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Based on the concept of limit of prefilters and residual implication, several notions in
fuzzy topology are fuzzyfied in the sense that, for each notion, the degree to which it
is fulfilled is considered. We establish therefore theories of degrees of compactness and
relative compactness, of closedness, and of continuity. The resulting theory generalizes
the corresponding “crisp” theory in the realm of fuzzy convergence spaces and fuzzy
topology.
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1. Introduction. In most papers and contributions to the theory of [0,1]-topological

spaces, the considered properties (like compactness) are viewed in a crisp way, that is,

the properties either hold or fail. In [16], R. Lowen suggested that also the properties

should be considered fuzzy, that is, one should be able to measure a degree to which

a property holds. There are some papers dealing with such approaches. E. Lowen and

R. Lowen [11] consider compactness degrees, and in [19], measures of separation in

[0,1]-topological spaces are investigated. In [17], Šostak developed a theory of com-

pactness degrees and connectedness degrees in [0,1]-fuzzy topological spaces, and

developed, in [18], a theory of degrees of precompactness and completeness in the

so-called Hutton fuzzy uniform spaces. These latter theories are related to the present

work as they are explicitly based on a generalized inclusion (which is, however, not

resulting from a residual implication).

In this paper, we follow these ideas in a systematic way. Starting from the notion

of limit of a prefilter as defined in [15], we consider a semigroup operation ∗ on

[0,1] which is finitely distributive over arbitrary joins and, therefore, has a right ad-

joint→, that is, a residual implication operator. In this way, a natural way of obtaining

truly fuzzy extensions of properties in fuzzy convergence spaces [12, 13] is to re-

place subsethood, a ≤ b of two fuzzy sets a,b ∈ [0,1]X by degrees of subsethood,

subset(a,b) = ∧x∈X(a(x) → b(x)) [1]. Exploiting this idea leads to the theory con-

sidered in this paper. We extend some results of an earlier paper [10], where degrees

of closedness and degrees of compactness were studied and a theory of degrees of

continuity and of degrees of relative compactness is established. Note that stratified

[0,1]-topological spaces [5, 14] as well as Choquet convergence spaces [3] are fuzzy

convergence spaces [13], that is, our approach works also in this more special context.

2. Preliminaries. Throughout the paper, we consider fuzzy subsets with member-

ship values in the real unit interval [0,1], that is, a,b,c, . . . ∈ [0,1]X . We assume that

the reader is familiar with the usual definitions and notations in fuzzy set theory and
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fuzzy topology. We especially denote the pointwise extensions of the lattice opera-

tions ∧, ∨, and the order relation ≤ from [0,1] to [0,1]X again by ∧, ∨, ≤, respec-

tively. Moreover, we write∅ for the constant function 0. Further we want to consider

an additional operation ∗ : [0,1]×[0,1]→ [0,1] with the following properties:

(I) α∗(β∗γ)= (α∗β)∗γ;

(II) α∗β= β∗α;

(III) α∗1=α;

(IV) β≤ γ ⇒α∗β≤α∗γ;

(V) α∗∨λ∈Λβλ =∨λ∈Λ(α∗βλ);
that is, ∗ is a t-norm on [0,1] which is distributive over arbitrary joins. Standard

examples are the minimum α∗β=α∧β, the product α∗β=α·β, or the Lukasiewicz

t-norm α∗β=αTmβ= (α+β−1)∨0. Property (V) allows the definition of a residual

implication → defined by α→ β :=∨{λ |α∗λ≤ β}.
Lemma 2.1. Let X be a nonempty set and let a,b ∈ [0,1]X . Then∧

x∈X

(
a(x) �→ b(x))=∨{

α∈ [0,1] | a(x)∗α≤ b(x) ∀x ∈X}. (2.1)

The proof is straightforward and therefore left to the reader.

Lemma 2.2. The residual implication has the following properties (α,β,γ,αλ,βλ ∈
[0,1]; (λ∈Λ)):

(i) γ ≤α→ β if and only if γ∗α≤ β;

(ii) α→ β= 1 if and only if α≤ β;

(iii) if β≤ γ then α→ β≤α→ γ and γ →α≤ β→α;

(iv) (α∧γ)→ (β∧γ)≥α→ β;

(v) 0→α= 1;

(vi)
∧
λ(αλ→ β)= (

∨
λαλ)→ β;

(vii)
∧
λ(α→ βλ)=α→ (

∧
λβλ);

(viii) α∗(α→ β)≤ β;

(ix) (α→ β)∗(β→ γ)≤α→ γ;

(x)
∧
λ(αλ→ βλ)≤ (

∨
λαλ)→ (

∨
λβλ).

Proof. Many of the assertions are easy consequences of (i) and can be found, for

example, in [4]. We only prove (ix): we have α∗ ((α → β)∗ (β → γ)) = (α∗ (α →
β))∗(β→ γ)≤ β∗(β→ γ)≤ γ, by (viii). From (i) the claim follows.

3. Fuzzy convergence spaces. A prefilter (see [15]) F on a ∈ [0,1]X is a filter in

the lattice FX(a) := {b ∈ [0,1]X | b ≤ a}, that is, ∅ ∉ F ≠ ∅; f ,g ∈ F ⇒ f ∧g ∈ F
and FX(a) � g ≥ f ∈ F ⇒ g ∈ F. We denote the set of all prefilters on a by F(a)
and order this set by set inclusion. For F∈ F(a) we denote by c(F)=∧f∈F∨x∈X f(x)
its characteristic value. A prefilter is called prime if whenever f ∨g ∈ F then f ∈ F
or g ∈ F [15]. For example, the point prefilters [α1x] = {f ∈ FX(a) | f(x) ≥ α} are

prime prefilters. We denote the set of all prime prefilters on a by Fp(a). It is shown

in [15] that the set P(F) := {G ∈ Fp(a) | G ≥ F} contains minimal elements and we

denote Pm(F) := {G∈ P(F) |G minimal}. We call B⊂ FX(a) a prefilterbase if and only

if∅ ∉ B≠∅ and b,c ∈ B⇒∃d∈ B, such that, d≤ b∧c. For a prefilterbase, we denote
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by [B]a = [B] = {f ∈ FX(a) | ∃b ∈ B : b ≤ f}, the generated prefilter. For b ≤ a and

F ∈ F(a) with f ∧b ≠∅ for all f ∈ F, we put Fb := {f ∧b | f ∈ F} ∈ F(b). For further

results concerning prefilters we refer the reader to [15].

A fuzzy convergence space [6, 12, 13] (a, lim) is a fuzzy set a ∈ [0,1]X together

with a mapping lim : F(a)→ FX(a) subject to the conditions:

(PST) for all F∈ F(a) : limF=∧G∈Pm(F) limG,

(F1p) for all F∈ Fp(a) : limF≤ c(F),
(F2p) for all F,G∈ Fp(a) : F≤G⇒ limG≤ limF,

(C1) for all x ∈ a0, 0<α≤ a(x) :α1x ≤ lim[α1x].
By reason of (PST), it is sufficient to define the mapping lim only for prime prefilters.

Standard examples for fuzzy convergence spaces are fuzzy topological spaces (X,∆)
in the sense of R. Lowen [14] (i.e., stratified [0,1]-topological spaces in the notation

of [5]) and Choquet limit spaces (X,τ) [3].

For a fuzzy convergence space (a, lim) and b ≤ a, we denote b̄ := ∨b∈F∈Fp(a) limF
its lim-closure [7].

If a ∈ [0,1]X and b ∈ [0,1]Y we put mor(a,b) = {ϕ : X → Y | ϕ(a) ≤ b} and we

write ϕ : a → b for ϕ ∈ mor(a,b). For c ≤ b, the inverse image ϕ←(c) of c under

ϕ ∈ mor(a,b) is defined by ϕ←(c)(x) = c(ϕ(x))∧a(x) = ϕ−1(c)∧a(x), x ∈ X.

For F ∈ F(a), we define ϕ(F) as the prefilter on b generated by the prefilterbase

{ϕ(f) | f ∈ F}. If (a, lima), (b, limb) are fuzzy convergence spaces then we call ϕ :

a→ b continuous if and only if ϕ(limaF) ≤ limbϕ(F) for all F ∈ Fp(a). The category

with fuzzy convergence spaces as objects and continuous mappings as morphisms is

denoted by FCS.

Let now (a, lim)∈ |FCS| and let b ≤ a. We define on b the fuzzy convergence lim|b
induced by (a, lim),

lim|bF= lim[F]∧b, (3.1)

and call (b, lim|b) a subspace of (a, lim) (cf. [6]).

If aλ ∈ [0,1]Xλ , (λ ∈ Λ) and (aλ, limλ) ∈ |FCS| for all λ ∈ Λ, then we define the

product space (
∏
aλ,π− lim) putting for F∈ F(∏aλ)

π− limF=
∏
λ∈Λ

limλprλ(F). (3.2)

For more details we refer to [6].

4. The degree of closedness of a fuzzy set. The definitions and results of this sec-

tion were already established in [10]. However, we propose the proofs of the proposi-

tions in a more systematical way making use of Lemma 2.2.

Deffinition 4.1. Let (a, lim)∈ |FCS| and let b ≤ a. We call

cl
(
b,(a, lim)

)= cl(b) :=
∧

F∈Fp(a):b∈F,x∈X

(
limF(x) �→ b(x)), (4.1)

the degree of closedness of b in (a, lim).
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In [6], we called a fuzzy subset b ≤ a of a fuzzy convergence space (a, lim) lim-

closed, if b ∈ F∈ Fp(a) implies limF≤ b. From Lemma 2.2(ii), it is immediately evident

that cl(b)= 1 if and only if b is lim-closed.

Proposition 4.2. Let (a, lim) ∈ |FCS| and let b,bλ,c ≤ a, (λ ∈ Λ). The following

holds:

(i) cl(b∨c)≥ cl(b)∧cl(c);
(ii) cl(

∧
λ∈Λbλ)≥

∧
λ∈Λ cl(bλ);

(iii) cl(a∧α)= 1 for all α∈ [0,1].
Proof. (i) Put γ := cl(b)∧ cl(c). Then γ ≤ limF(x) → b(x) for all b ∈ F ∈ Fp(a),

x ∈ X, and γ ≤ limF(x)→ c(x) for all c ∈ F ∈ Fp(a), x ∈ X. If b∨c ∈ F ∈ Fp(a) then

without of generality b ∈ F; and hence, with Lemma 2.2(v), γ ≤ limF(x)→ (b∨c)(x)
for every x ∈X. The arbitrariness of F∈ Fp(a) finally yields γ ≤ cl(b∨c).

(ii) Put γ :=∧λ∈Λ cl(bλ). Then for every F∈ Fp(a) such that bλ ∈ F, for every x ∈X,

and for every λ ∈ Λ, we have γ ≤ limF(x)→ bλ(x). If now
∧
λ∈Λbλ ∈ F ∈ Fp(a) then

bλ ∈ F for every λ∈Λ; by Lemma 2.2(vii), hence

γ ≤
∧
λ∈Λ

(
limF(x) �→ bλ(x))= limF(x) �→

∧
λ∈Λ
bλ(x). (4.2)

From this the claim follows.

(iii) Its proof follows with condition (F1p) Section 3, as c(F)≤α fora∧α∈ F∈ Fp(a)
and by Lemma 2.2(ii).

Proposition 4.2 allows for a fuzzy convergence space (a, lim), via

o(b) := cl(Cb) (4.3)

(with Cb(x) := a(x)−b(x), x ∈ X, the pseudocomplement of b with respect to a, cf.

[8]), the definition of a fuzzy [0,1]-topology in the sense of [5, 17].

Corollary 4.3. Let (a, lim)∈ |FCS|. The following holds:

(i) the union of two lim-closed fuzzy sets is lim-closed;

(ii) the intersection of a family of lim-closed fuzzy sets is lim-closed;

(iii) a∧α is lim-closed for every α∈ [0,1].
Proposition 4.4. Let (a, lim)∈ |FCS| and let c ≤ b ≤ a. Then

cl
(
c,
(
b, lim|b

))≥ cl
(
c,(a, lim)

)
. (4.4)

Proof. Put γ := cl(c,(a, lim)) and let F ∈ Fp(b) such that c ∈ F. Then c ∈ [F] ∈
Fp(a), thus for every x ∈X, we conclude with Lemma 2.2(iii) that

γ ≤ lim[F](x) �→ c(x)≤ (lim[F](x)∧b(x)) �→ c(x)= lim|bF(x) �→ c(x). (4.5)

Hence by arbitrariness of F, we get γ ≤ cl(c,(b, lim|b)).
Corollary 4.5. Let (a, lim) ∈ |FCS| and let c ≤ b ≤ a. If c is lim-closed then c is

lim|b-closed.
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We end this section describing the degree of closedness for special operations ∗.

For ∗=∧ we obtain, with Lemma 2.1,

cl(b)=
∨{
α | limF∧α≤ b ∀b ∈ F∈ Fp(a)

}
; (4.6)

and for ∗= Tm, the Lukasiewicz t-norm, we deduce from Lemma 2.1 that

cl(b)= 1−
∧{
α | limF≤ b+α ∀b ∈ F∈ Fp(a)

}
. (4.7)

5. The degree of continuity of a mapping. We extend the notion of continuity of

a mapping ϕ : a→ b.

Deffinition 5.1. Let (a, lima),(b, limb) ∈ |FCS| and let ϕ : a → b be a mapping.

Then

cont
(
ϕ,
(
a, lima),(b, limb))

= cont(ϕ) :=
∧

F∈Fp(a),x∈X

(
limaF(x) �→ limbϕ(F)

(
ϕ(x)

)) (5.1)

is called the continuity degree of ϕ.

Obviously again it holds that ϕ is continuous if and only if cont(ϕ)= 1.

Proposition 5.2. Let (a, lima),(b, limb),(c, limc) ∈ |FCS| and let ϕ : a → b and

ψ : b→ c. Then

cont(ψ◦ϕ)≥ cont(ϕ)∗cont(ψ). (5.2)

Proof. Put δ := cont(ϕ), ε := cont(ψ). If F∈ Fp(a) and x ∈X then

δ≤ limaF(x) �→ limbϕ(F)
(
ϕ(x)

)
,

ε≤ limbϕ(F)
(
ϕ(x)

)
�→ limcψ◦ϕ(F)(ψ◦ϕ(x)) (5.3)

(with ψ◦ϕ(F)=ψ(ϕ(F))). It follows with Lemma 2.2(ix) that

δ∗ε≤ limaF(x) �→ limcψ◦ϕ(F)(ψ◦ϕ(x)), (5.4)

from which the claim follows.

Corollary 5.3. Let (a, lima),(b, limb),(c, limc) ∈ |FCS| and let ϕ : a→ b and ψ :

b→ c. If ϕ and ψ are continuous then so is ψ◦ϕ.

Corollary 5.4. Let (a, lima),(b, limb) ∈ |FCS|; lim∗ ≥ lima; lim′ ≤ limb and let

ϕ : a→ b. Then

cont
(
ϕ,
(
a, lima),(b, limb))≤ cont

(
ϕ,
(
a, lim∗),(b, lim′)). (5.5)

Proof. This follows from the continuity of the identity mappings.

Proposition 5.5. Let (a, lima),(b, limb)∈ |FCS|; c ≤ a and let ϕ : a→ b. Then

cont
(
ϕ|c,

(
c, lima|c

)
,
(
ϕ(c), limb|ϕ(c)

))≥ cont
(
ϕ,
(
a, lima),(b, limb)). (5.6)
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Proof. We have

cont
(
ϕ|c

)= ∧
F∈Fp(c),x∈X

(
lima|cF(x) �→ limb|ϕ(c)ϕ(F)

(
ϕ(x)

))

=
∧

F∈Fp(c),x∈X

(
lima[F](x)∧c(x) �→ limb[ϕ(F)](ϕ(x))∧ϕ(c)(ϕ(x)))

≥
∧

F∈Fp(a),x∈X

(
limaF(x)∧c(x) �→ limbϕ(F)

(
ϕ(x)

)∧ϕ(c)(ϕ(x))).
(5.7)

By reason of Lemma 2.2(iii) and as ϕ(c)(ϕ(x))≥ c(x) the latter is

cont
(
ϕ|c

)≥ ∧
F∈Fp(a),x∈X

((
limaF(x)∧c(x)) �→ (

limbϕ(F)
(
ϕ(x)

)∧c(x))). (5.8)

From Lemma 2.2(iv) we finally deduce

cont
(
ϕ|c

)≥ ∧
F∈Fp(a),x∈X

(
limaF(x) �→ limbϕ(F)

(
ϕ(x)

))
, (5.9)

from which the claim follows.

Corollary 5.6. Let (a, lima),(b, limb)∈ |FCS|; c ≤ a and let ϕ : a→ b be continu-

ous. Then also ϕ|c : (c, lima|c)→ (ϕ(c), limb|ϕ(c)) is continuous.

Proposition 5.7. Let (a, lima),(b, limb)∈ |FCS|; e≤ b andϕ : a→ b be a mapping.

Then

cl
(
ϕ←(e)

)≥ cl(e)∗cont(ϕ). (5.10)

Proof. Let δ := cl(e) and ε := cont(ϕ). If F ∈ Fp(a), ϕ←(e) ∈ F, x ∈ X then

ϕ(ϕ←(e))∈ϕ(F) and hence also e∈ϕ(F). Thus

δ≤ limbϕ(F)
(
ϕ(x)

)
�→ e(ϕ(x)),

ε≤ limaF(x) �→ limbϕ(F)
(
ϕ(x)

)
.

(5.11)

Finally by Lemma 2.2(ix), (vii) and as limaF(x)≤ a(x), we deduce that

ε∗δ≤ limaF(x) �→ e(ϕ(x))
= limaF(x) �→ (

e
(
ϕ(x)

)∧a(x))
= limaF(x) �→ϕ←(e)(x).

(5.12)

From this the claim follows.

Corollary 5.8. Let (a, lima),(b, limb)∈ |FCS|; e≤ b and ϕ : a→ b be a mapping.

(i) If ϕ is continuous then cl(ϕ←(e))≥ cl(e).
(ii) If ϕ is continuous and e is limb-closed, then ϕ←(e) is lima-closed.
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We again end this section describing the continuity degrees for special operations∗.

For ∗=∧ we obtain, with Lemma 2.1,

cont(ϕ)=
∨{
α∈ [0,1] |ϕ(limaF

)∧α≤ limbϕ(F) ∀F∈ Fp(a)
}
; (5.13)

and for ∗= Tm we obtain, again with the help of Lemma 2.1,

cont(ϕ)= 1−
∧{
β∈ [0,1] |ϕ(limaF

)≤ limbϕ(F)+β ∀F∈ Fp(a)
}
. (5.14)

6. Degrees of compactness and of relative compactness. In this section, we ex-

tend the theory of relative compact subsets established in [2, 9] and repeat, sketching

new proofs, the theory of compactness degrees developed in [10] (which extends the

theory of compactness in fuzzy convergence spaces [6] and the theory of measures

of compactness in [0,1]-topological spaces [11]). Some additional results concerning

compactness degrees are included.

Deffinition 6.1. Let (a, lim)∈ |FCS| and let b ≤ a. We call

(i) c(a) = c(a, lim) = ∧F∈Fp(a)(c(F) → ∨
x∈X limF(x)) the compactness degree of

(a, lim),
(ii) c(b)= c(b, lim|b) the compactness degree of b, and

(iii) rc(b) = rc(b,(a, lim)) = ∧F∈Fp(a):b∈F(c(F)→ ∨
x∈X limF(x)) the degree of rela-

tive compactness of b in (a, lim).

Clearly, (a, lim) is compact [6] if and only if c(a)= 1; and b is relatively compact in

(a, lim) [9] if and only if rc(b)= 1.

Proposition 6.2. Let (a, lim)∈ |FCS| and let b ≤ a. Then c(b)≤ rc(b).

Proof. Let F∈ Fp(a) such that b ∈ F. Then Fb ∈ Fp(b), c(Fb)= c(F), and [Fb]= F.

Hence we conclude that

c(b)=
∧

F∈Fp(b)

(
c(F) �→

∨
x

lim|bF(x)
)

≤
∧

F∈Fp(a):b∈F

(
c
(
Fb
)
�→
∨
x

lim|bFb(x)
) (6.1)

and by Lemma 2.2(iii),

c(b)≤
∧

F∈Fp(a):b∈F

(
c(F) �→

∨
x

limF(x)
)
= rc(b). (6.2)

Corollary 6.3. A compact fuzzy subset of a fuzzy convergence space is relatively

compact.

Proposition 6.4. Let (a, lim)∈ |FCS| and let c ≤ b ≤ a. Then rc(b)≤ rc(c).

The proof is obvious.

Corollary 6.5. A fuzzy subset of a relatively compact fuzzy set is relatively com-

pact.
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Proposition 6.6. Let (a, lim)∈ |FCS| and let b ≤ a. Then c(b̄)≤ rc(b).

Proof. Combination of Propositions 6.2 and 6.4.

Corollary 6.7. A fuzzy subset, whose lim-closure is compact, is relatively compact.

Proposition 6.8. Let (a, lim) ∈ |FCS| and let c̄ ≤ b ≤ a. Then rc(c,(a, lim)) ≤
rc(c,(b, lim|b)).

Proof. Let F ∈ Fp(b) such that c ∈ F. Then c ∈ [F]a ∈ Fp(a). From c̄ ≤ b, we

deduce that lim[F]a ≤ c̄ ≤ b, hence lim|bF = b∧ lim[F]a = lim[F]a, from which it

follows that

rc
(
c,
(
b, lim|b

))= ∧
c∈F∈Fp(b)

(
c
(
[F]a

)
�→
∨
x

lim[F]a(x)
)

≥
∧

c∈F∈Fp(a)

(
c(F) �→

∨
x

limF(x)
)
= rc

(
c,(a, lim)

)
.

(6.3)

Corollary 6.9. Let (a, lim) ∈ |FCS| and let c̄ ≤ b ≤ a. If c is relatively compact in

(a, lim) then c is relatively compact in (b, lim|b).
Proposition 6.10. Let (a, lim)∈ |FCS| and let b,c ≤ a. Then

(i) c(b)∧c(c)≤ c(b∨c); and,

(ii) rc(b)∧rc(c)≤ rc(b∨c).
Proof. The proof of (i) was already shown in [10] and can be deduced similarly

to (ii). We prove (ii). Let γ := rc(b)∧ rc(c). Let further F ∈ Fp(a) such that b∨c ∈ F.

Then, without loss of generality, b ∈ F; hence by definition of γ and of rc(b)

γ ≤ c(F) �→
∨
x

limF(x), (6.4)

from which the claim follows.

Corollary 6.11. The union of two compact (resp., relatively compact) fuzzy sets is

compact (resp., relatively compact).

For the next proposition see also the related Proposition 3.4 in [10].

Proposition 6.12. Let (a, lim)∈ |FCS| and let b ≤ a. Then c(b)≥ c(a)∗cl(b).

Proof. Let δ := c(a) and η := cl(b). If F∈ Fp(b) then b ∈ [F]∈ Fp(a) and c([F])=
c(F). Hence

δ≤ c(F) �→
∨
x

lim[F](x), (6.5)

and for all x ∈X

η≤ lim[F](x) �→ b(x). (6.6)
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Hence, by Lemma 2.2(i), δ ∗ c(F) ≤ ∨
x lim[F](x); and for all x ∈ X we have η ∗

lim[F](x)≤ b(x). Thus it follows that

∨
x

lim|bF(x)=
∨
x

(
b(x)∧ lim[F](x)

)

≥
∨
x

((
η∗ lim[F](x)

)∧ limF(x)
)

=
∨
x

(
η∗ lim[F](x)

)

= η∗
∨
x

lim[F](x)≥ η∗δ∗c(F).

(6.7)

Hence η∗δ≤ c(F)→∨
x lim|bF(x). From this the claim follows.

Corollary 6.13. (i) The compactness degree of a lim-closed fuzzy subset of a fuzzy

convergence space is at least as high as the compactness degree of the whole space.

(ii) A lim-closed fuzzy subset of a compact fuzzy convergence space is compact.

The following result generalizes [10, Proposition 3.6].

Proposition 6.14. Let (a, lima),(b, limb)∈ |FCS| and letϕ : a→ b and c ≤ a. Then

(i) c(ϕ(c))≥ c(c)∗cont(ϕ);
(ii) rc(ϕ(c))≥ rc(c)∗cont(ϕ).

Proof. (i) Let first c = a andϕ(c)= b. For F∈ Fp(b) with c(F) > 0 we have (cf. [6])

ϕ←(F) ∈ F(a) and c(ϕ←(F)) = c(F). Hence there exists G ∈ Fp(a), G ≥ ϕ←(F) and

c(G) = c(ϕ←(F)) = c(F) [6]. Clearly ϕ(G) ≥ F. We conclude from Lemma 2.2(x) and

(ix) together with condition (F2p) Section 3 that

c(c)∗cont(ϕ)≤
(
c(F) �→

∨
x

limaG(x)
)
∗
(∧
x

(
limaG(x) �→ limbϕ(G)

(
ϕ(x)

)))

≤
(
c(F) �→

∨
x

limaG(x)
)
∗
(∨
x

limaG(x) �→
∨
x

limbϕ(G)
(
ϕ(x)

))

≤ c(F) �→
∨
x

limbϕ(G)
(
ϕ(x)

)

≤ c(F) �→
∨
x

limbF
(
ϕ(x)

)

≤ c(F) �→
∨
y

limbF(y).

(6.8)

Hence c(c)∗cont(ϕ)≤ c(ϕ(c)). The general case follows from this with Proposition

5.5.

(ii) Its proof goes analogously to (i).

Corollary 6.15. (i) The compactness degree of the image of a fuzzy set under a

continuous mapping is not smaller than the compactness degree of the fuzzy set.

(ii) The continuous image of a compact fuzzy set is compact.
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(iii) The degree of relative compactness of the image of a fuzzy set under a contin-

uous mapping is not smaller than the degree of relative compactness of the fuzzy set.

(iv) The continuous image of a relatively compact fuzzy set is relatively compact.

Proposition 6.16 (Tychonoff). Let aλ ∈ [0,1]Xλ , (aλ, limλ)∈ |FCS| (λ∈Λ) and let

b ≤∏λ∈Λaλ and bλ ≤ aλ (λ∈Λ). The following holds.

(i) c(
∏
λ∈Λaλ)≥

∧
λ∈Λ c(aλ).

If
∨
xλ∈Xλ a

λ(xλ)=α0 > 0 for all λ∈Λ then equality holds.

(ii) rc(b,(
∏
λ∈Λaλ,π− lim))=∧λ∈Λ rc(prλ(b),(aλ, limλ)).

(iii) rc(
∏
λ∈Λbλ,(

∏
λ∈Λaλ,π− lim))≥∧λ∈Λ rc(bλ,(aλ, limλ)).

If
∨
xλ∈Xλ b

λ(xλ)= β0 > 0 for all λ∈Λ then equality holds.

Proof. (i) was proved in [10]. We prove (ii). The inequality rc(b) ≤ ∧λ rc(prλ(b))
follows at once with the continuity of the prλ, by Proposition 6.14. On the other hand,

let F∈ Fp(
∏
aλ), b ∈ F. Then prλ(b)∈ prλ(F)∈ Fp(aλ) for all λ. Put γ :=∧λ rc(prλ(b)).

Then, for every λ∈Λ,

γ ≤ c(prλ(F)
)
�→

∨
xλ∈Xλ

lim
λ

prλ(F)
(
xλ
)

= c(F) �→
∨

xλ∈Xλ
lim
λ

prλ(F)
(
xλ
) (6.9)

and hence

γ ≤
∧
λ∈Λ

(
c(F) �→

∨
xλ∈Xλ

lim
λ

prλ(F)
(
xλ
))

(6.10)

by Lemma 2.2(vii)

γ ≤ c(F) �→
∧
λ∈Λ

∨
xλ∈Xλ

lim
λ

prλ(F)
(
xλ
)
. (6.11)

As [0,1] is completely distributive we conclude∧
λ∈Λ

∨
xλ∈Xλ

lim
λ

prλ(F)
(
xλ
)= ∨

(xλ)∈
∏
Xλ

∧
λ∈Λ

lim
λ

prλ(F)
(
xλ
)

(6.12)

and hence

γ ≤ c(F) �→
∨

(xλ)∈
∏
Xλ

π− limF
((
xλ
))
. (6.13)

As F∈ Fp(
∏
aλ), b ∈ F was arbitrarily chosen, the claim follows.

The first part of (iii) follows from Proposition 6.4 and (ii) as prµ(
∏
bλ)≤ bµ . Under

the assumptions of the second part it even holds that prµ(
∏
bλ) = bµ and hence we

have equality.

Corollary 6.17. Let aλ ∈ [0,1]Xλ , (aλ, limλ) ∈ |FCS| (λ ∈ Λ) and let b ≤∏λ∈Λaλ

and bλ ≤ aλ (λ∈Λ). The following holds:

(i) if every aλ is compact then so is their product. If
∨
xλ∈Xλ a

λ(xλ)=α0 > 0 for all

λ ∈ Λ; then from the compactness of the product, the compactness of each

factor follows;
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(ii) a fuzzy set b is relatively compact in (
∏
aλ,π − lim) if and only if prλ(b) is

relatively compact in (aλ, limλ) for every λ∈Λ;

(iii) if bλ is relatively compact in (aλ, limλ) for every λ ∈ Λ, then
∏
bλ is relatively

compact in (
∏
aλ,π − lim). If

∨
xλ∈Xλ b

λ(xλ) = β0 > 0 for all λ ∈ Λ, then from

the relative compactness of
∏
bλ in (

∏
aλ,π− lim) the relative compactness of

each bλ in (aλ, limλ) follows.

We conclude this section giving the compactness degrees and the degrees of relative

compactness for special operations ∗. In case ∗=∧ we get

c(a)=
∨{

α | c(F)∧α≤ sup
x∈X

limF(x) ∀F∈ Fp(a)
}
,

rc(b)=
∨{

α | c(F)∧α≤ sup
x∈X

limF(x) ∀b ∈ F∈ Fp(a)
}

;

(6.14)

and in case ∗= Tm we compute with Lemma 2.1

c(a)= 1−
∨{

c(F)−sup
x∈X

limF(x) | F∈ Fp(a)
}
,

rc(b)= 1−
∨{

c(F)−sup
x∈X

limF(x) | b ∈ F∈ Fp(a)
}
.

(6.15)

We mention without proof that in the case of a= 1X , (X,∆) a fuzzy topological space,

the compactness degree for ∗= Tm is just the degree of compactness in E. Lowen

and R. Lowen [11]. In this way, the compactness degrees here not only generalize the

theory of compactness in FCS but also generalize the theory of compactness degrees

in FTS, the category of fuzzy topological spaces.

7. Conclusions. The theory of “truly” fuzzy properties developed in this paper

relies mainly on the notion of residual implication with respect to the operation ∗.

Hence it can easily be extended to more general situations, where the real unit interval

is, for example, replaced by a more general lattice L. We have only to make sure, that

the operation ∗ : L×L→ L then will still fulfill the properties (I), (II), (III), (IV), and (V)

of Section 2 and that the residual implication→ will fulfill the Lemma 2.2. For lattices

that are suitable for this direction of research, we refer the reader to [5].
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