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BREAKING THE SYMMETRY OF A CIRCULAR SYSTEM
OF COUPLED HARMONIC OSCILLATORS

J. N. BOYD, R. G. HUDEPOHL, and P. N. RAYCHOWDHURY

Received 23 October 2000

First we compute the natural frequencies of vibration of four identical particles cou-
pled by ideal, massless harmonic springs. The four particles are constrained to move
on a fixed circle. The initial computations are simplified by a transformation to sym-
metry coordinates. Then the symmetry of the vibrating system is broken by changing
the mass of a single particle by a very small amount. We observe the effect of apply-
ing the symmetry transformation to the now slightly nonsymmetric system. We compute
the new frequencies and compare them with the frequencies of the original symmet-
ric system of oscillators. Results of similar calculations for 2, 3, 5, and 6 particles are
given.
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1. Introduction. We have found the application of the representation theory of fi-

nite groups to the study of symmetrically coupled harmonic oscillators to be a fertile

source of problems [11, 12]. We began by constructing unitary transformations from

the irreducible matrix representations of the symmetry groups of the systems of oscil-

lators. We then computed the natural frequencies of vibration for several complicated

systems of oscillators after simplifying their equations of motion by means of the

appropriate unitary transformations of their coordinates and velocities [1, 2, 3, 10].

We have also applied these transformations to the circuit equations for coupled L-C

oscillators [4, 6]. In addition, we have looked at wave propagation in a two-dimensional

lattice of springs and point masses [5].

We recognized that statistical sample variance as a quadratic polynomial form pos-

sesses the same symmetry as that of the total elastic potential energy of coupled

harmonic oscillators forced to move on a fixed circle. We then used symmetry trans-

formations to elaborate upon the geometrical interpretation of variance [7, 8]. There-

after, we described a vibrating mechanical system to model within and between set

variances [9].

In this paper, we return to these calculations which have for so long held our inter-

est. We wondered what would happen if we broke the symmetry of a vibrating system

and then applied to the new system the transformation derived from the original sym-

metry group. We performed the requisite calculations with the aid of Mathematica for

several special cases in which the departures from symmetry were slight. The results

seem quite interesting.
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Figure 2.1. Four particles on a circle.

2. Motion on a circle. Our symmetric system consists of n identical particles uni-

formly spaced around a fixed circle. Each particle is connected to its two nearest

neighbors by identical Hooke’s law springs which take the shape of the arc between

adjacent particles. Each particle possesses mass m while the springs are massless

with force constant β. All motions of the system are confined to the circle. We will

discover the natural frequencies for the vibrations of such a system in the case when

n= 4. In so doing, we will model all of the calculations which are required in the gen-

eral case for arbitrary n [1]. The geometry of the four particles interconnected with

springs is indicated in Figure 2.1.

We denote the displacement of the jth particle from its equilibrium position by xj
and the velocity of the particle by ẋj . The total kinetic energy for the four particles

may be written in matrix form as

T =
(
m
2

)
ẊI col

(
Ẋ
)
, (2.1)

where I represents the 4×4 identity matrix, Ẋ = (ẋ1ẋ2ẋ3ẋ4), and col(Ẋ) is the trans-

pose of the row velocity vector Ẋ.

Suppose that the jth and kth particles are adjacent. Then the elastic potential en-

ergy, stored in the spring connecting the two particles, is (β/2)(xj −xk)2. The total

elastic potential energy may be written as

V =
(
β
2

)
X




2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2


col(X), (2.2)

where X = (x1x2x3x4) and col(X) is the transpose of X.
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The symmetry group for the system of coupled simple harmonic oscillators is the

cyclic group of rotations of the circle by 90◦, 180◦, 270◦, and 360◦. The rotation by

360◦ serves as the identity element in the group. The group of four complex fourth

roots of unity {i,−1,−i,1} under complex multiplication is isomorphic to the rotation

group. From these complex fourth roots of unity, we construct the unitary matrix

U =
(

1
2

)


i −1 −i 1

−1 1 −1 1

−i −1 i 1

1 1 1 1


 . (2.3)

The entries in the first column of the matrix U are the four different fourth roots of

unity and the j,kth entry in the matrix is (uj1)k [11].

Next, we express the kinetic and potential energies with respect to the complex

symmetry coordinates (z1,z2,z3,z4) and their conjugates (z̄1, z̄2, z̄3, z̄4) together with

the associated velocities (ż1, ż2, ż3, ż4) and their conjugates ((˙̄z)1,(˙̄z)2,(˙̄z)3,(˙̄z)4). We

accomplish the transformations by means of matrix manipulations in the following

manner:

T =
(
m
2

)
ẊU−1UIU−1U col

(
Ẋ
)= (m

2

)
˙̄ZI col

(
Ż
)
, (2.4)

V =
(
β
2

)
XU−1U




2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2


U−1U col(X)

=
(
β
2

)
Z̄




2 0 0 0

0 4 0 0

0 0 2 0

0 0 0 0


col(Z).

(2.5)

In this notation, Z̄ = (z̄1z̄2z̄3z̄4), col(Z) is the column symmetry displacement vec-

tor, ˙̄Z = (˙̄z1 ˙̄z2 ˙̄z3 ˙̄z4), and col(Ż) is the column velocity vector.

The Lagrangian becomes

L= T −V =
(
m
2

)(
˙̄z1ż1+ ˙̄z2ż2+ ˙̄z3ż3+ ˙̄z4ż4

)−(β
2

)(
2z̄1z1+4z̄2z2+2z̄3z3

)
. (2.6)

From L we obtain the equations of motion as

d
dt

(
∂L
∂ ˙̄zj

)
− ∂L
∂z̄j

= 0, (2.7)
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Figure 3.1. Four particles with their mass symmetry broken.

for j = 1,2,3,4. The equations of motion are

mz̈1+2βz1 = 0,

mz̈2+4βz2 = 0,

mz̈3+2βz3 = 0,

mz̈4 = 0.

(2.8)

It is immediately clear that the frequencies of vibration for the complex symmetry co-

ordinates are f1 = (1/2π)
√

2β/m, f2 = (1/π)
√
β/m, f3 = (1/2π)

√
2β/m, and f4 = 0.

Since the transformations of coordinates and velocities leave the eigenvalues of the

kinetic and potential energy matrices invariant, these are the natural frequencies of

the system.

3. Breaking the symmetry. Now let the mass of a single particle be changed from

m to m+δm with |δm| very small when compared to m. All other masses and all

springs remain as they were under the conditions of full symmetry. It does not matter

which particle has been altered. So, for convenience, we will take it to be the nth par-

ticle with displacement and velocity xn and ẋn, respectively, which has been changed.

We will demonstrate the effects of the broken circular symmetry in the case thatn= 4.

The geometry of the new vibrating system is suggested by Figure 3.1.

The new kinetic energy may be written in matrix form as

T =
(
m
2

)
ẊI col

(
Ẋ
)+(δm

2

)
Ẋ




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


col

(
Ẋ
)
, (3.1)

while the potential energy matrix remains unchanged as given by (2.2).
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The vibrating system of particles and springs no longer possesses the symmetry

of the rotation four-group, but it does not miss its former symmetry by far when

|δm| �m. Our idea was to pursue the consequences of rewriting the Lagrangian by

means of the symmetry transformations of (2.4) and (2.5).

The kinetic energy becomes

T =
(
m
2

)
ẊI col

(
Ẋ
)+(δm

2

)
Ẋ




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


col

(
Ẋ
)

=
(
m
2

)
ẊU−1UIU−1U col

(
Ẋ
)+(δm

2

)
ẊU−1U




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


U−1U col

(
Ẋ
)

=
(
m
2

)
˙̄ZI col

(
Ż
)+(δm

8

)
˙̄Z




1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


col

(
Ż
)
.

(3.2)

Since the symmetry of the connecting springs remains unchanged, the potential

energy matrix retains the same form under transformation as that given before the

symmetry was broken. The Lagrangian becomes L= T−V where T and V are as given

by (3.2) and (2.5), respectively. We have gained no computational advantage from the

transformation, but we have obtained what we think is an interesting result. Breaking

the symmetry of the original system by changing the mass of a single particle couples

all of the velocities associated with the old symmetry coordinates in such a way that

the new kinetic energy is shared equally among the old symmetry coordinates. The

mathematics is quite straightforward and holds for all values of n∈ {1,2,3, . . .}.

4. The new frequencies. While an interesting exercise, the forcing of a rotational

symmetry transformation upon the system of particles of masses m, m, and m+δm
complicated the actual problem of finding the new natural frequencies of the system

after one mass had been changed. However, the system still possesses the symmetry

of reflection across the line through the equilibrium positions of the second and fourth

particles as shown in Figure 4.1.

We make use of the remaining symmetry to transform the original energies with

the orthogonal reflection matrix

W =
(

1√
2

)


−1 0 1 0

0 −1 0 1

1 0 1 0

0 1 0 1


 . (4.1)
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Figure 4.1. The four particles with reflection symmetry.

The kinetic energy should now be expressed as

T =
(
m
2

)
ẊI col

(
Ẋ
)+(δm

2

)
Ẋ




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


col

(
Ẋ
)

=
(
m
2

)
ẊW−1WIW−1W col

(
Ẋ
)+(δm

2

)
ẊW−1W




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


W−1W col

(
Ẋ
)

=
(
m
2

)
Ẏ I col

(
Ẏ
)+(δm

2

)
Ẏ




0 0 0 0

0
1
2

0
1
2

0 0 0 0

0
1
2

0
1
2




col
(
Ẏ
)
,

(4.2)

where Ẏ is the row velocity vector corresponding to the real symmetry row displace-

ment vector Y = (y1y2y3y4). The elastic potential energy becomes

V =
(
β
2

)
XW−1W




2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2


W−1W col

(
X
)

=
(
β
2

)
Y




2 0 0 0

0 2 0 0

0 0 2 −2

0 0 −2 2


col(Y).

(4.3)
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From the Lagrangian

L= T−V =
(
m
2

)(
ẏ2

1+ẏ2
2+ẏ2

3+ẏ2
4

)+ δm
4

(
ẏ2+ẏ4

)2−β
(
y2

1+y2
2+

(
y3−y4

)2
)
, (4.4)

we derive the equations of motion as

d
dt

(
∂L
∂ẏj

)
− ∂L
∂ẏj

= 0 for j = 1,2,3,4; (4.5)

the equations are

mÿ1+2βy1 = 0,
(
m+ δm

2

)
ÿ2+ δm

2
ÿ4+2βy2 = 0,

mÿ3+2β
(
y3−y4

)= 0,

δm
2
ÿ2+

(
m+ δm

2

)
ÿ4−2β

(
y3−y4

)= 0.

(4.6)

From the first of these four equations, we obtain the frequency f∗1 = (1/2π)
√

2β/m.

To find the other frequencies, we turn to the three remaining equations and let ÿj =
−ω2yj for j = 2,3,4. We then write that

(
−ω2

(
m+ δm

2

)
+2β

)
y2−ω2

(
δm
2

)
y4 = 0,

(−ω2m+2β
)
y3−2βy4 = 0,

−ω2
(
δm
2

)
y4−2βy3+

(
−ω2

(
m+ δm

2

)
+2β

)
y4 = 0.

(4.7)

These three equations have nontrivial solutions for y2, y3, and y4 if and only if

Det




(
−ω2

(
m+ δm

2

)
+2β

)
y2 0 −ω2

(
δm
2

)

0
(−ω2m+2β

) −2β

−ω2
(
δm
2

)
−2β −ω2

(
m+ δm

2

)
+2β



= 0. (4.8)

Expansion of this determinant yields a third degree polynomial equation in the

variable ω2. One root of that equation is ω2 = 0. The other two solutions provided

by Mathematica are complicated in appearance. The square roots of these solutions
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lead to the desired frequencies. The angular frequencies are

ω=

√√√√3mβ+2bδm+β
√
m2+2mδm+2(δm)2

m2+mδm ,

ω=

√√√√3mβ+2bδm+β
√
m2−2mδm+2(δm)2

m2+mδ .

(4.9)

Since we are primarily interested in very small values of δm, we substitute for the

expressions for ω the first two terms of their Maclaurin expansions in δm. Thus

ω≈ 2

√
β
m

√
1− δm

4m
≈ 2

√
β
m

(
1− δm

8m

)
,

ω≈
√

2β
m

√
1− δm

2m
≈
√

2β
m

(
1− δm

4m

)
.

(4.10)

It follows that

f∗2 ≈
1
π

√
β
m

√
1− δm

4m
≈ 1
π

√
β
m

(
1− δm

8m

)
,

f∗3 ≈
1

2π

√
2β
m

√
1− δm

2m
≈ 1

2π

√
2β
m

(
1− δm

4m

)
,

f∗4 = 0.

(4.11)

Recalling the frequencies f1, f2, f3, and f4 for the original four identical masses and

springs, we see that

f∗1 = f1, f∗2 = f2

√
1− δm

4m
, f∗3 = f3

√
1− δm

2m
, f∗4 = f4 = 0. (4.12)

Other results. We have also computed the frequencies for n = 2,3,5, and 6

particles connected by springs on a fixed circle. In each case, the mass of single particle

has been changed by a slight amount δm as described in the previous section, and

the computations leading to the results listed below are similar to those for n= 4. We

display the frequencies in Table 4.1.

The computations to obtain these frequencies are lengthy with length increasing as

the number of particles (n) increases. General results for arbitrary values of n would

seem to be difficult to obtain. However, the special examples which we have considered

lead us to the hypothesis that breaking the circular symmetry by changing the massm
of a single particle by a very small amount δm, either leaves a frequency unchanged

or decreases the frequency by a factor of 1−δm/(nkm) where k is a positive integer.
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Table 4.1

n
Frequency f Frequency f∗

(Full symmetry) (Broken symmetry)

2
f1 = (1/π)

√
β/m f∗1 = f1(1−δm/2(2m))

f2 = 0 f∗2 = f2 = 0

3

f1 = (1/2π)
√

3β/m f∗1 = f1

f2 = (1/2π)
√

3β/m f∗2 = f2(1−δm/3m)
f3 = 0 f∗3 = f3 = 0

4

f1 = (1/2π)
√

2β/m f∗1 = f1

f2 = (1/π)
√
β/m f∗2 = f2(1−δm/2(4m))

f3 = (1/2π)
√

2β/m f∗3 = f3(1−δm/4m)
f4 = 0 f∗4 = f4 = 0

5

f1 = (1/2π)
√
β/m

√
(5−√5)/2 f∗1 = f1

f2 = (1/2π)
√
β/m

√
(5−√5)/2 f∗2 = f2(1−δm/5m)

f3 = (1/2π)
√
β/m

√
(5+√5)/2 f∗3 = f3

f4 = (1/2π)
√
β/m

√
(5+√5)/2 f∗4 = f4(1−δm/5m)

f5 = 0 f∗5 = f5 = 0

6

f1 = (1/2π)
√
β/m f∗1 = f1

f2 = (1/2π)
√
β/m f∗2 = f2(1−δm/6m)

f3 = (1/2π)
√

3β/m f∗3 = f3

f4 = (1/2π)
√

3β/m f∗4 = f4(1−δm/6m)
f5 = (1/π)

√
β/m f∗5 = f5(1−δm/2(6m))

f6 = 0 f∗6 = f6 = 0
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