥n ≤ C1

∥∥ψ0−ϕ0

∥∥
n+C2

(
max
s∈[t0,t]

∥∥ψ(s)∥∥l; max
s∈[t0,t]

∥∥ϕ(s)∥∥l
)

×
∫ t
t0

∥∥ψ(s)−ϕ(s)∥∥n ds
(3.8)

(here l = n−1 if n ≥ 2 or l = 1 if n = 1) following from (3.1) for arbitrary two Hn-

solutions ψ(t) and ϕ(t) (where ϕ(t0) =ϕ0) of this equation, in view of Lemma 3.2

and the continuity of the functionals Q0, . . . ,Qn in Hn implies two corollaries:

(A) for n ≥ 1 the functionals Q0, . . . ,Qn are conservation laws for Hn-solutions of

(3.1);

(B) Hn-solutions of (3.1) continuously depend onψ0, that is, for anyψ0 ∈Hn, ε > 0

and T > 0 there exists δ > 0 such that if ‖ψ0−ψ′0‖n < δ, then maxt∈[t0−T ,t0+T]
‖ψ(t)−ψ′(t)‖n < ε where ψ′(t) is the solution of (3.1) with ψ0 =ψ′0.

Finally, if ψ(t) is a Hn-solution of (3.1) with ψ0 =ψ(t0) (here n ≥ 1), then for any

fixed t ∈R the function ψ(τ) satisfies

ψ(τ)= e−i(τ−t)∆ψ(t)−2iκ
∫ τ
t
e−i(τ−s)∆

[∣∣ψ(s)∣∣2ψ(s)
]
ds. (3.9)

Therefore, the function ψ(t0) → ψ(t) is a one-to-one transformation of the space

Hn for any fixed t, hence it is a homeomorphism because it is continuous with the

inverse. The property fn1 (f
n
1 (ψ,t),τ) = fn1 (ψ,t+τ) follows from these arguments,

too. Theorem 2.1 is proved.
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4. An approximation of the NLS. In this section, we consider Galerkin approx-

imations of the problem (1.1), (1.2), and (1.3). Here, among more or less standard

results, we obtain certain statements crucial for us. These are Lemmas 4.4 and 4.5

and Proposition 4.7. In this section, all estimates with the use of the Gronwell lemma

are made for t > t0. Estimates for t < t0 can be made by analogy.

Let

e0(x)= 1√
A
, e2k−1(x)=

√
2

A
(
1+(λ2k−1

)n) sin
2πkx
A

,

e2k =
√

2

A
(
1+(λ2k

)n) cos
2πkx
A

,

(4.1)

where λ0 = 0, λ2k−1 = λ2k = (2πk/A)2 (k= 1,2,3, . . .) are the eigenvalues of the opera-

tor ∆. Then, {ek}k=0,1,2,... is the orthonormal basis in the space Hn consisting of eigen-

functions of the operator T with corresponding eigenvaluesωk = (1+λn+1
k )(1+λnk )−1

(k= 0,1,2, . . .). Let Pm be the orthogonal projector in the space Hn onto the subspace

span{e0, . . . ,e2m}. Let also Xm = PmHn.

Consider the following sequence of problems:

iψmt =−ψmxx+2κPm
[∣∣ψm∣∣2ψm

]
, x,t ∈R,

ψm0 =ψm(·, t0)= Pmψ0 (m= 1,2,3, . . .),
(4.2)

or, equivalently, in terms of real functions um and vm where ψm =um+ivm:

umt =−vmxx+2κPm
[((
um

)2+(vm)2)vm],
vmt =umxx−2κPm

[((
um

)2+(vm)2)um], (4.3)

um0 =um(·, t0)= Pmu0, vm0 = vm(·, t0)= Pmv0. (4.4)

First of all, we recall that in a finite-dimensional linear space any two norms are

equivalent. Further, for any positive integer m and ψ0 ∈ Hn obviously there exist

a,b > 0 and a unique infinitely differentiable solution ψm(x,t) to the problem (4.2)

defined for (x,t) ∈ R× (−a,b) and either b > 0 is finite (resp., a > 0 is finite) and

limsupt→t0+b−0‖ψm(·, t)‖n =+∞ (resp.,a> 0 is finite and limsupt→t0−a+0‖ψm(·, t)‖n
=+∞) or the solutionψm can be continued onto the whole half-line t > t0 (resp., onto

the half-line t < t0). Then, the direct verification shows that

d
dt
Q0
(
ψm(·, t))= 0 (4.5)

for all t. This equality yields, in particular, that for any positive integerm andψ0 ∈Hn

there exists C > 0 such that ∥∥ψm(·, t)∥∥n ≤ C (4.6)

for all t for which this solution is determined. Therefore, for any positive integer m
an arbitrary solution of the problem (4.2) can be continued onto the whole real line

t ∈R. Consequently, any solution of the problem (4.3) and (4.4) can be continued onto

the whole real line t ∈R.
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Lemma 4.1. For an arbitrary segment I = [t0−T ,t0+T], where T > 0, and for any

positive integer n there exists a function βn(s) continuous and nondecreasing on the

half-line [0,+∞) such that for any ψ0 ∈Hn the inequality

∥∥ψm(·, t)∥∥n ≤ βn
(∥∥ψm0 ∥∥n

)
(4.7)

takes place for all t ∈ I and for allm= 1,2,3, . . . (hereψm is the solution of the problem

(4.2)).

Proof. First of all, one can easily verify that the functionals

Q0
(
ψm(·, t))= 1

2

∫ A
0

∣∣ψm(·, t)∣∣2 dx,

Q1
(
ψm(·, t))=

∫ A
0

{
1
2

∣∣Dxψm(·, t)∣∣2+ κ
2

∣∣ψm(·, t)∣∣4
}
dx,

(4.8)

are conservation laws for the problem (4.2), that is, they are independent of t. In

addition, they are continuous functionals in Hn bounded on bounded subsets of this

space. Hence, as above, due to the known embedding theorem for functions g ∈H1

‖g‖Lp ≤ C‖g‖1/2+1/p(∥∥g′x∥∥+‖g‖)1/2−1/p, (4.9)

where p ≥ 2, we have

Q1
(
ψm(·, t))+Q0

(
ψm(·, t))

≥ 1
2

∥∥ψm(·, t)∥∥2
1−C

∥∥ψm(·, t)∥∥3(∥∥Dxψm(·, t)∥∥+∥∥ψm(·, t)∥∥). (4.10)

Hence, ∥∥ψm(·, t)∥∥1 ≤ β1
(∥∥ψm0 ∥∥1

)
(4.11)

for all t ∈ R where β1(s) is a function satisfying the properties indicated above for

the function βn.

Further, solutions of the problem (4.2) satisfy the following integral equation similar

to (3.1):

ψm(·, t)= e−i(t−t0)∆Pmψ0−2iκ
∫ t
t0
e−i(t−s)∆Pm

[∣∣ψm(·,s)∣∣2ψm(·,s)] ds. (4.12)

For k= 2, . . . ,n we get from (4.12)

∥∥ψm(·, t)∥∥k ≤ C1

∥∥ψm0 ∥∥k+C2

(
max
t∈I

∥∥ψm(·, t)∥∥k−1

)∫ t
t0

∥∥ψm(·,s)∥∥k ds. (4.13)

This inequality and (4.11) step by step lead to the statement of Lemma 4.1.

Proposition 4.2. Let ψ0 ∈ Hn, where n is a positive integer, and let T > 0 be an

arbitrary number. Then,

lim
m→∞ max

t∈[t0−T ,t0+T]

∥∥ψm(·, t)−ψ(·, t)∥∥n = 0 as m �→∞, (4.14)

where ψ(·, t) is the solution of the problem (1.1), (1.2), and (1.3) given by Theorem 2.1

and ψm is the solution of the problem (4.2).
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Proof. We get from (3.1), (4.12), and Lemmas 3.2 and 4.1

∥∥ψm(·, t)−ψ(·, t)∥∥n
≤ C1

∥∥ψ0−Pmψ0

∥∥
n+C2

∫ t0+T
t0

∥∥Pm[∣∣ψ(·,s)∣∣2ψ(·,s)]−∣∣ψ(·,s)∣∣2ψ(·,s)
∥∥
n ds

+C3
(∥∥ψ0

∥∥
l
)∫ t

t0

∥∥ψm(·,s)−ψ(·,s)∥∥n ds,
(4.15)

where l = n−1 if n > 1 and l = 1 if n = 1. The first term from the right-hand side of

this inequality obviously tends to zero as m→∞. The integrand in the second term

tends to zero for all s and is uniformly bounded in s and m according to Lemma 3.2.

Therefore, this second term tends to zero, too, as m → ∞. Thus, the statement of

Proposition 4.2 follows from this inequality.

Corollary 4.3. For any positive integer n, ψ0 ∈Hn and t ∈R

lim
m→∞

[
Qk
(
ψm(·, t))−Qk(ψ(·, t))]= 0 for k= 0,n. (4.16)

Proof. The proof follows from the continuity of functionals Qk, k = 0,n, in the

space Hn and the proved Proposition 4.2.

As it is already noted, Lemmas 4.4 and 4.5 and Proposition 4.7 below are results of

this section crucial for us. To establish them, we consider quantitiesQn+1(ψm(·, t)). In

this connection, it should be remarked that, forψ0 ∈Hn, the expressionQn+1(ψ(·, t))
is not determined in general. However, since the functions ψm are infinitely differen-

tiable, the expression Qn+1(ψm(·, t)) is well defined for each m. Moreover, Lemmas

4.4 and 4.5 and Proposition 4.7 take place.

Lemma 4.4. Let ψ0 ∈Hn for a positive integer n and t ∈R. Then,

lim
m→∞

(
dQn+1

(
ψm(·, t))
dt

)
= 0. (4.17)

Proof. First of all, obviously Pmg ∈ C∞ for any positive integer m and g ∈ Hn.

Then, since Qn+1 is a conservation law for infinitely differentiable solutions of the

problem (1.1), (1.2), and (1.3), substituting iψmxx−2iκ|ψm|2ψm into the expression for

dQn+1(ψm(·, t))/dt in place of ∂ψm/∂t, we get zero. Therefore, to get the right ex-

pression for dQn+1(ψm(·, t))/dt, we can bring the derivative with respect to t into the

integrand and substitute the expression 2iκP⊥m[|ψm(·, t)|2ψm(·, t)] for ∂ψm(·, t)/∂t
(here P⊥m = I−Pm where I is the identity).

Using the representations (2.9) and (3.6) and the above arguments, we easily derive

the following estimate:

∣∣∣∣dQn+1
(
ψm(·, t))
dt

∣∣∣∣≤ γn+1
(∥∥ψm(·, t)∥∥n)∥∥P⊥m[∣∣ψm(·, t)∣∣2ψm(·, t)]∥∥n, (4.18)
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where n≥ 1 and γn+1(s) is a continuous nondecreasing function of s ∈ [0,+∞). Since

according to Proposition 4.2 and embedding theorems

∥∥P⊥m[∣∣ψm(·, t)∣∣2ψm(·, t)]∥∥n
≤
∥∥∣∣ψm(·, t)∣∣2ψm(·, t)−

∣∣ψ(·, t)∣∣2ψ(·, t)
∥∥
n+

∥∥P⊥m[∣∣ψ(·, t)∣∣2ψ(·, t)]∥∥n �→ 0

(4.19)

as m→∞, (4.18) yields the statement of Lemma 4.4.

Lemma 4.5. For any positive integer n and t ∈ R there exists a function ηn+1(s),
continuous and monotonically nondecreasing on the half-line s ∈ [0,+∞), such that

∣∣Qn+1
(
ψm(·, t))−Qn+1

(
ψm0

)∣∣≤ ηn+1
(∥∥ψm0 ∥∥n) (4.20)

for all positive integer m and ψ0 ∈Hn.

Proof. The proof follows from (4.18), Lemma 4.1, and the following inequality:

∣∣Qn+1
(
ψm(·, t))−Qn+1

(
ψm0

)∣∣≤
∫ t
t0

∣∣∣∣dQn+1
(
ψm(·,s))
ds

∣∣∣∣ ds. (4.21)

Proposition 4.6. For any ψ0 ∈ Hn, where n is a positive integer, any ε > 0 and

t ∈R there exists δ > 0 such that

∥∥ψm(·, t)−ψm1 (·, t)∥∥n < ε (4.22)

for eachm= 1,2,3, . . . and for an arbitrary solutionψm1 (·, t) of problem (4.2) satisfying

the condition ∥∥ψm(·, t0)−ψm1 (·, t0)∥∥n < δ. (4.23)

Proof. We have from (4.12) and Lemma 4.1

∥∥ψm(·, t)−ψm1 (·, t)∥∥n
≤ C1δ+C2

(∥∥ψm(·, t0)∥∥l)×
∫ t
t0

∥∥ψm(·,s)−ψm1 (·,s)∥∥n ds, (4.24)

where l = n−1 for n ≥ 2 and l = 1 if n = 1. This inequality step by step leads to the

statement of Proposition 4.6.

The following statement together with Lemma 4.5 is used in the next section for

proving Lemma 5.5 which is of principal importance for our proof of Theorem 2.4.

Proposition 4.7. Let K ⊂Hn be a compact set where n is a positive integer. Then,

for any t ∈R
Qn+1

(
ψm(·, t))−Qn+1

(
ψm0

)
�→ 0 as m �→∞ (4.25)

uniformly in ψ0 ∈K (here ψm0 = Pmψ0 and ψm(·, t) is the solution of the problem (4.2)

with ψm(·, t0)=ψm0 ).
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Proof. First of all, we prove that for any ε > 0 and g ∈ K there exist δ > 0 and a

number m0 > 0 such that

∣∣Qn+1
(
ψm(·, t))−Qn+1

(
ψm0

)∣∣< ε (4.26)

for allm≥m0 andψ0 ∈ Bδ(g)= {h∈Hn | ‖h−g‖n < δ}. From (4.18) and Lemma 4.1

we get

∣∣Qn+1
(
ψm(·, t))−Qn+1

(
ψm

(·, t0))∣∣
≤
∫ t
t0
γn+1

(
βn
(‖g‖n+δ))×∥∥P⊥m[∣∣ψm(·,s)∣∣2ψm(·,s)]∥∥n ds. (4.27)

We estimate the integral from the right-hand side of (4.27). We have

∥∥P⊥m[∣∣ψm(·,s)∣∣2ψm(·,s)]∥∥n ≤ ∥∥∣∣ψm(·,s)∣∣2ψm(·,s)−
∣∣ψ̄m(·,s)∣∣2ψ̄m(·,s)

∥∥
n

+
∥∥∣∣ψ̄m(·,s)∣∣2ψ̄m(·,s)−

∣∣ψ̄(·,s)∣∣2ψ̄(·,s)
∥∥
n

+
∥∥P⊥m[∣∣ψ̄(·,s)∣∣2ψ̄(·,s)]∥∥n,

(4.28)

where ψ̄m and ψ̄ are the solutions of the problems (4.2) and (1.1), (1.2), and (1.3),

respectively, with ψ0 = g. The second and third terms in the right-hand side of this

inequality are independent ofψ0 ∈ Bδ(g) and tend to zero asm→∞. Further, accord-

ing to Proposition 4.6, for any ε > 0 and t ∈ R there exists δ > 0 such that the first

term in the right-hand side of this inequality is smaller than ε/2 if ψ0 ∈ Bδ(g), for

all m. Hence, we have proved that the expression under the integral in the right-hand

side of the inequality (4.27) for any fixed s becomes arbitrary small for sufficiently

small δ > 0 and sufficiently large numbers m if ψ0 ∈ Bδ(g).
Further, take into account Lemma 4.1 according to which the expression

∥∥P⊥m[∣∣ψm(·,s)∣∣2ψm(·,s)]∥∥n (4.29)

is bounded uniformly with respect toψ0 ∈K,m= 1,2,3, . . . , and s ∈ [t0, t]. Therefore,

for any g ∈ K and ε > 0 there exist δ > 0 and a number m0 such that the right-hand

side of (4.27) is smaller than ε if ψ0 ∈ Bδ(g) and m≥m0. So, we fix an arbitrary ε > 0

and for any g ∈K take δ= δ(g) > 0 and m0 =m0(g) > 0 such that

∣∣Qn+1
(
ψm(·, t))−Qn+1

(
ψm0

)∣∣< ε (4.30)

if ψ0 ∈ Bδ(g)(g) and m ≥m0(g) (δ and m0 exist according to the above arguments).

Then, since K is a compact set, there exists its finite covering by balls Bδ(g1)(g1), . . . ,
Bδ(gl)(gl). Let m1 = max{m0(g1), . . . ,m0(gl)}. Then, obviously, (4.30) is valid for all

ψ0 ∈K if m≥m1. Thus, Proposition 4.7 is proved.

5. Proof of Theorem 2.4. There is an analogy between the proof of the invariance

of the measures µn presented below and proofs of the invariance of measures associ-

ated with the energy conservation law in [25, 26, 27]. One of the principal differences
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between our construction here and the approaches in the mentioned papers consists,

in particular, in the fact that, unlike in [25, 26, 27], in the present paper, generally

speaking, the finite-dimensional measures µm (see below) are not invariant for the

corresponding finite-dimensional dynamical systems. All the information from the

general measure theory to be used further is contained in [13], for example. Then,

we remark that all the results from Section 4 are valid for problem (4.3) and (4.4)

with the corresponding reformulation. We fix an arbitrary positive integer n. Let

g1 = (e0,0), g2 = (0,e0), g3 = (e1,0), g4 = (0,e1), . . . ,g2k+1 = (ek,0), g2k+2 = (0,ek), . . . .
Then, {gk}k=1,2,3,... is the orthonormal basis consisting of the eigenfunctions of the

operator Sn in the space Xn. Let Lm = span{g1, . . . ,g4m+2} be the sequence of finite-

dimensional subspaces of the spaceXn (m= 1,2,3, . . .). In the spaces Lm we introduce

the following finite-dimensional Gaussian measures:

wm(Ω)= (2π)−(2m+1)
2m∏
k=0

ωk

∫
F
e−(1/2)

∑2m
k=0ωk(p

2
k+q2

k) dp0 dq0 ··· dp2m dq2m, (5.1)

where Ω = {u ∈ Lm | [(u,g1)n, . . . ,(u,g4m+2)n] ∈ F} and F ⊂ R4m+2 is a Borel set. So,

wm is a centered Gaussian measure in the space Lm for any positive integer m. We

recall that the space Lm is equipped with the topology generated by the norm of the

space Xn.

Further, let wm(Ω)=wm(Ω∩Lm) for any Borel subset Ω of the space Xn. We state

that, with this definition, the measure wm becomes a well-defined Borel measure in

the space Xn. To prove this statement, it suffices to show that Ω∩Lm is a Borel subset

of the space Lm for any Borel set Ω ⊂ Xn. Indeed, it is clear that the set � of all

subsets of the space Lm of this kind is a sigma-algebra of subsets of the space Lm
which obviously contains all open subsets of this space. Therefore, it suffices to prove

that � is the minimal sigma-algebra of subsets of the space Lm containing all open

subsets of this space. Suppose that this is not right. Then, the Borel sigma-algebra �1

of the space Lm is contained in the sigma-algebra � and �1 �= �. Consider the set �

of all Borel subsets A of the space Xn such that A∩Lm ∈ �1. Then, it is clear that �

is a sigma-algebra in the space Xn which contains all open subsets of the space Xn
and is more narrow than the Borel sigma-algebra of this space. Thus, we arrive at a

contradiction and, therefore, we have proved thatΩ∩Lm is a Borel subset of the space

Lm for an arbitrary Borel subset Ω of the space Xn.

Lemma 5.1. The sequence {wm}m=1,2,3,... of the Borel measures weakly converges to

the measure wn in the space Xn.

Remark 5.2. We recall that, by definition, a sequence of bounded Borel measures

{νk}k=1,2,3,... weakly converges to a bounded Borel measure ν in a separable complete

metric space H if

lim
k→∞

∫
H
Φ(g)dνk(g)=

∫
H
Φ(g)dν(g) (5.2)

for an arbitrary real continuous bounded functional Φ in the space H.

Remark 5.3. A statement similar to Lemma 5.1 is presented in [27]; here we make

some additions to its proof from that paper.
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Proof of Lemma 5.1. As it is proved in [27], the sequence of measures {wm} is

weakly compact in the space Xn. In addition, for any cylindrical set M ⊂ Xn we have

wm(M)=wn(M) for sufficiently large numbers m.

Suppose that the sequence {wm} does not converge weakly to the measure wn.

Then, there exists a Borel measurew′ in Xn, not coinciding with the measurewn, and

a subsequence {wmk} of the sequence {wm} such that the sequence {wmk} weakly

converges to the measure w′. Further, since the extension of a measure, countably

additive on an algebra, to the minimal sigma-algebra containing this algebra is unique

(see [13]), there exists a cylindrical set of the kind

M = {g ∈Xn | [(g,g1
)
n, . . . ,

(
g,g4r+2

)
n
]∈ F}, (5.3)

where r is a positive integer and F ⊂R4r+2 is a Borel set, such that w′(M)≠wn(M).
Then, due to the known property of Borel sets, there exists a sequence F1 ⊃ F2 ⊃ ··· ⊃
Fi ⊃ ··· of open sets Fi ⊂R4r+2 such that F =⋂i≥1Fi. Therefore,

w′(M)= lim
i→∞

w′(Mi
)
, wn(M)= lim

i→∞
wn(Mi

)
, (5.4)

where

Mi =
{
g ∈Xn |

[(
g,g1

)
n, . . . ,

(
g,g4r+2

)
n
]∈ Fi}. (5.5)

Hence, we can accept that the cylindrical set M ⊂Xn is open.

Take an arbitrary ε > 0 and consider a continuous functional Φε(z)= Φε(z1g1 +
···+z4r+2g4r+2) depending on variables z = (z1, . . . ,z4r+2)∈R4r+2 and satisfying the

following properties:

(1) 0≤ Φε(z)≤ 1 for all z;

(2) Φε(z)= 0 if g = z1g1+···+z4r+2g4r+2 �∈M ;

(3) Φε(z) = 1 if g ∈M and dist(g;∂M) ≥ ε where for an arbitrary set A ⊂ Xn and

g ∈Xn dist(g;A)= infh∈A‖g−h‖n.

It is clear that ∫
Xn
Φε(z)dwm(g)=

∫
Xn
Φε(z) dwn(g) (5.6)

form≥ r . Further, limε→+0

∫
Xn Φε(z) dw

n(g)=wn(M). At the same time, there exists

ε > 0 such that each of the expressions

∣∣∣∣wn(M)−
∫
Xn
Φε(z) dwn(g)

∣∣∣∣,∣∣∣∣w′(M)− lim
k→∞

∫
Xn
Φε(z) dwmk(g)

∣∣∣∣=
∣∣∣∣w′(M)−

∫
Xn
Φε(z) dw′(g)

∣∣∣∣
(5.7)

is smaller than |w′(M)−wn(M)|/3. This fact contradicts (5.6). Thus, Lemma 5.1 is

proved.

We introduce the following measures:

µm(Ω)=
∫
Ω
eΦn(u,v)dwm(u,v) (5.8)
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(here Ω ⊂Xn are Borel sets). Since due to the representations (2.9) and (3.6) the func-

tional Φn(u,v) is continuous in Xn and bounded on any bounded subset of the space

Xn, the measures µm and µn are well defined in Xn.

With the following statement, we in fact establish a well-known property of weakly

converging sequences of measures.

Lemma 5.4. One has liminfm→∞µm(Ω) ≥ µn(Ω) for any open bounded set Ω ⊂ Xn
and limsupm→∞µm(K)≤ µn(K) for any closed bounded set K ⊂Xn.

For the proof, see, for example, [27].

Let fm(u0,v0, t)= (um(·, t+t0),vm(·, t+t0)) for any (u0,v0)∈Xn and t ∈Rwhere

(um(·, t),vm(·, t)) is the solution of problem (4.3) and (4.4). One of the principal differ-

ences between the constructions in the present paper and in earlier papers [25, 26, 27]

is that, unlike in [25, 26, 27], in the present case the finite-dimensional measures µm
are not in general invariant for the corresponding DS fm. In this connection, we note

that the following statement is crucial for us; it shows that the measures µm are “al-

most invariant” asymptotically for sufficiently large numbers m.

Lemma 5.5. Let t ∈R and Ω ⊂Xn be an arbitrary closed bounded set. Then,

lim
m→∞

[
µm
(
fm(Ω, t)

)−µm(Ω)]= 0. (5.9)

Proof. We rewrite system (4.3) for coordinatesp(t)=(p0(t), . . . ,p2m(t)) and q(t)=
(q0(t), . . . ,q2m(t))whereum(x,t)=∑2m

k=0pk(t)ek(x) and vm(x,t)=∑2m
k=0qk(t)ek(x).

Then, we get the following system of ordinary differential equations

ṗk(t)= ∂h(p,q)∂qk

(
1+λnk

)
, k= 0,2m,

q̇k(t)=−∂h(p,q)∂pk

(
1+λnk

)
, k= 0,2m.

(5.10)

Here h(p,q) = Q1(um,vm) = (1/2)
∫A
0 {(umx )2 + (vmx )2 + κ((um)2 + (vm)2)2} dx.

Therefore, according to the well-known result [19, 27], the Lebesgue measureσm in the

phase space R4m+2 is an IM for this DS (in fact, this is a well-known statement accord-

ing to which the Lebesgue measure defined in the phase space of a finite-dimensional

Hamiltonian system is an IM for this system). This easily implies that

D =
∣∣∣∣det

{
∂
(
p(t),q(t)

)
∂
(
p(0),q(0)

)}∣∣∣∣≡ 1 (5.11)

for an arbitrary solution (p(t),q(t)) of (5.10).

Fix an arbitrary bounded closed set Ω ⊂ Xn. Then, according to the above argu-

ments, we have

µm
(
fm(Ω, t)

)=
∫
Ω
eQn+1(Pmw)−Qn+1(fm(w,t))dµm(w). (5.12)

Further,

∣∣µm(Ω)−µm(fm(Ω, t))∣∣≤
∫
Ω

∣∣∣1−eQn+1(Pmw)−Qn+1(fm(w,t))
∣∣∣dµm(w). (5.13)
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According to Lemma 4.5, the integrand here is uniformly bounded with respect to

w ∈Ω by a constant C > 0. Fix an arbitrary ε > 0. Then, according to the Prokhorov’s

theorem (see [10]), there exists a compact set K ⊂ Ω such that µm(Ω \K) < ε for all

m= 1,2,3, . . . and µn(Ω\K) < ε. Further, in view of Proposition 4.7 and (5.13),

lim
m→∞

[
µm(K)−µm

(
fm(K,t)

)]= 0, (5.14)

therefore

limsup
m→∞

∣∣µm(Ω)−µm(fm(Ω, t))∣∣≤ Cε, (5.15)

where C > 0 depends only on supg∈Ω ‖g‖n. Hence, due to the arbitrariness of ε > 0,

Lemma 5.5 is proved.

Corollary 5.6. For any bounded open set Ω ⊂Xn and t ∈R,

lim
m→∞

[
µm(Ω)−µm

(
fm(Ω, t)

)]= 0. (5.16)

The further proof of Theorem 2.4 including Lemma 5.7 below in fact repeats a con-

struction in [25, 26, 27].

Lemma 5.7. Let Ω ⊂ Xn be an open bounded set and t ∈ R. Then, µn(Ω) =
µn(fn(Ω, t)).

Proof. According to Theorem 2.3 and Lemma 3.2, fn(Ω, t) is a bounded open

subset of the space Xn. Fix an arbitrary ε > 0. Then, since µn is a Radon measure,

there exists a compact set K ⊂Ω such that µn(Ω\K) < ε. Let K1 = fn(K,t). Then, K1

is a compact set, too, and K1 ⊂ fn(Ω, t)=Ω1. Let α=min{dist(K,∂Ω);dist(K1,∂Ω1)}
where dist(A,B) = infu∈A;v∈B ‖u−v‖n for any A,B ⊂ Xn and ∂A is the boundary of

the set A. Obviously α > 0. Due to Proposition 4.6 for any g ∈ K there exists a ball

Br (g)= {h∈Xn | ‖g−h‖n < r} ⊂Ω with a positive radius r such that

∥∥fm(g,t)−fm(h,t)∥∥n < α3 (5.17)

for all h ∈ Br (g) and for all m. Let B1, . . . ,Bl be a finite covering of the compact set

K by these balls. Let Ωβ1 = {h ∈ Ω1 | dist(h,∂Ω1) ≥ β} where β > 0, and D = ⋃li=1Bi.
Since in view of Proposition 4.2 fm(g,t)→ fn(g,t) in Xn as m→∞ for any g ∈ Xn,

we get

fm(D,t)⊂Ωα/41 (5.18)

for all sufficiently large numbers m.

Further, according to Lemmas 5.4, 5.5, and Corollary 5.6

µn(Ω)≤ µn(D)+ε≤ liminf
m→∞ µm(D)+ε

= liminf
m→∞ µm

(
fm(D,t)

)+ε
≤ µn(Ωα/41

)+ε≤ µn(Ω1
)+ε.

(5.19)
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Therefore, due to the arbitrariness of ε > 0, we have µn(Ω) ≤ µn(Ω1). By analogy,

µn(Ω)≥ µn(Ω1). Hence, µn(Ω)= µn(Ω1) and Lemma 5.7 is proved.

We prove Theorem 2.4. Let first Ω ⊂Xn be an open (unbounded) set. Let Ωk = {w ∈
Ω | ‖fn(w,t)‖n+‖w‖n < k}. Then,Ω =⋃∞k=1Ωk and each setΩk is bounded and open.

In addition, fn(Ω, t)=⋃∞k=1fn(Ωk,t) and µn(Ωk)= µn(fn(Ωk,t)). Therefore,

µn
(
fn(Ω, t)

)= lim
k→∞

µn
(
fn
(
Ωk,t

))= lim
k→∞

µn
(
Ωk
)= µn(Ω). (5.20)

Further, for an arbitrary Borel subset A of the space Xn we get the equality µn(A) =
µn(fn(A,t)) approximating this set A from outside by open sets (we remark that,

since the function fn(·, t) is a homeomorphism for any fixed t, it transforms Borel

sets into Borel ones). The last statement of Theorem 2.4 follows from Lemma 3.2.

Theorem 2.4 is proved.

Remark 5.8. As it was noted in the introduction, an IM for the NLS generated

by the conservation law Q1 is constructed in [5], for example. Here, we presented IMs

generated by the conservation lawsQn where n≥ 2. The question is left open whether

there is an IM associated with the conservation lawQ0. As one could observe from our

considerations, to any conservation law Qn (n ≥ 2) there corresponds an IM on the

phase space Hn−1. Therefore, it seems to be probable that such an IM could exist on

a phase space like H−1. However, since the well-posedness of the problem (1.1), (1.2),

and (1.3) in a similar sense seems to be open and very difficult, we could not make a

construction like that.

Acknowledgement. The author is thankful to Dr A. P. Isaev for useful discus-
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