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The aim of this paper is to create a large geometrical background for the study of important
branch of physics: electrodynamics, bosonic strings theory, magneto-hydrodynamics, and
so forth. The geometrical construction is realized on the 1-jet fibre bundle J1(T ,M) and is
produced by a given quadratic multi-time Lagrangian function L. The Riemann-Lagrange
geometry of the space EDMLnp = (J1(T ,M),L), in the sense of d-connections, torsion and
curvature d-tensors, allows the construction of a natural generalized multi-time field the-
ory on EDMLnp , in the sense of generalized Maxwell and Einstein equations.
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Section 1 contains physical and geometrical aspects that motivates us to study

the autonomous metrical multi-time Lagrangian space of electrodynamics, denoted

EDMLnp . Section 2 constructs the canonical nonlinear connection Γ and the general-

ized Cartan canonical Γ -linear connection of EDMLnp . Section 3 describes the gener-

alized Maxwell equations which govern the electromagnetic field of this space. The

generalized Einstein equations of the gravitational h-potential of the autonomous

metrical multi-time Lagrange space are written in Section 4. The generalized conser-

vation laws of these equations will also be described.

1. Geometrical and physical aspects. In the last thirty years, many geometrical

models in Mechanics or Physics were based on the notion of ordinary Lagrangian.

Thus, the geometrical concept of Lagrange space was introduced. The differential ge-

ometry of the Lagrange spaces is now considerably developed and used in various

fields to study the natural processes where the dependence on position, velocity or

momentum are involved [2]. We recall that a Lagrange space Ln = (M,L(x,y)) is de-

fined as a pair which consists of a real, n-dimensional manifold M coordinated by

x = (xi)i=1,n and a regular Lagrangian L : TM → R (i.e., the fundamental metrical d-

tensor gij(x,y) = (1/2)(∂2L/∂yi∂yj) is of rank n and has a constant signature on

TM\{0}). We point out that the Lagrangian L is not necessarily homogeneous with

respect to the direction y = (yi)i=1,n.

An important and well-known example of Lagrange space comes from electrody-

namics. We recall that the Lagrangian L : TM →R which governs the movement law of

a particle of massm≠ 0 and electric charge e, placed concurrently into a gravitational

field and an electromagnetic one, is given by

L(x,y)=mcϕij(x)yiyj+ 2e
m
Ai(x)yi+U(x), (1.1)
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where the semi-Riemannian metric ϕij(x) represents the gravitational potentials of

the space M , Ai(x) are the components of a covector field on M representing the

electromagnetic potentials, U(x) is a function on M which is called potential function,

and c is the physical constant of light speed. It is obvious that L is a regular Lagrangian

and, consequently, the pair Ln = (M,L(x,y)) is a Lagrange space, which is called the

Lagrange space of electrodynamics.

At the same time, there are many problems in Mechanics that rely on the notion

of time-dependent Lagrangian. A geometrization of time-dependent Lagrangians was

also constructed in [2], the authors developing a classical rheonomic mechanics. From

their point of view, a time-dependent Lagrangian is a function L :R×TM →R, where

the product manifold R×TM is regarded as a vector bundle over the base spaceM . In

this approach, the bundle of configurations of the classical rheonomic mechanics is

R×TM �→M, (
t,xi,yi

)
�→ (xi), (1.2)

whose geometrical invariance group is of the form

t̃ = (t), x̃i = x̃i(xj), ỹi = ∂x̃
i

∂xj
yj. (1.3)

Obviously, the gauge group (1.3) ignores the temporal reparametrizations, standing

out by the absolute character of the temporal coordinate t.
In the classical rheonomic mechanics, a central role is played by the time-dependent

Lagrangian of classical rheonomic electrodynamics, whose expression is

L(t,x,y)=mcϕij(x)yiyj+ 2e
m
Ai(t,x)yi+U(t,x). (1.4)

The differential geometry induced by the classical time-dependent Lagrangian of elec-

trodynamics (1.4) is found in [2].

In contrast, a geometrization of time-dependent Lagrangians, in a relativistic ap-

proach, or, in other words, a relativistic rheonomic mechanics, was created by Neagu

[4], considering the bundle of configurations represented by the jet fibre bundle of

order one

J1(R,M)≡R×TM �→R×M, (
t,xi,yi

)
�→ (t,xi), (1.5)

whose invariance gauge group is

t̃ = t̃(t), x̃i = x̃i(xj), ỹi = ∂x̃
i

∂xj
dt
dt̃
yj, (1.6)

where (t,xi,yi) are the coordinates on J1(R,M). It is obvious that the form of this

gauge group (1.6) is more general than that used in the classical rheonomic mechanics

and emphasizes the relativistic character of the temporal coordinate t.
According to Olver terminology [1], the relativistic rheonomic mechanics relies on

the notion of Lagrangian � on J1(R,M) as a local function on the 1-jet space, which

transforms by the rule �̃=�|dt/dt̃|. Like a distinct notion, the concept of Lagrangian

function L : J1(R,M)→R is also involved in relativistic rheonomic mechanics.
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Remark 1.1. It is important to note the difference between the notions of the

Lagrangian used in both relativistic and classical rheonomic mechanics. From this

point of view, the reader is invited to compare them, following the expositions done

in [2, 4].

We emphasize that, in the relativistic rheonomic mechanics, a basic role is played

by the following Lagrangian of relativistic rheonomic electrodynamics,

�=
[
mcψ11(t)ϕij(x)yiyj+ 2e

m
A(1)(i) (t,x)y

i+U(t,x)
]√∣∣ψ11

∣∣, (1.7)

where ψ11 is a semi-Riemannian metric on R, A(1)(i) (t,x) is a distinguished tensor on

J1(R,M) and U(t,x) is a smooth function on R×M . The differential geometry gener-

ated by this Lagrangian is exposed in [4].

To become general, consider the jet fibre bundle of order one [7]

J1(T ,M) �→ T ×M, (
tα,xi,xiα

)
�→ (tα,xi), (1.8)

where T is a real, p-dimensional manifold coordinated by t = (tα)α=1,p , whose phys-

ical meaning is that of “multi-time,” M is a real, n-dimensional “spatial” manifold

coordinated by x = (xi)i=1,n, while the coordinates xiα have the meaning of partial

directions or partial derivatives.

We should like to underline that the jet fibre bundle of order one J1(T ,M) is a basic

object in the study of classical and quantum field theories [8]. From a physical point

of view, the 1-jet fibre bundle J1(T ,M)→ T×M can be regarded as a bundle of config-

urations, in mechanics terms, because, considering the particular case of the temporal

manifold T = R (i.e., the usual time axis represented by the set of real numbers), we

recover the bundle of configurations (1.5) from relativistic rheonomic mechanics.

It is well known that a lot of problems in Physics and Variational Calculus rely on

multi-time Lagrangian functions L depending on first order partial derivatives, which

are viewed as functions defined on the total space of the 1-jet fibre bundle J1(T ,M). A

well-known example, which comes from Physics, is given by the “energy” Lagrangian

function L used in the Polyakov model of bosonic strings,

L
(
tγ,xk,xkγ

)= 1
2
ψαβ(t)ϕij(x)xiαx

j
β, (1.9)

where ψαβ(t) (resp., ϕij(x)) is a semi-Riemannian metric on the manifold T (resp.,

M). We recall that the extremals of the Lagrangian �= L√|ψ| are exactly the harmonic

maps between the semi-Riemannian spaces (T ,ψ) and (M,ϕ).
In this context, a geometrization of a multi-time Lagrangian function L : J1(T ,M)→

R is imposed. Recently, a differential geometry, attached to certain multi-time La-

grangian functions, was created in [6]. In order to present the main concept of this

geometry, fix a semi-Riemannian metric ψ = ψαβ(tγ) on the temporal manifold T .

The fundamental geometrical concept used in the geometrization of a multi-time La-

grangian function is that of metrical multi-time Lagrange space, represented by a pair

MLnp = (J1(T ,M),L) consisting of 1-jet space and a Kronecker ψ-regular multi-time
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Lagrange function L, that is, [6]

G(α)(β)(i)(j)
(
tγ,xk,xkγ

)= 1
2

∂2L
∂xiα∂x

j
β

=ψαβ(tγ)ϕij(tγ,xk,xkγ), (1.10)

where ϕij(tγ,xk,xkγ) is a d-tensor on J1(T ,M), symmetric, of rank n and having a

constant signature. We point out that the differential geometry of metrical multi-time

Lagrange spaces is now considerably developed in [5, 6].

By a natural extension of previous examples of Lagrangian functions, we can give a

very important example of metrical multi-time Lagrange space, considering the gen-

eral Lagrangian function L which comes from electrodynamics and theory of bosonic

strings, namely,

L=mcψαβ(t)ϕij(x)xiαxjβ+
2e
m
A(α)(i) (t,x)x

i
α+U(t,x), (1.11)

whereA(α)(i) (t,x) is a distinguished tensor on J1(T ,M) andU(t,x) is a smooth function

on T ×M .

Now, in order to unify all Lagrangian entities exposed above, we introduce the fol-

lowing geometrical concept.

Definition 1.2. A pair EDMLnp = (J1(T ,M),L) which consists of a jet fibre bundle

of order one and a Lagrangian function of the form

L
(
tγ,xk,xkγ

)= hαβ(tγ)gij(xk)xiαxjβ+U(α)(i)
(
tγ,xk

)
xiα+F

(
tγ,xk

)
, (1.12)

wherehαβ(tγ) (resp., gij(xk)) is a semi-Riemannian metric on the temporal (resp., spa-

tial) manifold T (resp., M), U(i)(α)(tγ,xk) are the local components of a distinguished

tensor on J1(T ,M) and F(tγ,xk) is a smooth function on T ×M , is called an au-

tonomous metrical multi-time Lagrange space of electrodynamics (EDML).

Remark 1.3. The nondynamical character (i.e., the independence with respect to

the temporal coordinates) of the spatial metric gij(xk) determined us to use the ter-

minology of autonomous in the previous definition.

The aim of this paper is to develop the differential geometry and the abstract field

theory on EDMLnp , in the sense ofd-connections,d-torsions,d-curvatures, generalized

Maxwell equations and generalized Einstein equations.

2. The geometry of autonomous metrical multi-time Lagrange space of electrody-

namics EDMLnp . In this section, we will apply the general geometrical development

of a metrical multi-time Lagrange space [6], to the particular space of electrodynamics

EDMLnp .

To begin this development, consider the energy action functional associated to the

multi-time Lagrangian of electrodynamics

�= L
√
|h| = [hαβ(tγ)gij(xk)xiαxjβ+U(α)(i)

(
tγ,xk

)
xiα+F

(
tγ,xk

)]√|h|, (2.1)

namely,

�� : C∞(T ,M) �→R, ��(f )=
∫
T

�dt1∧ dt2∧···∧ dtp, (2.2)
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where the temporal manifold T is considered compact and orientable, the local ex-

pression of the smooth map f is (tα)→ (xi(tα)) and xiα = ∂xi/∂tα. In this context, a

general result from [6] implies the following result.

Theorem 2.1. The extremals of the energy functional �L, associated to the multi-

time Lagrangian of electrodynamics �, are equivalent with generalized harmonic maps

[7] of the multi-time dependent spray (H,G), defined by the temporal components

H(i)(α)β =−
1
2
Hγαβx

i
γ (2.3)

and the local spatial components

G(i)(α)β =
1
2
γijkx

j
αxkβ+

hαβgil

4p

[
U(µ)(l)mx

m
µ +

∂U(µ)(l)
∂tµ

+U(µ)(l) Hγµγ−
∂F
∂xl

]
, (2.4)

where Hγαβ (resp., γijk) are the Christoffel symbols of the semi-Riemannian metric hαβ
(resp., gij ), p = dimT , and U(α)(i)j = ∂U(α)(i) /∂xj−∂U(α)(j) /∂xi. In other words, these ex-

tremals verify the generalized harmonic map equations attached to the multi-time de-

pendent spray (H,G),

hαβ
{
xiαβ+2H(i)(α)β+2G(i)(α)β

}
= 0. (2.5)

Definition 2.2. The multi-time dependent spray (H,G) constructed in Theorem

2.1 is called the canonical multi-time dependent spray attached to the autonomous

metrical multi-time Lagrange space of electrodynamics.

Following [6], the canonical multi-time dependent spray (H,G) naturally induces

a nonlinear connection Γ = (M(i)(α)β,N(i)(α)j) on J1(T ,M), which is called the canonical

nonlinear connection of the autonomous metrical multi-time Lagrange space of elec-

trodynamics. Thus, denoting �i = hαβG(i)(α)β, we can formulate the next result.

Theorem 2.3. The canonical nonlinear connection on J1(T ,M), attached to the au-

tonomous metrical multi-time Lagrange space of electrodynamics is determined by the

temporal components

M(i)(α)β = 2H(i)(α)β =−Hγαβxiγ (2.6)

and the local spatial components

N(i)(α)j =
∂�i

∂xjγ
hαγ = γijkxkα+

hαγgil

4
U(γ)(l)j . (2.7)

Now, let {δ/δtα,δ/δxi,∂/∂xiα} ⊂ �(J1(T ,M)) and {dtα, dxi,δxiα} ⊂ �∗(J1(T ,M))
be the adapted bases of the nonlinear connection Γ , where [7]

δ
δtα

= ∂
∂tα

−M(j)(β)α
∂
∂xjβ

,

δ
δxi

= ∂
∂xi

−N(j)(β)i
∂
∂xjβ

,

δxiα = dxiα+M(i)(α)βdtβ+N(i)(α)jdxj.

(2.8)
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Following the general exposition from [6], by a direct calculation, we can determine

the adapted components of the generalized Cartan canonical connection of the au-

tonomous metrical multi-time Lagrange space of electrodynamics, together with its

torsion and curvature adapted local d-tensors.

Theorem 2.4. (i) The generalized Cartan canonical connection

CΓ =
(
Hγαβ,G

k
jγ,L

i
jk,C

i(γ)
j(k)

)
(2.9)

of the autonomous metrical multi-time Lagrange space of electrodynamics has the

adapted coefficients

Hγαβ =Hγαβ, Gkjγ = 0, Lijk = γijk, Ci(γ)j(k) = 0. (2.10)

(ii) The torsion T of the generalized Cartan canonical connection of the autonomous

metrical multi-time Lagrange space of electrodynamics is determined by three local

adapted d-tensors, namely,

R(m)(µ)αβ =−Hγµαβxmγ ,

R(m)(µ)αj =−
hµηgmk

4

[
HηαγU

(γ)
(k)j+

∂U(η)(k)j
∂tα

]
,

R(m)(µ)ij = rmijkxkµ+
hµηgmk

4

[
U(η)(k)i|j+U(η)(k)j|i

]
,

(2.11)

where Hγµαβ (resp., rmijk) are the local curvature tensors of the semi-Riemannian met-

ric hαβ (resp., gij ) and “|i” represents the local spatial horizontal covariant derivative

induced by the generalized Cartan connection (see [6]).

(iii) The curvature R of the generalized Cartan canonical connection of the au-

tonomous metrical multi-time Lagrange space of electrodynamics is determined by two

local adapted d-tensors, namely, Hηαβγ and Rlijk = r lijk, that is, exactly the curvature

tensors of the semi-Riemannian metrics hαβ and gij .

3. Generalized Maxwell equations on EDMLnp . To describe the generalized elec-

tromagnetism theory on the autonomous metrical multi-time Lagrange space, con-

sider the canonical Liouville d-vector field C = xiα∂/∂xiα on J1(T ,M), and construct

the metrical deflection d-tensors [5]

D̄(α)(i)β =
[
hαµgimxmµ

]
/β = 0,

D(α)(i)j =
[
hαµgimxmµ

]
|j =−

1
4
U(α)(i)j ,

d(α)(β)(i)(j) =
[
hαµgimxmµ

]|(β)(j) = hαβgij,
(3.1)

where “/β”, “|j”, and “|(β)(j) ” are the local covariant derivatives induced by the generalized

Cartan canonical connection CΓ (see also [6]).

Taking into account the general expressions of the local electromagnetic d-tensors

of a metrical multi-time Lagrange space [5], by a direct calculation, we deduce the

following result.
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Proposition 3.1. The local electromagnetic d-tensors of the autonomous metrical

multi-time Lagrange space of electrodynamics have the expressions,

F(α)(i)j =
1
2

[
D(α)(i)j−D(α)(j)i

]
= 1

8

[
U(α)(j)i−U(α)(i)j

]
=−1

4
U(α)(i)j

f (α)(β)(i)(j) =
1
2

[
d(α)(β)(i)(j) −d(α)(β)(j)(i)

]
= 0.

(3.2)

Particularizing the generalized Maxwell equations of multi-time electromagnetic

field, described in the general context of a metrical multi-time Lagrange space [5],

we deduce the main result of the generalized electromagnetism on the autonomous

metrical multi-time Lagrange space of electrodynamics.

Theorem 3.2. The electromagnetic local components F(α)(i)j of the autonomous met-

rical multi-time Lagrange space of electrodynamics are governed by the following gen-

eralized Maxwell equations,

F(α)(i)j/β =
1
2

�{i,j}hαµgimR
(m)
(µ)βj,

∑
{i,j,k}

F(α)(i)j|k = 0,
∑

{i,j,k}
F(α)(i)j|(γ)(k) = 0, (3.3)

where �{i,j} represents an alternate sum and
∑
{i,j,k} means a cyclic sum.

4. Generalized Einstein equations and conservation laws on EDMLnp . To start

the development of the generalized gravitational theory on the autonomous metrical

multi-time Lagrange space of electrodynamics EDMLnp , we point out that the vertical

metrical d-tensor G(α)(β)(i)(j) = hαβ(t)gij(x) and the canonical nonlinear connection Γ =
(M(i)(α)β,N

(i)
(α)j) of this space induce a natural multi-time gravitational potential (i.e., a

Sasakian like-metric) on the 1-jet space J1(T ,M), which is expressed by [5]

G = hαβdtα⊗ dtβ+gij dxi⊗ dxj+hαβgijδxiα⊗δxjβ. (4.1)

Consider CΓ = (Hγαβ,0,γijk,0) the generalized Cartan canonical connection of EDMLnp .

We postulate that the generalized Einstein equations which govern the gravitational

h-potential G of the metrical multi-time Lagrange space of electrodynamics EDMLnp
are the abstract geometrical Einstein equations attached to the generalized Cartan

canonical connection and the adapted metric G on J1(T ,M), that is,

Ric(CΓ)− Sc(CΓ)
2

G =��, (4.2)

where Ric(CΓ) represents the Ricci d-tensor of the generalized Cartan connection,

Sc(CΓ) is its scalar curvature, � is the Einstein constant and � is an intrinsic d-tensor

of matter which is called the stress-energy d-tensor.

In the adapted basis {XA} = {δ/δtα,δ/δxi,∂/∂xiα}, the curvature d-tensor R of the

generalized Cartan connection is expressed locally by R(XC,XB)XA = RDABCXD . There-

fore, it follows that we have Ric(CΓ)(XA,XB)=RAB=RDABD and Sc(CΓ)=GABRAB , where

GAB =




hαβ, for A=α, B = β,
gij, for A= i, B = j,
hαβgij, for A= (i)

(α), B = (j)
(β),

0, otherwise.

(4.3)
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Taking into account the expressions of the local curvature d-tensors of the gen-

eralized Cartan connection of EDMLnp , by computations, we deduce the following

theorem.

Theorem 4.1. The Ricci d-tensor Ric(CΓ) of the autonomous metrical multi-time

Lagrange space of electrodynamics is characterized by two effective adapted local Ricci

d-tensors, namely, Hαβ and Rij = rij , where Hαβ (resp., rij ) are the local Ricci tensors

associated to the semi-Riemannian metric hαβ (resp., gij ).

Consequently, denoting H = hαβHαβ, R = gijRij , by direct calculations, we obtain

the following theorem.

Theorem 4.2. The scalar curvature Sc(CΓ) of the generalized Cartan connection

of EDMLnp is given by

Sc(CΓ)=H+R =H+r , (4.4)

where H and r are the scalar curvatures of the semi-Riemannian metrics h and g.

In conclusion, we can establish the main result of the gravitational theory on EDMLnp.

Theorem 4.3. The local generalized Einstein equations which govern the multi-time

gravitational potential G, induced by the Lagrangian function of autonomous metrical

multi-time Lagrange space of electrodynamics, have the form

Hαβ−H+r
2
hαβ =��αβ,

rij−H+r
2
gij =��ij ,

−H+r
2
hαβgij =��

(α)(β)
(i)(j) ,

(4.5)

0=�αi, 0=�iα, 0=�(α)(i)β, (4.6)

0=�
(β)
α(i), 0=� (α)

i(j), 0=�(α)(i)j , (4.7)

where �AB , A,B ∈ {α,i, (α)(i) }, are the adapted components of the stress-energy distin-

guished tensor �.

Remark 4.4. Assuming p = dimT > 2 and n = dimM > 2, the set (4.5) of the

generalized Einstein equations can be rewritten in the classical form

Hαβ−H
2
hαβ =��̃αβ, rij− r

2
gij =��̃ij , (4.8)

where �̃AB , A,B ∈ {α,i} are the adapted local components of a new stress-energy d-

tensor �̃. This new form of the Einstein equations is deeply treated in the more general

case of a generalized metrical multi-time Lagrange space [3].

Note that, in order to have the compatibility of the Einstein equations, it is neces-

sary that the certain adapted local components of the stress-energy d-tensor vanish

a priori. At the same time, it is well known that, from a physical point of view, the
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stress-energy d-tensor � must verify the local generalized conservation laws �BA|B = 0,

for all A∈ {α,i, (α)(i) }, where �BA =GBD�DA. In this context, by direct computations, we

obtain the following result.

Theorem 4.5. The generalized conservation laws of the generalized Einstein equa-

tions of the multi-time gravitational potential of autonomous metrical multi-time

Lagrange space are given by

[
Hµβ −

H+r
2
δµβ

]
/µ
= 0,

[
rmj −

H+r
2
δmj

]
|m
= 0, (4.9)

where Hµβ = hµνHνβ and rmj = gmsrsj .
Remark 4.6. Taking into account the components �̃αβ and �̃ij of the new stress-

energy d-tensor �̃ appeared in the classical form (4.8) of the generalized Einstein

equations, the generalized conservation laws modify in the classical form.
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