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ON THE DIOPHANTINE EQUATION x3 = dy?2 + g%

FADWA S. ABU MURIEFAH

(Received 21 December 2000)

ABSTRACT. Let g > 3 denote an odd prime and d a positive integer without any prime
factor p = 1 (mod3). In this paper, we have proved that if (x,q) = 1, then x3 = dy2 + 46
has exactly two solutions provided g # +1 (mod24).
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Cohn [1] and recently Zhang [2, 3] have solved the Diophantine equation
x3 =dy?+q° (1)

when g = 1, 3,4, under some conditions on d. In this paper, we consider the general
case of (1) where g = 3 is any odd prime by using arguments similar to those used by
Cohn [1].

Let (x,y) € Z x 7 be a solution of (1) with x,y > 0, then the solution is trivial if
x =0, +q2% or yy = +1. We need the following lemma.

LEMMA 1. The equation p? = a* —3b?, where p denotes an odd prime and (p,a) =1,
may have a solution in positive integers a and b only if p = +1 (mod 24).

PROOF. Suppose 3b? = a* — p?. Then clearly a is odd and b is even. Since a* = 3b?
(modp), and (p,a) = 1 therefore the Legendre symbol (3/p) =1 and so p = +1
(mod 12). Now (a? + p,a® —p) = 2 implies that

a’+p=3.2c? ()
a’xp=2d°, (3)

where 2cd = b and (c,d) = 1. Whence
a®=3c?+d. (4)
Here d is odd, otherwise we get a contradiction modulo 4. Then considering (3) modulo
8, we get p = =1 (mod8). This completes the proof. O
Now we consider the upper sign in (1), our main result is laid down in the following.
THEOREM 2. Let d be a positive integer without prime factor p =1 (mod3) and let

q + 3 be an odd prime. If g # =1 (mod 24) and (x,q) = 1, then the Diophantine equation

x3=dy?+q° (5)
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has exactly two solutions given by

4_o2_ 4 4_ga2_
x1:73q 24 1, y =ab, whereazi?’q +1,db2:73q 64 1,
4 4 4
a*-2q%-3 q*+3 q*-6q%-3 ©)
Xp= T Y =9ab, wherea=-"—>, db®>= Y

PROOF. If d has a square factor, then it can be absorbed into y?, so there is no loss
of generality in supposing d a square free integer. Now

dy*=x3-q°% = (x-q°) (x* +a’x +q*). 7)

If any prime v divides both d and (x? +g°x +g*), then by hypothesis ¥ = 2 (mod3) or
¥ =3.But7 | (x?+g°x+q*) implies that (2x +g°)%+3g* = 0 (modr) so the Legendre
symbol (—3/7) = 1, which is a contradiction, whence ¥ = 1 or 3. Also since (x,q) =1,
therefore (x —g?,x% +q°x +q*) = 1 or 3. So for (7) we have only two possibilities:
either

x> +q’x+q* =a?, x—q° =db?, (8)
or
x> +q°x+q*=3a%  x-q°=3db? 9)

where (q,a) =1 and (g,b) = 1. Consider the first possibility when (2x +q2)% +3q* =
(2a)? and y = ab. This equation is known to have a finite number of solutions. It can
be written as

3¢* = 2a+2x+q°) (2a— (2x +g?)). (10)

Then for the nontrivial solution of this equation we have only two cases:
CASE 1.

3¢ =2a+(2x+q%), 1=2a%(2x+q°), (11)
by subtracting and adding these two equations we get

4 2 _ 4
X:3q 2q--1 a:3q +1.

12
n , n (12)

Here a > 1,50 y > 1, and x — g° = db? implies that

4_6a2_
de — M (13)

4
CASE 2.
3=2a+(2x+q°), q*=2a%(2x+q°). (14)
As in Case 1 we get the nontrivial solution
4 _ 2 _ 4 4 2 _

XZM a:M, deZM. (15)

4 ’ 4 4
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Now suppose the second possibility. Obviously a is odd and x? = 3a? (modq), and
since (q,a) = 1, so the Legendre symbol (3/g) = 1,hence g = +1 (mod 12). Eliminating
x and dividing by 3, we get

a® = q*+3db*(q* + db?). (16)

Considering (16) modulo 8 we get either db? = —1 (mod8) or db? =0 (modS8).
(1) db? = —1 (mod8). Then from (16) we get

3d%b* = (2a+2q%+3db?) (2a—2q° - 3db?). (17)

Let S be a common prime divisor of the two factors in the right-hand side of (17), then
Sisodd, S |4a and S | 2(2g% + 3db?). But S? divides the left-hand side implies that
S 13db?,s0 S | g°. Here S = 1, otherwise x —q? = 3db? implies that q | x which is not
true. Thus from (17) we get

2a+(2q° +3db?) =d3b},  2a7¥(2q*+3db?) = 3d3b3, (18)
where d = d;d, and b = b; b,. Whence
+2(2g%+3db?) = d?*b} —3d3Db3. (19)
Considering this equation modulo 3, we get
4q° = d?b} - 3d3b3 - 6db>. (20)

Now we prove that d; = 1. Since d is odd, therefore d; must be odd. Let t be any odd
prime dividing d; then by hypothesis t = 2 (mod 3) but then from (20) we get

4q° = -3d3b3 (modt), (21)

so (=3/t) = 1, which is not true. Thus d; = 1 and (20) becomes

M)Z 22)

2 _ 14
@ =bi 3( 2

since (q,b;) = 1, therefore by Lemma 1, g = =1 (mod 24).

(2) db? = 0 (mod8). Now we prove that if (16) has a solution, then g = +1
(mod 24). Since d is a square free, b should be even. Suppose b = 2m, then (16) can
be written as

12d°m* = (a+q% +6dm?)(a—q° —6dm?). (23)

As before we can prove that the common divisor of the two factors in the right-hand
side of (23) is 2, so

a+(q>+6dm?) = 2d3mf?, a¥(q>+6dm?) = 6dim3, (24)

where d = d;d, and m = mym,. It is clear that (a,q) = 1 implies that (mi,q) = 1.
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Subtracting the two equations in (24) we get
+ (g% +6dm?) = d3m} —3d3sm3, (25)

again considering this equation modulo 3, we get g% = d2m7} — 3d3m3 — 6dm?2. As
before d; cannot have any odd prime divisor, so d; = 1 or 2.
If d; =1, then

a® =4m}-3(m? +dms3). (26)

Here m; is odd, otherwise we get a contradiction modulo 8. Since (m,q) = 1, then
from (26) we get
2mi+q=3s2, 2m?xq=n? (27)
where sn = m% + dm%, so s and n are both odd. Hence g = +1 (mod8), combining
this result with g = =1 (mod 12), we get g = +1 (mod 24).
If d; =2, then

q® = 16b% —3(b? +db3)* (28)
which is impossible modulo 8. O
Using the same argument as in Theorem 2 we can prove the following theorem.

THEOREM 3. Let d be a positive integer without prime factor p = 1 (mod3) and
q + 3 an odd prime. If q = +1 (mod 24) and (x,q) = 1, then the Diophantine equation
x3 = dy? —qb has exactly two solutions given by

4 2_ 4 4 2_
xlzigq 29 1, y =ab, where a = 34 *1 +1,db2:73q +6q 1,
4 4 4
a*+2q%-3 q*+3 q*+6q%-3 (29)
Xy = S, y =9ab, whereazT, dbzzf.

Sometimes, combining our results with Cohn’s result [1] we can solve the title equa-
tion completely when d has no prime factor = 1 (mod 3), as we show in the following
example.

EXAMPLE 4. Consider the Diophantine equation x3 = dy? +5% where d has no prime
factor =1 (mod3) and (5,d) = 1.

Here g = 5, when (x,5) = 1, using Theorem 2 for the positive sign this equation
has only two solutions given by x; = 456, db? = 431, and x, = 143, db? = 118. So
d =431,118. Now let 5 | x, then because (5,d) = 1, the equation reduces to the form
x3 = 5dy?+1, which by [1, Theorem 1] has no solution in positive integers.

So the equation x3 = dy? + 5% has a solution only if d = 431,118.

For the negative sign this equation has two solutions when (x,5) = 1 given by

x; =481, db? =506, x, =168, db? =193, (30)

thatis, whend = 506,193.1f 5 | x, then the equation reduces to the form x3 = 5dy? -1,
which by [1, Theorem 2] has no solution in positive integers.
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