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We define Barna’s polynomials as real polynomials with all real roots of which at least
four are distinct. In this paper, we study the dynamics of Newton’s functions of such
polynomials. We also give the upper and lower bounds of the Hausdorff dimension of
exceptional sets of these Newton’s functions.
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1. Introduction. Newton’s method is a well-known iterative method used to locate

the roots of functions. Barna, [1, 2, 3, 4], proved that for a real polynomial P(x) with

only simple real roots of which at least four are distinct, the exceptional set of initial

points of its Newton’s function N(x) (the set of x ∈R such that Nj(x) does not con-

verge to any root of P , where Nj(x) denotes the jth iterate of N) is homeomorphic

to a Cantor subset of R which has the Lebesgue measure zero. Wong [7], generalized

this result to real polynomials having all real roots (not necessarily simple) of which

at least four are distinct (which will be called Barna’s polynomials) by using a sym-

bolic dynamics approach. In this paper, we will investigate the symbolic dynamics of

Newton’s functions of Barna’s polynomials. Furthermore, we give the upper and lower

bounds of the Hausdorff dimension of the exceptional sets.

2. Symbolic dynamics of Newton’s functions

Definition 2.1. A real polynomial with all real roots of which at least four are

distinct is called a Barna’s polynomial. Thus P(x) is a Barna’s polynomial if and only if

P(x)= c
n∏
i=1

(
x−ri

)mi, (2.1)

where c is a nonzero real constant, r1 < r2 < ··· < rn, n ≥ 4, and mi ≥ 1 for all

1≤ i≤n.

Definition 2.2. The Newton’s function Nf (x) of a function f(x) is defined as

Nf (x)= x− f(x)
f ′(x)

, (2.2)

where f ′(x) is the derivative of f(x).
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Let P(x) = c∏n
i=1(x− ri)mi be a Barna’s polynomial and NP(x) be the Newton’s

function of P . The following are well-known properties of NP (see [1, 2, 3, 4, 7]).

(a) For each i = 1,2, . . . ,n− 1, there exists ci ∈ (ri,ri+1) such that ci is a zero of

P ′(x), the derivative of P(x), and {c1,c2, . . . ,cn−1} is exactly the set of all zeros of P ′

which are not zeros of P .

(b) In each of the intervals (−∞,c1) and (cn−1,+∞),NP has exactly one critical point.

If they are denoted by a1 and an, respectively, then a1 ∈ [r1,c1) and an ∈ (cn−1,rn].
Moreover, NP is monotone increasing on (−∞,a1] and [an,+∞) and monotone de-

creasing on [a1,c1) and (cn−1,an].
(c) In each (ci−1,ci), 2 ≤ i ≤ n− 1, NP has two critical points si1 and si2, where

si1 < s
i
2. If ri is a multiple root of NP , then si1 < ri < s

i
2, if ri is a simple root, then either

ri = si1, or ri = si2. The function NP is monotone increasing on (si1,s
i
2) and monotone

decreasing on (ci−1,si1) and (si2,ci). Moreover, N′P is monotone increasing on (ci−1,si1)
and monotone decreasing on (si2,ci).

(d) limx→c−i NP(x)=−∞ and limx→c+i NP(x)=+∞, for all 1≤ i≤n−1.

(e) limk→∞NkP (x)= r1 for allx ∈ (−∞,c1) and limk→∞NkP (x)= rn for allx ∈ (cn,+∞).
(f) For each i = 2,3, . . . ,n−1, the interval (ci−1,ci) contains exactly one period-two

cycle of NP , say, at {αi,βi} where αi < si1 < s
i
2 < βi. Also N′P (a) <−1, N′P (b) <−1, and

limk→∞NkP (x)= ri for all x ∈ (αi,βi).
Definition 2.3. Let P(x) and NP(x) be as above. The exceptional set Λ of NP is

defined as the complement of the set of real numbers x such thatNjP(x)=∞ for some

j ≥ 0 or limk→∞NkP (x)= ri for some 1≤ i≤n.

Remark 2.4. Note thatΛ consists of points whereNkP is well defined for each k∈N
and never converge to any ri.

Since our main interest is on the set Λ, those points which are not in Λ together

with their preimages will be removed from R. From this we have the following result

on period-two cycle of Newton’s function.

Proposition 2.5. The function NP has a period-two cycle at {α,β} such that c1 <
α<α2 and βn−1 < β< cn−1.

Proof. Since (−∞,c1) and (cn−1,∞) are not in Λ, we remove these sets together

with their preimages. Let y0 = N−1
P (c1) such that y0 ∈ (βn−1,cn−1). Then (y0,+∞) �

Λ and we remove this interval. Next let z1 = N−1
P (y0) such that z1 ∈ (c1,α2). Then

(−∞,z1)�Λ and we remove this interval. Applying this procedure repeatedly we get

two sequences of points {yi}∞i=1 and {zj}∞j=1 where

yi =N−1
P
(
zi
)∈ (βn−1,cn−1

)
,

βn−1 < ···<yi < ···<y2 <y1 <y0 < cn−1,

zj =N−1
P
(
yj−1

)∈ (c1,α2
)
,

c1 < z1 < z2 < ···< zj < ···<α2.

(2.3)

Thus limi→∞yi = β and limj→∞zj =α exist. As a result,

NP(β)=NP
(
limi→∞yi

)= limi→∞NP(yi)= limi→∞NP
(
N−1
P
(
zi
))= limi→∞zi =α. (2.4)
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Similarly, we have NP(α) = β. Since c1 < α ≤ α2 and βn−1 ≤ β < cn−1, we get α ≠ β.

Finally, α ≠ α2 because NP(α) = β ≥ βn−1 > β2. This completes the proof of the

proposition.

For each i = 2,3, . . . ,n− 1, we have NP((ci−1,αi]) = [βi,+∞), and NP([βi,ci)) =
(−∞,αi]. Thus there exist ti ∈ (ci−1,αi] and ui ∈ [βi,ci) such that NP(ti) = β and

NP(ui) = α. Then NP((ci−1, ti]) = [β,+∞) and NP([ui,ci)) = (−∞,α]. Denote the

2n−4 intervals

[
t2,α2

]
,
[
β2,u2

]
,
[
t3,α3

]
,
[
β3,u3

]
, . . . ,

[
tn−1,αn−1

]
,
[
βn−1,un−1

]
(2.5)

by I1, I2, . . . , I2n−4, respectively, and let I = ⋃2n−4
i=1 Ii. With a similar approach used by

Wong [7], we shall define the transition matrix V associated to NP . This matrix V will

determine the symbolic dynamics of NP . Let V = (vij) be a (2n−4)×(2n−4) matrix

of zeros and ones defined by

vij =

1 if Ii∩N−1

P
(
Ij
)
≠∅,

0 otherwise,
(2.6)

for i,j ∈ {1,2, . . . ,2n−4}. From this definition and properties of NP , it is easily seen

that V is a (2n−4)×(2n−4) matrix built from the following 2×2 matrices:

J =
[

0 1

1 0

]
, M =

[
1 1

0 0

]
, N =

[
0 0

1 1

]
. (2.7)

In fact V can be interpreted as an (n−2)×(n−2) matrix of matrices as follows:

(1) Vii = J for 1≤ i≤n−2,

(2) Vij =M for 1≤ i≤n−3, for j > i,
(3) Vij =N for 2≤ i≤n−2, for j < i.

For example, if n= 6, then the matrix V has the form



J M M M
N J M M
N N J M
N N N J


 . (2.8)

With the same technique in [7], V is irreducible and we can show that NP restricted to

Λ is conjugate to the one-sided shift map σ on the set ΣV2n−4 where

ΣV2n−4 =
{
s = s0s1 ···sn ··· ∈ Σ2n−4 | vsisi+1 = 1 ∀i≥ 0

}
(2.9)

is the symbolic sequences space consisting of 2n−4 symbols (cf. [6]).

Remark 2.6. From [6], we have card(Perkσ)= Tr(Vk), where card(Perkσ) denotes

the number of points of period k of the shift map σ and Tr(Vk) is the trace of Vk.

Remark 2.7. By MATHEMATICA, we compute that Tr(Vk)= (n−2)k+(−1)k(n−2)
where V is the transition matrix associated to Newton’s function of a Barna’s polyno-

mial with n distinct real roots.
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We summarize this section as follows.

Theorem 2.8. Let P(x) = c∏n
i=1(x−ri)mi be a Barna’s function and NP the New-

ton’s function of P . Let Λ be the exceptional set of NP . Then Λ is a Cantor subset of R
and NP restricted to Λ is conjugate to the one-sided shift map on ΣV2n−4.

Remark 2.9. There is some difference between our proof of Theorem 2.8 and the

proof of a similar result by Wong in [7]. In our proof we use the fact that the exceptional

set Λ lies between the period-two cycle {α,β} as stated in Proposition 2.5 and hence

we can explicitly define the transition matrix V .

3. Hausdorff dimension of exceptional sets. Let Λ be the exceptional set of New-

ton’s function of a Barna’s polynomial with n distinct real roots. In this section, we

give the upper and lower bounds of the Hausdorff dimension of Λ. The technique

we will use here is similar to the one used in [5]. We first note that N−1
P has n− 2

branches N−1
p,i where Np,i((ci,ci+1)) = R for all 1 ≤ i ≤ n−2. We will write N−ks0s1···sk−1

for the inverse N−kP using specific branches N−1
p,s0 , N−1

p,s1 , . . . ,N
−1
p,sk−1

. Let the interval I
be the same as in the previous section. Then I has n−2 preimages under NP each in

the interval (ci−1,ci), 2≤ i≤n−1. For each k≥ 1, we have

N−kP (I)=
n−2⋃

s0,s1,...,sk−1=1

Is0s1···sk−1 , (3.1)

where Is0s1···sk−1 = N−ks0s1···sk−1
(I). Let Λk = {x | NkP (x) ∈ I}. Then Λk = N−kP (I) and

Λ=⋂k≥0Λk. Define

mk =min
{∣∣N′P (x)∣∣ | x ∈Λk},

m=min
{∣∣N′P (x)∣∣ | x ∈Λ},

Mk =max
{∣∣N′P (x)∣∣ | x ∈Λk},

M =max
{∣∣N′P (x)∣∣ | x ∈Λ}.

(3.2)

Remark 3.1. For each k≥ 1, Mk ≥Mk+1, and mk ≤mk+1 since Λk ⊃Λk+1.

We now state and prove the result on the estimation of the Hausdorff dimension

of Λ.

Theorem 3.2. ln(n−2)/ lnM ≤ dimΛ≤ ln(n−2)/ lnm.

Proof. For each k ≥ 1, let Sk and Lk be the lengths of the smallest and largest

intervals in Λk, respectively. For each k≥ 0, we get

−Mk

∣∣∣Is0s1···sk
∣∣∣≤−Mk+1

∣∣∣Is0s1···sk
∣∣∣≤

∫
Is0s1···sk

N′(x)dx =−
∣∣∣Is1···sk

∣∣∣≤−Sk. (3.3)

Hence, |Is0s1···sk | ≥ Sk/Mk. By iterating, we get |Is0s1···sk+p−1
| ≥ Sk/(Mk)p . Similarly, we

have |Is0s1···sk+p−1
| ≤ Lk/(mk)p . Since Λ is compact, any covering {Ui} of Λ can be re-

fined to a finite cover, where each element of this cover contains exactly one Is0s1···sk+p−1
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for some sufficiently large p. Then we get

∑∣∣Ui∣∣α ≥
n−2∑

s0,...,sk+p−1=1

∣∣∣Is0s1···sk+p−1

∣∣∣α ≥ n−2∑
s0,...,sk+p−1=1

(
Sk(
Mk
)p
)α

= (Sk)α
(
n−2

)k+p(
Mk
)αp = (Sk)α(n−2)k

(
n−2(
Mk
)α
)p
.

(3.4)

Ifα< ln(n−2)/ lnMk, then this diverges asp→∞, that is, as the covering gets smaller.

Thus dimΛ≥ ln(n−2)/ lnMk. By letting k→∞, we have dimΛ≥ ln(n−2)/ lnM . Sim-

ilarly, for a given ε > 0 and for some sufficiently large p, there exists a covering

{Ui}(n−2)k+p
i=1 of Λ such that each element of the cover contains exactly one interval

Is0s1···sk+p−1
and |Ui|1+ε ≤ |Is0s1···sk+p−1

|. Thus

∑∣∣Ui∣∣(1+ε)α ≤
n−2∑

s0 ,...,sk+p−1=1

∣∣∣Is0s1···sk+p−1

∣∣∣α

≤
n−2∑

s0 ,...,sk+p−1=1

(
Lk(
mk

)p
)α

= (Lk)α(n−2)k
(
n−2(
mk

)α
)p

(3.5)

and this goes to zero as p → ∞ if α > ln(n−2)/ lnmk. Consequently, dimΛ ≤ (1+
ε) ln(n − 2)/ lnmk. By letting k → ∞ and ε → 0 we have dimΛ ≤ ln(n − 2)/ lnm.

Example 3.3. Let P(x)= (x+1)(x+2)(x−1)(x−2) be a Barna’s polynomial and

NP(x) = (3x4 − 5x2 − 4)/(4x3 − 10x) be the Newton’s function of P . Then NP has

three period-two cycles approximately at

{
x0,x1

}= {−1.5435941,1.5435941},
{
x2,x3

}= {−1.4790145,−0.3142616},
{
x4,x5

}= {0.3142616,1.4790145}.
(3.6)

These are the only period-two cycles by Remark 2.4. From Proposition 2.5, we obtain

{x0,x1} by removing the sequence of points which are the successive preimages of

−2 and 2. Since (N2
P )′(x0) = (N2

P )′(x1) > 1, {x0,x1} ∈ Λ. Hence, in order to find the

maximum and minimum values of |N′| we must also consider the values of |N′P |
at the preimages of x0 and x1. By computation, x6 = N−1

P (x0) � −0.2965502 and

x7 =N−1
P (x1)= 0.2965502. Since NP(x) is an odd function, we get, by computation,

∣∣N′P(x0
)∣∣= ∣∣N′P(x1

)∣∣= ∣∣N′P(x6
)∣∣= ∣∣N′P(x7

)∣∣� 3.8985101,
∣∣N′P(x2

)∣∣= ∣∣N′P(x5
)∣∣� 10.2443746,

∣∣N′P(x3
)∣∣= ∣∣N′P(x4

)∣∣� 3.4016188.

(3.7)
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It follows that

m=min
{∣∣N′P (x)∣∣ | x ∈Λ}� 3.4016188,

M =max
{∣∣N′P (x)∣∣ | x ∈Λ}� 10.2443746.

(3.8)

Consequently, we have

0.2979063� ln2
lnM

≤ dimΛ≤ ln2
lnm

� 0.5661804. (3.9)

Remark 3.4. Let P(x)= c∏n
i=1(x−ri)mi be a Barna’s polynomial and let NP(x) be

its Newton’s function. Let M(x)= kNP(x/k), k is a nonzero real constant. Then M is

the Newton’s function of Barna’s polynomial of the formQ(x)= c0(x−1)m1
∏n−1
i=1 (x−

ri/rn)mi and M is conjugate to NP via the map h(x)= kx. As a result, α is a periodic

point of NP if and only if kα is a periodic point of M and N′P (α) is equal to M′(kα).
Consequently, dynamics of M and NP on their exceptional sets are the same and the

Hausdorff dimensions of their exceptional sets are equal. As a result, it suffices to

consider the dynamics of Newton’s functions of Barna’s polynomials which have 1 as

the largest root.
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