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1. Introduction. Recently, Singh et al. [10] studied pseudomonotone operators and

derived interesting results in variational inequality and complementarity problems

using a recent fixed point theorem of Tarafdar [13], which is equivalent to F-KKM the-

orem [13]. They derived a few interesting results as corollaries and gave an application

in minimization problems. Earlier, Parida et al. [7] studied a variational-like inequal-

ity problem and developed a theory for the existence of its solution using Kakutani’s

fixed point theorem, and also established the relationship between the variational-like

inequality problem and some mathematical programming problems. Further results

on existence theorem for variational-like inequality problems were obtained by

Wadhwa and Ganguly [14] using Tarafdar’s fixed point theorem [11], which is equiva-

lent to the KKM fixed point theorem [13].

In this note, we use Tarafdar’s result [13] and prove an existence theorem for

variational-like inequality problem for g-pseudomonotone operators and then derive

some interesting results and corollaries.

We need the following definitions:

Let E stand for a real locally convex Hausdorff topological vector space and X a

nonempty convex subset of E with E∗ ≠ {0}, being the continuous dual of E. Let

T : X → E∗ be a nonlinear map. The mapping T : X → E∗ is hemicontinuous if T is

continuous from the line segment of X to the weak topology of E∗. A point y ∈ X is

said to be a solution of the variational inequality if

〈Ty,x−y〉 ≥ 0 ∀x ∈X. (1.1)

Let g be a continuous map, g : X×X → E. A point y ∈ X is said to be a solution of

the variational-like inequality problems if

〈Ty,g(x,y)〉 ≥ 0 ∀x ∈X. (1.2)

If g(x,y)= x−y , (1.2) reduces to (1.1) [7].

A map T :X → E∗ is said to be monotone if

〈Ty−Tx,y−x〉 ≥ 0 ∀x,y ∈X. (1.3)
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Here, (·,·) denotes the pairing between E∗ and E.

The map T is called pseudomonotone if

〈Ty,y−x〉 ≥ 0 whenever 〈Tx,y−x〉 ≥ 0 ∀x,y ∈X. (1.4)

Definition 1.1. A map T :X → E∗ is said to be g-monotone on X if

〈
Tx,g(y,x)

〉+〈Ty,g(x,y)〉≤ 0 ∀x,y ∈X. (1.5)

For g(y,x)=y−x, we get the definition of monotone operators.

Definition 1.2. A map T :X → E∗ is said to be g-pseudomonotone if

〈
Tx,g(y,x)

〉≥ 0 whenever
〈
Ty,g(x,y)

〉≥ 0 ∀x,y ∈X. (1.6)

For g(y,x)=y−x, we get the definition of pseudomonotone operators.

We are interested in the following:

Find x ∈X such that

〈
Tx,g(y,x)

〉+hy−hx ≥ 0 ∀y ∈X, (1.7)

where T : X → E∗ is a nonlinear mapping and h : X →R is a low semi-continuous and

convex functional.

We need the following fixed point theorem [13].

Theorem 1.3. Let X be a nonempty, convex subset of a Hausdorff topological vector

space E. Let F :X → 2X be a set-valued mapping such that

(i) for each x ∈X, f(x) is a nonempty, convex subset of X;

(ii) for each y ∈X, F−1(y)= {x ∈X :y ∈ F(x)} contains a relatively open subset

Oy of X (Oy may be empty for some y);
(iii) Ux∈XOx =X; and

(iv) X contains a nonempty subset X0 contained in a compact convex subset X1 of

X such that the set D =⋂x∈X0
Ocx is compact (D may be empty and Ocx denotes

the complement of Ox in X).

Then there exists a point x0 ∈X such that x0 ∈ F(x0).

We make the following hypothesis.

Condition 1.4. For X ⊂ E, let T :X → E∗ and g :X×X → E satisfy the following:

(i) for each x ∈X, g(y,x) is convex y ∈X;

(ii) g(x,y)+g(y,z)= g(x,z) for all x,y,z ∈X;

(iii) g(x,x)= 0;

(iv) for every x ∈ E∗, 〈Tx,y〉 is monotone increasing in y ∈ E∗.

2. Main results. First, we give the following result.

Lemma 2.1. If X is a nonempty convex subset of a topological vector space E and

T :X → E∗ is a g-pseudomonotone and hemicontinuous, then x ∈X is a solution of

〈
Tx,g(y,x)

〉+hy−hx ≥ 0 ∀y ∈X (2.1)



VARIATIONAL-LIKE INEQUALITIES FOR PSEUDOMONOTONE OPERATORS 551

if and only if x ∈X is a solution of

〈
Ty,g(y,x)

〉+hy−hx ≥ 0 ∀y ∈X, (2.2)

where h : X → R is a convex function and g : X × X → E is such that it satisfies

Condition 1.4.

Proof. Let x ∈ X be a solution of (2.1). Then, by Condition 1.4(i), (ii) and the g-

pseudomonotonicity of T , we have

〈
Ty,g(y,x)

〉+hy−hx ≥ 0 ∀y ∈X. (2.3)

Now, assume that x satisfies (2.2) and let y ∈ X be arbitrary. Then, using Minty’s

technique [5],

yt = (1−t)x+ty ∈X ∀t ∈ (0,1) (2.4)

since X is convex. Hence, we have

〈
Tyt,g

(
yt,x

)〉+hyt−hx ≥ 0. (2.5)

So, by Condition 1.4(ii), (iii),

t
〈
Tyt,g(y,x)

〉+t(hy−hx)≥ 0 (2.6)

since T is hemicontinuous. Letting t→ 0, we get

〈
Tx,g(y,x)

〉+hy−hx ≥ 0. (2.7)

Now, we state the following result.

Theorem 2.2. LetX be a nonempty closed convex subset of a real Hausdorff topolog-

ical vector space E with E∗ ≠ {0}. Let T : X → E∗ be g-pseudomonotone and hemicontin-

uous map such that Condition 1.4 is satisfied, and h :X →R is a lower semicontinuous

and convex function. Further, assume that there exists a nonempty set X0 contained in

a compact convex subset X1 of X such that the set

D =
⋂

x∈X0

{
y ∈X :

〈
Tx,g(x,y)

〉+hx−hy ≥ 0
}

(2.8)

is either empty or compact.

Then, there exists an x0 ∈X such that

〈
Tx0,g

(
y,x0

)〉+hy−hx0 ≥ 0 ∀y ∈X. (2.9)

Proof. Suppose that, for each y ∈X, there exists an x ∈X such that

〈
Tx,g(y,x)

〉+hx−hy < 0. (2.10)
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First, suppose that (2.10) does not hold. This means that there exists at least one

y0 ∈X such that
〈
Tx,g

(
y0,x

)〉+hx−hy0 ≥ 0 ∀x ≥X, (2.11)

that is, y0 ≥X is a solution of (2.2). Then, by Lemma 2.1, y0 ∈X is a solution of (2.1).

Next, assume that there is no solution of (2.1) under condition (2.10) given that

(2.10) holds. Then, for each x ∈X, the set

F(x)= {y ∈X :
〈
Tx,g(y,x)

〉+hy−hx < 0
}

(2.12)

must be nonempty. It also follows from the convexity of h and by Condition 1.4 that

the set F(x) is convex for each x ∈X. Thus, F :X → 2X is a set-valued map with F(x)
nonempty and convex for each x ∈X.

Now, for each x ∈X,

F−1(x)= {y ∈X : x ∈ (y)}= {y ∈X :
〈
Ty,g(x,y)

〉+hx−hy < 0
}
. (2.13)

For each x ∈X,

{
F−1(x)

}c = complement of F−1(x) in X

= {y ∈X :
〈
Ty,g(x,y)

〉+hx−hy ≥ 0
}

⊂ {y ∈X :
〈
Tx,g(x,y)

〉+hx−hy ≥ 0
}

(2.14)

by the g-pseudomonotonicity of T =G(x).
Again, using Condition 1.4 and the convexity of h, we can show that G(x) is con-

vex for each x ∈ X. Since g is continuous and h is lower semi-continuous, G(x) is

a relatively closed subset of X.

Hence, for each x ∈X,

F−1(x)⊃ [G(x)]c = 0x is a relatively open subset of X. (2.15)

Now, by condition (2.10), we can easily see that
⋃
x∈X Ox = X. (Indeed, if y ∈ X, by

(2.10), there exists an x ∈ X such that y ∈ [G(x)]c =Ox . Thus, y ∈⋃x∈X Ox . Hence,⋃
x∈X Ox =X.)

Finally, D = ⋂x∈X0
G(x) = ⋂x∈X0

Ocx is compact or empty by the given condition.

Hence, by Theorem 1.3, there exists an x ∈ X such that 〈Tx,g(x,x)〉+hx−hx < 0,

which is impossible. Hence, there is a solution in this case as well.

Here, we give a few results that are special cases of Theorem 2.2.

Corollary 2.3. Let T : X → E∗ be g-monotone and hemicontinuous, where g-

satisfies Condition 1.4, h :X →R is convex and lower semi-continuous. Further, assume

that there exists a nonempty set X0 contained in a compact convex subset X1 of X such

that D =⋂x∈X0
{y ∈X : 〈Tx,g(x,y)〉+hx−hy ≥ 0} is either empty or compact. Then

there is an x ∈X satisfying (2.1).

Remark 2.4. For g(x,y)= x−y , Corollary 2.3 implies Corollary 1.2 of Singh et al.

[10] which, in turn, implies a well-known result of Tarafdar [12].
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Corollary 2.5. Let X be a compact convex subset of E and T : X → E∗ be g-

pseudomonotone and hemicontinuous where g satisfies Condition 1.4. Suppose that

h :X →R is lower semicontinuous and convex. Then there is an x ∈X satisfying (2.1).

Remark 2.6. For g(x,y)= x−y ,

(i) Corollary 2.5 implies [10, Corollary 1.3].

(ii) If we take T = A−B, where A is a monotone map and B is antimonotone and

both are hemicontinuous, then we derive a result due to Siddiqui et al. [8]. Here, we

need only two conditions, the lower semicontinuity, and the convexity of the func-

tion h.

Remark 2.7. For h = 0, Corollary 2.5 implies Theorem 2 and Corollary 1 of Wad-

hwa and Ganguly [14] which implies, respectively, Theorem 2 and Corollary of Taraf-

dar [11]. Tarafdar’s result covered the result of Browder [1] and Theorem 1.1 of Hart-

man and Stampacchia [3].

Now, we prove a result similar to Theorem 2.1 of Singh et al. [9]. For A⊂ E, int(A)
and ∂(A) denote, respectively, the interior and the boundary of A, while for A, X ⊂ E,

intx(A) and ∂(A) denote, respectively, the relative interior and the relative bound-

ary of A in X. A subset of a Banach space is said to be solid if it has a nonempty

interior.

Theorem 2.8. Let X be a closed convex subset of a reflexive Banach space E and

T : X → E∗ a g-pseudomonotone and hemicontinuous mapping, g : X×X → E satisfy

Condition 1.4, and h is convex and lower semicontinuous. Then the following conditions

are equivalent:

(i) There exists x̄ ∈ X such that 〈Tx̄,g(x,x̄)〉+hx−hx̄ ≥ 0 for all x ∈ X, that is,

x is a solution of (2.1).

(ii) There exists a u∈X and a constant r > ‖u‖ such that X〈T(x),g(x,u)〉+hx−
hu≥ 0 for all x ∈X with ‖x‖ = r .

(iii) There exists r > 0 such that the set {x ∈ X : ‖x‖ ≤ r} is nonempty with the

property that, for each x ∈ X with ‖x‖ = r , there exists a u ∈ X with ‖u‖ < r and

〈T(x),g(x,u)〉hxhu≥ 0.

Proof. This can be proved following Cottle and Yao [2, Theorem 2.2] as well as

Parida et al. [7, Theorem 3.4].

Remark 2.9. For a monotone T operator and h= 0:

(1) Theorem 2.8(i), (ii), and (iii) were obtained by Parida et al. [7].

(2) For g(x,x̄)= x−x̄, Theorem 2.8(ii) and (iii) reduce to the results of Theorems 2.3

and 2.4 of Moré [6], respectively.

Remark 2.10. For g(x,x) = x − x̄ and h = 0, Theorem 2.8(i), (ii), and (iii) were

obtained as Theorem 2.1(i), (ii), and (iii) by Singh et al. [9] and, in Hilbert spaces,

similar results were obtained by Cottle and Yao (see [1, Theorem 2.2]).

Let H,K be nonempty, closed subsets of Rn, then we denote, by BH(K), the set

of z ∈ K such that U(z)
⋂
(H −K) ≠ Φ and, by IH(K), the set of z ∈ K such that

U(z)
⋂
(H−K)= Φ, for some neighbourhood U(z) of z.
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Finally, we present a result similar to Hirano and Takahashi [4] for unbounded sub-

sets inRn. Before that, we present the following result of Singh et al. [9, Corollary 1.12].

Corollary 2.11. Let X be a closed bounded convex subset of a reflexive Banach

space E and T :X → E∗ a pseudomonotone and hemicontinuous mapping. Then the set

of solutions of variational inequality for a point x0 ∈X, 〈Tx0,y−x0〉 ≥ 0 for all y ∈X;

y ∈ x; is a nonempty weakly compact convex subset of X.

Theorem 2.12. LetX be a nonempty closed convex subset ofRn and T :X →Rn be g-

pseudomonotone such that Condition 1.4 is satisfied; h :X →R a lower semicontinuous

and convex function. Then there exists a solution of (2.1) in X if and only if there exists

a bounded closed convex subset K of X such that, for each z ∈ Bx(K), there exists

y ∈ Ix(K) such that
〈
Tz,g

(
y∗,z

)〉+hz−hy �→ 0. (2.16)

Proof. Using Corollary 2.11, with little modification, it can be shown that if there

exists a solution of (2.1), then there exists a weakly compact convex subset K of X
such that (2.16) is satisfied. Conversely, let K be a weakly compact convex subset and

there exists x∗ ∈K such that

〈
Tx∗,g

(
x,x∗

)〉≥ 0 ∀x ≥K, (2.17)

where T is a g-pseudomonotone operator. The rest of the proof is similar to that of

Theorem 3 of Wadhwa and Ganguly [14].
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