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We present robust projective algorithms of the von Neumann type for the linear comple-
mentarity problem and for the generalized linear complementarity problem. The methods,
an extension of Projections Onto Convex Sets (POCS) are applied to a class of problems
consisting of finding the intersection of closed nonconvex sets. We give conditions under
which convergence occurs (always in 2 dimensions, and in practice, in higher dimensions)
when the matrices are P -matrices (though not necessarily symmetric or positive definite).
We provide numerical results with comparisons to Projective Successive Over Relaxation
(PSOR).
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1. Introduction. Linear complementarity problems have been seen to arise in many

areas. More specifically, equilibria in: Economics: Walrus law (Mathiesen [15], Tobin

[20]), Leontief model (Ebiefung and Kostreva [6]), bearing lubrication (Cryer [3]), Math-

ematical Biology and Lotka-Volterra Systems (Takeuchi [19], Habetler and Haddad [9]).

Applications of generalized linear complementarity problems include Bearing lubrica-

tion (Oh [17]), Mathematical Biology and Lotka-Volterra Systems (Habetler and Haddad

[10]), Engineering and Economic Applications (Ferris and Pang [7], Vandenberghe et al.

[21], Dirkse and Ferris [5]). In addition to being extensions of linear complementarity

problems, these problems also have a rather useful geometrical interpretation in that

they may be thought of as finding the solutions of piecewise linear systems, a gener-

alization of linear systems. It was in considering them in this light, and in trying to

find classes of nonconvex set (a piecewise linear function is a nonconvex set made

up of convex pieces) where the method of Projections Onto Convex Sets (POCS) might

work, that we discovered some simple projective algorithms for finding solutions of

both linear complementarity problems (LCPs) and generalized linear complementarity

problems (GLCPs).

In Section 2, we introduce the background necessary to the problem. In Sections

3 and 4, we present the projection algorithms for the LCP and in Section 5, the ex-

tension to the GLCP. Proofs of convergence for the 2-dimensional case are based on

the geometry of the problem and fixed point arguments. They have been done in the

thesis of Haddad [12] and are not included here. In practice, these algorithms work

on higher-dimensional problems and always converge to the solution if the matrices

involved are P -matrices (where a unique solution is guaranteed [1, 18] and there is

no need to worry about cycling, i.e., iterations projecting between two or more vec-

tors that are nonsolutions, [13]) independent of the choice of starting vector. They
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also seem to work in cases where the matrices are not P -matrices (where a solution

exists), as well, but not necessarily in every situation. When they do not work, they

will be seen to cycle. Many other schemes, such as Cryer’s mentioned below, require a

strict subclass of P -matrices to guarantee convergence. In Section 6, we discuss ways

of speeding up the convergence (which can be slow). Finally, in Section 7, we compare

the method to another well-known robust iterative scheme, Cryer’s Projective Succes-

sive Over-Relaxation method (PSOR) [3, 4]. We have coded and tested the algorithms

(initially in FORTRAN and later as MATLAB M-files) and provide convergence results

for several types of matrices. We include a pathological example where our method

converges very quickly while it would take on the order of 2n pivots for convergence

to occur if one was using a pivoting scheme such as Lemke’s [14] or Murty’s [16]

methods. In Section 8, we address possible future directions for research.

2. Preliminaries. Consider the linear complementarity problem: givenA is ann×n
real matrix, b∈Rn, find w, x∈Rn such that

w≥ 0, x≥ 0, w=Ax−b, wTx= 0
(
or wixi = 0, i= 1, . . . ,n

)
. (2.1)

We will denote the above problem by LCP(A,b).

Definition 2.1. An n×n matrix A is said to be a P -matrix (A ∈ P ) if all of its

principal minors are positive. A∈ Po if all of its principal minors are nonnegative.

Result 2.2. Let A be an n×n matrix. Then LCP(A,b) has a unique solution for

every b∈Rn if and only if A is a P -matrix.

(See Cottle et al. [2, Theorem 3.37] and the discussion therein.)

We will assume that the matrix A has its rows normalized. Certainly if A is P , then

it can be so normalized.

Definition 2.3. A vertical block matrix N of dimension m×n, m ≥ n, is said to

be of type (m1, . . . ,mn) if it is partitioned row-wise into n blocks,

N =



N1

...

Nn


 , (2.2)

where the jth block, Nj , is of dimension mj×n, and m=∑n
j=1mj .

The generalized linear complementarity problem may be stated as follows: given

N is an m×n, real vertical block matrix, m ≥ n, of type (m1, . . . ,mn), b ∈ Rm, find

w∈Rm, x∈Rn such that

w=Nx−b, w≥ 0, x≥ 0,

xi
n∏
j=1

wj
i = 0, i= 1, . . . ,n, wj

i , the ith entry of w from the jth block of N. (2.3)

We will denote the above problem by GLCP(N,b).
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Definition 2.4. Let N be a vertical block matrix of type (m1, . . . ,mn). A submatrix

A ofN of sizen is called a representative submatrix if its jth row is drawn from the jth
block,Nj , ofN. Note that there are

∏n
j=1mj representative submatrices. Let this n×n

representative submatrix of N be labeled A(l) with
√∑n

j=1a
2
kj;l = 1 for each k= 1, . . . ,n

and l = 1, . . . ,
∏n
j=1mj . Furthermore, we assume that b is compatibly organized with

entries, bk;l, respectively.

Result 2.5. Let N be an m×n real vertical block matrix, m ≥ n, of type (m1, . . . ,
mn). Then GLCP(N,b) has a unique solution for every b∈Rm if and only if all of the

representative submatrices of N are P -matrices.

(See Habetler and Szanc [11], and Cottle and Dantzig [1].)

Definition 2.6. Let N be an m×n, m ≥ n, real vertical block matrix of type

(m1, . . . ,mn). A principal submatrix of N is a principal submatrix of some represen-

tative submatrix and its determinant is referred to as a principal minor.

Definition 2.7. The region defined by the complementarity problem wherexk ≥ 0,

wi
k ≥ 0, i = 1, . . . ,m1 for k = 1 and i = 1+∑k−1

q=1mq,. . . ,
∑k
q=1mq for k > 1 will be re-

ferred to as the kth feasible region or kth interior. The complement of the kth interior

is the kth exterior. The intersection of all of the feasible regions is the interior. The

complement of the interior will be referred to as the exterior.

Definition 2.8. For the linear complementarity problem where A is an n× n
matrix, b ∈ Rn, hyperplane k refers to the set of points x ∈ Rn such that wk =∑n
j=1akjxj−bk = 0, for k= 1, . . . ,n.

Definition 2.9. For the generalized linear complementarity problem, bent hyper-

plane k (BHk) refers to the union of the mk+1 hyperplane segments that forms the

boundary of the kth feasible region. The ith segment of the kth bent hyperplane refers

to the intersection of wi
k = 0 with the kth feasible region.

The following definition defines an orientation regarding the hyperplanes that will

give us a unique definition for angle θ, and normal to the hyperplane (for the LCP

and GLCP).

Definition 2.10. Without loss of generality, we take the normal, ni, to ith segment

of the kth bent hyperplane to point into the kth feasible region. The angle θ, formed

between the (i−1)th and the ith segment of the kth bent plane is defined to be θ,

such that

cosθ = nTi−1ni∥∥ni−1

∥∥∥∥ni∥∥ . (2.4)

Definition 2.11. A kink refers to a nonempty intersection of any two hyperplanes

making up part of a bent hyperplane. It is a point in R2, a line in R3, and so forth.

The LCP may be restated as follows: for each i = 1, . . . ,n, we have xi ≥ 0, wi ≥ 0,

and wixi = 0. Here, wi = (Ax−b)i. As we saw, the boundary of the ith feasible region

forms a bent hyperplane in n dimensions. The angle between the two half-spaces

forming the bent hyperplane must be greater than 0◦ and less than or equal to 180◦,
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and hence the angle θ, is well defined. Contained in the set of possible solutions to

LCP(A,b) for given b, is the set of intersection points of the n bent hyperplanes.

Similarly, the GLCP(N,b) for a given b, forms a set of n bent hyperplanes, possibly

with multiple kinks, and the solution set of the GLCP(N,b) is the set of intersec-

tion points of these n bent hyperplanes. If all the representative matrices of N are

P -matrices (or in the case of LCP(A,b), if the matrix A is a P -matrix), then the solution

set consists of a single point.

Definition 2.12. Let Tk be the kth cone defined by xk ≥ 0 and wk ≥ 0. Then the

(negative) polar cone of Tk, or dual cone of Tk is

T−k ≡
{
P∈Rn | 〈P, q〉< 0, ∀q∈ T}. (2.5)

The closed polar cone of Tk is

T−k ≡
{
P∈Rn | 〈P, q〉 ≤ 0, ∀q∈ T}. (2.6)

Definition 2.13. A projection of the point x onto a closed subset C , of a normed

space H is a point PrC x in C , 	
∥∥x−PrC x

∥∥= inf
y∈C

‖x−y‖ = d(x,C). (2.7)

If in addition, the set is convex, then the projection is nonexpansive. If we have m
closed such sets and we alternately project from one set to the next, in some fixed

order, then we generate a sequence of iterates

xk+1 = Prm Prm−1 ···Pr1 xk, (2.8)

where Pri is the projection onto the ith set. A complete set of projections from the first

hyperplane to the nth hyperplane will be referred to as a cycle or a cycle of iterates,

not to be confused later with iterates cycling. In general, we take H = Rn and ‖·‖ to

be the usual Euclidean norm.

Assuming that the convex sets have a common intersection, Gubin et al. [8] showed

that in Rn convergence of these iterates to a point in the intersection is guaranteed.

This method is referred to as POCS, projection onto convex sets. The nonexpansive

property of the projections and the uniqueness of the projection is lost if the closed

sets are not all convex or if the closed sets do not have an intersection. So, in general,

the iterates will probably not converge. However, we prove in [12] that if the sets are

the bent hyperplanes associated with an LCP(A,b)withA, a P -matrix, then the method

will always converge to a unique solution for n= 2. In practice, it converges for all n
under the same conditions.

3. Algorithm I. Thus we propose the following alternating projection scheme to

solve the LCP(A,b) for A, a P -matrix. If we think of solving the LCP as finding the

(unique) intersection point of n bent (nonconvex) hyperplanes, then the alternating



PROJECTIVE ALGORITHMS FOR SOLVING COMPLEMENTARITY PROBLEMS 103

projection method applied here would yield the following algorithm:

(1) Choose a starting vector.

(2) Project directly onto BHi, for i= 1, . . . ,n.

(3) Repeat until solution is reached or desired tolerance is achieved.

However, in practice it is the following.

Direct algorithm: (I) Given, A is an n×n matrix, b ∈ Rn. Choose a starting vector

x(o,n).

(II) Construct the alternating sequences, x(i,k), for i = 1,2,3, . . . in the following

manner:

For k= 1,2, . . . ,n
If k= 1

(i) Project x(i−1,n) directly onto BH1:

If x(i−1,n) is in the interior of BH1, then x(i,1) is the projection onto the nearest

hyperplane segment, x1 = 0 or w1 = 0. If they are equidistant, then project to

x1 = 0.

If x(i−1,n) is in the exterior of BH1, then

(1) if x(i−1,n) is also in the dual cone of BH1, x(i,1) is the projection onto the

kink of BH1

(2) if x(i−1,n) is not in the dual cone of BH1, then x(i,1) is the projection onto

the nearest hyperplane segment, x1 = 0 or w1 = 0.

If k= 2, . . . ,n
(i) Project x(i,k−1) directly onto BHk:

If x(i,k−1)is in the interior of BHk, then x(i,k) is the projection onto the nearest

hyperplane segment, xk = 0 or wk = 0

If x(i,k−1) is in the exterior of BHk, then

(1) x(i,k−1) is also in the dual cone of BHk, then x(i,k) is the projection onto

the kink of BHk
(2) if x(i,k−1) is not in the dual cone of BHk, then x(i,k) is the projection onto

the nearest hyperplane segment,xk = 0 orwk = 0. If they are equidistant,

then project to xk = 0.

(III) Repeat step (II) until x(i,k)→ z (the unique solution) or until a suitable stopping

criteria has been met.

An alternative approach to finding the solution to LCP(A,b) is to find all possible

intersections of the hyperplanes formed by the equationswk = 0 for k in some subset

of {1,2, . . . ,n} and xj = 0 for j not in this subset, and then testing the nonnegativity

constraints on the remaining variables. Since A is a P -matrix, only one of these inter-

section points will satisfy all the required constraints. This is extremely inefficient in

most cases.

The main difficulty with the direct algorithm is that for each iterate, it is nec-

essary to test to find out in which segment of the exterior of the feasible region

the current iterate is located. This involves finding intersections of hyperplanes and

testing to see where positivity constraints are satisfied. This is nearly as inefficient

as finding all the intersection points in the alternative approach previously men-

tioned.
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In addition, the projections here are not necessarily orthogonal. This is true when

we are in the interior of the dual cone(s) or the region(s) of positivity. When we project

from the exterior of the dual cone to the bent hyperplane, we are projecting onto a

convex set. However, when we project to from the interior of the dual cone to the bent

hyperplane, we are not projecting onto a convex set. Hence, we cannot use the theory

of POCS to demonstrate convergence. In fact, convergence has only been shown for

the 2-dimensional case [12]. This result is stated as follows.

Theorem 3.1. Let A be a 2×2 P -matrix. Given the 2×2 linear complementarity

problem, if we project between the 2 bent lines as determined by the LCP using the

two-step projections as defined in the Direct algorithm, then the iteration will converge

to the unique complementarity point, z, for any starting value, x0.

In addition, when projecting from the interior of a dual cone, the projections may

not be uniquely defined. The points along the hyperplane that bisects the angle be-

tween the two segments forming the bent hyperplane are equidistant to each segment

forming the bent hyperplane. In this case, for the projection onto the kth hyperplane,

our default is to project to the segment formed by the kth axis, xk = 0.

This method seems to converge for all starting values when A is a P -matrix. In

fact, in practice, the distance from the iterates along each bent hyperplane to the

solution always decreases. The primary use of Algorithm I has been in using it to

prove convergence (see Haddad [12] for proof) of Algorithm I for n = 2, which is

presented in the next section.

4. Algorithm II. The direct algorithm of Section 3 requires too much a priori knowl-

edge of the LCP, hence another approach was deemed necessary. We present a method

based on alternating projections, where the only information necessary is the infor-

mation provided in the statement of the LCP(A,b), namely A and b.

Two-step algorithm: (I) Given A is an n×n matrix, b ∈ Rn. Choose a starting

vector x(o,n).

(II) Construct the alternating sequences, x(i,1), for i = 1,2,3, . . . in the following

manner:

For k= 1,2, . . . ,n
If k= 1:

(i) x̂(i,1) is the projection of x(i−1,n) directly onto x1 ≥ 0.

(ii) x̃(i,1) is the projection of x̂(i,1) directly onto w1 ≥ 0.

(iii) x(i,1) is the projection of x̃(i,1) directly onto the closest of x1 = 0 or w1 = 0.

If they are equidistant, then project to x1 = 0.

If k= 2, . . . ,n:

(i) x̂(i,k) is the projection of x(i,k−1) directly onto xk ≥ 0.

(ii) x̃(i,k) is the projection of x̂(i,k) directly onto wk ≥ 0.

(iii) x(i,k) is the projection of x̃(i,k) onto the closest of xk = 0 or wk = 0.

If they are equidistant, then project to xk = 0.

(III) Repeat step II until x(i,k) → z (the unique solution) or until a suitable stopping

criteria has been met.
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For each bent hyperplane k, this algorithm projects, first onto the region where

the axis, xk, is nonnegative, then onto the region where the kth hyperplane, wk, is

nonnegative, and then onto the nearest plane, xk = 0 or wk = 0. Notice that the last

projection is not orthogonal and that there will be at most two projections made for

each hyperplane at each iteration (hence the name).

The main advantage this has over the other method is that it only requires as in-

put, A, b, and possibly a solution for comparison. Another benefit is that it is easily

programmed.

Even though the projection labeled (iii) is not an orthogonal projection, this does

not seem to pose a problem in terms of convergence, especially when A is a P -matrix.

WheneverA is a P -matrix, the distance from the iterates along each bent hyperplane to

the solution always seems to be decreasing for all n. This seems to be true regardless

of the starting vector, as is also the case with the direct algorithm. This result is

summarized as follows for n= 2.

Theorem 4.1. Let A be a 2×2 P -matrix. Given the 2×2 linear complementarity

problem, if we project between the 2 bent lines as determined by the LCP using direct

projections as defined in the two-step algorithm, then the iteration will converge to the

unique complementarity point, z, for any starting value, x0.

Currently we have a proof for this theorem (see Haddad [12]). We first prove that

the direct algorithm converged for all starting values using the geometry of the prob-

lem and a fixed-point argument. The proof for the two-step algorithm then uses

Theorem 3.1 and geometry to prove convergence for all starting values, provided that

A is a P -matrix.

5. Extensions to GLCP: Algorithm III. The GLCP is a natural extension of the LCP.

The objective is still to find the intersection of a number of bent hyperplanes; the

only difference is that there may be multiples bends in each hyperplane. One may

view solving the LCP or GLCP as solving a system of piecewise linear equations. Thus

it is possible to think of LCPs and GLCPs as natural extensions to solving linear sys-

tems. This may be further generalized, since the nonlinear complementarity problem

(NCP) is yet another extension of both the generalized complementarity problems and

systems of nonlinear equations. We will not deal with NCPs in this paper and we will

not provide computational results for any GLCPs (some are presented in [12]).

An advantageous feature of Algorithms I and II is that they easily extend to solving

GLCPs. The key to guaranteed success is that the representative matrices must all be

P -matrices. However, the direct algorithm for the GLCP is even more cumbersome to

program in higher dimensions than its LCP counterpart, hence we will omit presenting

it here. It is primarily the same approach as the direct algorithm: alternately project

directly onto each region of positivity as defined by the GLCP(A,b). We do prove the

following convergence result in [12], which is used to prove Theorem 5.2.

Theorem 5.1. Suppose that all of the representative matrices for the GLCP(N,b)
defined above for n= 2 are P -matrices. Suppose we alternatively project onto the bent

lines, BH1 and BH2, formed by the GLCP(N,b). Then the iteration will converge to the

unique complementarity point, z for any starting value, x0.



106 C. N. HADDAD AND G. J. HABETLER

We now present the multi-step algorithm for the GLCP, which is an extension of the

two-step algorithm for the LCP. Here, the number of steps depends upon the number

of segments in each bent hyperplane.

Consider GLCP(N,b) where N is a vertical block matrix of dimensionm×n,m≥n,

of type (m1, . . . ,mn) and whose representative matrices are all P -matrices.

Multi-step algorithm. (I) Given N is anm×nmatrix, b ∈Rn. Choose a starting

vector x(o,n,mn).

(II) Construct the alternating sequences, x(i,n,mn), for i= 1,2,3, . . . in the following

manner:

For k= 1,2, . . . ,n
If k= 1:

(i) x̃(i,1,o) is the projection of x(i−1,n,mn) directly onto x1 ≥ 0.

(ii) For l= 1, . . . ,m1:

x̃(i,1,l) is the projection of x̃(i,1,l−1) directly onto wl
1 ≥ 0.

(iii) x(i,1,m1) is the projection of x̃(i,1,m1) directly onto the closest segment of BH1.

(If more than one segment is closest, we default to projecting onto the first of these

hyperplane segments encountered.)

If k= 2, . . . ,n:

(i) x̃(i,k,o) the projection of x(i,k−1,mk−1) directly onto xk ≥ 0.

(ii) For l= 1, . . . ,mk:

x̃(i,k,l) is the projection of x̃(i,k,l−1) directly onto wl
k ≥ 0.

(iii) x(i,k,mk) is the projection of x̃(i,k,mk) directly onto the closest segment of BHk.

(If more than one segment is closest, we default to projecting onto the first of these

hyperplane segments encountered.)

(III) Repeat step (II) until x(i,n,mn)→ z (the unique solution) or until a suitable stop-

ping criteria has been met.

This algorithm is unusual in that, for a time, the iterates may not actually be points

on the bent hyperplane. What is happening here is that the projection may be onto

a ghost segment. If you consider the GLCP in another way, the region of positivity

of, say, the kth bent hyperplane is the intersection of what would be the interiors

of the singly bent hyperplanes xk = 0, w1
k = 0; . . . ;xk = 0, wmk

k = 0. A segment of

any of these singly bent hyperplanes that is not part of the bent hyperplane of the

resulting GLCP is referred to as a ghost segment. In spite of this, the distances from

the kth iterate to the solution associated with projecting onto the kth bent hyperplane

is always decreasing. We prove the following theorem in Haddad [12].

Theorem 5.2 (see [12]). Suppose that all of the representative matrices for the

GLCP(N,b) defined above for n = 2 are P -matrices. Suppose we alternatively project

onto the bent lines, BH1 and BH2, formed by GLCP(N,b) using the multi-step algorithm

defined above. Then the iteration will converge to the unique complementarity point, z

for any starting value, xo.

6. Improving convergence rates. Unfortunately, as with POCS, convergence of

these algorithms may be extremely slow in some cases. This occurs primarily when

the angle between (the normals of) segments of adjacent hyperplanes is small. If this
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is the case for a linear system, we would say that the matrix involved is ill-conditioned.

In the case of the LCP(A,b), this results from the matrix A, or possibly any other ma-

trix where the columns of A are interchanged with the columns of the n×n identity

matrix, I, being ill-conditioned. For the GLCP(N,b), this may happen if any of the rep-

resentative matrices of N, or the matrices formed by interchanging columns of the

representative matrices with columns of I are ill-conditioned.

One way to (dramatically) increase convergence rates is with relaxation techniques.

The projection operator in each algorithm becomes xj+1 = TmTm−1 ···T1xj , where

Ti = I + λi(Pri−I), I is the identity operator, Pri is as defined in (2.8), and λi is a

relaxation parameter between 0 and 2. Typically if we project onto some axis, xk = 0,

then we take λk to be 1, as this leads to the best results. Different λi could be used

for each hyperplane, but in practice we always use the same λ for each.

In the case of LCP(A,b), it is sometimes possible to increase the rate of convergence

by taking advantage of orthogonality. This may be achieved by changing the order of

the projections onto each hyperplane. It may also make more sense to project to the

hyperplanes first, rather than the axes. This can significantly improve convergence in

some orthogonal P -matrices.

7. Examples and numerical results. There are many applied areas in which com-

plementarity has been successfully used. The examples mentioned in the introduction

are but a few. For example, we used generalized complementarity to model and solve

a Lotka-Volterra system both in two dimensions [9], and again in n dimensions with

diffusion among patches [10]. For a more extensive listing of the different systems

that we used to test our algorithm, see Haddad [12].

7.1. Computational details. We converted all of our FORTRAN programs into MAT-

LAB 5.1 M-files on a Power PC 9500 (120 MH, 32 K RAM). We present results forn≤ 500

only because of the restriction of the Power PC. While using FORTRAN, we did tests

on much larger systems (see [12]).

Several types of error criteria were used to measure accuracy of the computed solu-

tion. An iteration onto a (bent) hyperplane refers to projecting from one hyperplane to

the next. A cycle refers to projecting to every (bent) hyperplane once. The most useful

error criterion was the relative error using the Euclidean norm when we happened to

know the solution a priori. This was specified to be less than some prescribed error

tolerance, usually 10−6. If we did not know the solution, the distance between two

consecutive iterates on a given hyperplane (usually the nth) divided by the most re-

cent iterate (after one cycle of projections) was used as an indication of relative error.

If the sum of the distances between consecutive hyperplanes of one cycle is compared

to the sum for the next cycle and the difference was less than some tolerance, then

this was used as another stopping criteria. However, if cycling (the projecting back

and forth between the same sequence of points in two consecutive cycles) is going

to occur (which may happen if A is not a P -matrix), then comparing two consecutive

sums at the end of two cycles could be used as an indication thereof. In the absence

of knowing the actual solution, the complementarity conditions may also be checked

using the “solution” generated by the algorithm.
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The solution, if it exists, always occurs in the nonnegative 2n-tant. In general, the

starting vector that was specified was either−99 e= [−99, . . . ,−99]T or 0= [0, . . . ,0]T ,

whichever yields convergence soonest.

7.2. Cryer’s examples for PSOR. The iterative method that we compared ours to

was Projective Successive Over-Relaxation (PSOR) for solving linear complementarity

as used by Cryer in [3, 4]. It is well known, comparable to our in the terms of the

number of operations used per iterate, and, like ours, it is robust and easily pro-

grammed. For problems where PSOR was initially used, that is, where A is symmetric

and positive definite, PSOR tends to work, as well as, or even better than our method.

However, the main difference is that our method works when the matrix is a P -matrix

(and not necessarily symmetric or positive definite), and in practice works quite well

on many that are not P -matrices, regardless of the starting vector. In this section, we

present comparisons that will demonstrate this. Note that in each case the matrix A,

the right-hand side (RHS) b, and the solution x, are given. In each case, we are solving

LCP(A,b).
Note in the following example, that A is not symmetric, but the symmetric part is

positive definite.

Example 7.1. A =
[

1 −1 0 0
1 1 −1 0
0 1 1 −1
0 0 1 1

]
, b =

[
0
1
1
2

]
, a solution of x =

[
1
1
1
1

]
with a starting

vector of 0.

Note that the rows of A are orthogonal. Our method converges to the solution in

8 cycles with no relaxation, while PSOR does not converge, though it will converge in

13 cycles when we under-relax with λ= 0.65. We also looked at larger matrices whose

structure was the same and we obtained similar results.

Of course, there were matrices where PSOR converges much more quickly than ours,

but in each case we find that ours will converge, albeit sometimes more slowly. Even

if the matrices involved are not P -matrices, our method never diverges to infinity (in

magnitude), whereas PSOR may. This is what occurs in the following example. Our

two-step converges in 46 cycles (16 cycles if we over-relax λ= 1.4) while PSOR seems

to diverge to infinity for all values of λ, even values as small as 0.01.

Example 7.2. A= [ 1 −4
−1 1

]
, b= [−3

0

]
, and a solution of x= [1

1

]
with a starting vector

of 10e.

In some cases, PSOR may cycle if the matrix is not symmetric, but is positive definite.

For instance, in the following example, our two-step converges in 5 cycles, whereas

PSOR bounces between several vectors, none of which is a solution. However, if under-

relaxation is used, then PSOR converges in as little as 10 cycles.

Example 7.3. A= [ 1 1
−1 1

]
, b= [2

0

]
, and a solution of x= [1

1

]
with almost any starting

vector that we tried.

The two-step method will work on systems upon which PSOR will not work at all. Our

two-step is proven to always work in the 2-dimensional case (with A a P -matrix) and

in practice has always worked on LCPs with P -matrices and GLCPs with representative

matrices for n> 2. For instance, take the following matrix.
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Example 7.4. Consider the following A= [aij], where A is cyclic,

aij =




1 if i= j,
c if i= j+1,

c if i=n, j = 1.

(7.1)

This example is interesting for many reasons. Note that when c = 4 and n is even,

the matrix A is not a P -matrix (it has a negative determinant or subdeterminant) and

may have more than one solution. Whereas when n is odd, the matrix is a P -matrix

that is not diagonally dominant and whose symmetric part is not positive definite. We

looked at the case where n= 4,5,50,51,100,101,500. In each case the RHS, b= 50e,

the starting vector was chosen to be x0 = 0 and the solution entered in for comparison

was [50 0 50···50 0] for n even (which was one of many solutions) and 10e for n
odd (the only solution). One interesting point is that, for n even, PSOR would only

converge to the solution, [50 0 50···50 0], regardless of which starting vector was

entered and the two-step would only converge to 10e, regardless of both x and n.

PSOR does not converge to the solution when n is odd, whether over- or under-

relaxation is used, nor do we expect it to. By this we mean that after 50,000 cycles,

the method had not reached the solution and was not getting closer to the (unique)

known solution. In the case where n is even, since A is not a P -matrix, there are

multiple solutions, and PSOR seems to bounce back and forth between several vectors

(none of which is a solution to the LCP(A,b)) when no relaxation is used. In the case

where n is odd, there is only one solution sinceA is a P -matrix, and PSOR still bounces

between several vectors.

However, for the two-step, when n= 4, over- and under-relaxation seems to speed

the convergence of the two-step. When n is even and larger, optimal convergence

seems to occur when no relaxation is used in the two-step. Whenn is odd, no relaxation

seems best. Results for both methods are provided in Table 7.1.

Note that if the solution is known ahead of time and is used for comparison, the

number of steps to convergence decrease (typically) by 2 iterations.

A more practical example is the food chain matrix. These can appear in Lotka-

Volterra systems (see [9, 10, 19, 22]). A typical food chain matrix is a tridiagonal

matrix with negative entries on either the sub- or super-diagonal and at least one 0

on the diagonal and positive entries elsewhere on the diagonal. These matrices are P0

matrices and the issue of solving them with the two-step approach is addressed in

[12]. Instead, in Example 7.5, we looked at the following food chain matrix A (which

happens to be a P -matrix whose symmetric part is positive definite) found in Zhien

et al. [22].

Example 7.5. Solve LCP(A,b) when A= [aij] and

aij =




1 if i= j−1,

d if i= j,
−1 if i= j+1.

(7.2)

We previously considered the case where n = 4 and d = 1 in Example 7.1. In that

example we noted that PSOR does not converge. Generally we restricted d ≥ 1. In
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Table 7.1

n Solution(s) PSOR Two-step

Odd 10e

Even [50 0···50 0], λ= 1 # cycles/optimal λ λ= 1 # cycles/optimal λ
10e, etc. solution solution

4 Many DNC
32/0.45 12 10/1.05

[50 0 50 0] x= 10e x= 10e

5 10e DNC DNC
10 10

x= 10e x= 10e

50 Many DNC
89/0.38 13 13/1
[50 0···50 0] x= 10e x= 10e

51 10e DNC DNC
11 11

x= 10e x= 10e

100 Many DNC
145/0.39 13 13/1
[50 0···50 0] x= 10e x= 10e

101 10e DNC DNC
11 11

x= 10e x= 10e

500 Many DNC
> 500/0.38 14 14/1
[50 0···50 0] x= 10e x= 10e

501 10e DNC DNC
11 11

x= 10e x= 10e

Table 7.2, we summarize results for d = 2, when RHS is b = Ax, where x = e is the

solution and the starting vector is 0. The optimal relaxation parameter in each case

for PSOR seems to be λ≈ 0.8, while no relaxation seems to work best for the two-step.

Table 7.2

n (size of matrix) PSOR w/ no PSOR Two-step w/ no

relaxation w/optimal (optimal)

d= 2 relaxation (λ= 0.8) relaxation

4 27 9 5

10 116 12 7

50 > 1000 16 9

100 > 1000 17 9

500 > 1000 18 10

Example 7.6. In this last example, we consider food chain matrices with a similar

structure except that the off-diagonal elements are larger in magnitude than those on

the diagonal. We present the results for the case where A= [aij] and

aij =



−c if i= j−1,

1 if i= j,
c if i= j+1.

(7.3)

where c = 4, x = e, b = Ax, and the starting vector is 0. Results are provided in

Table 7.3.
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Table 7.3

n (size of matrix)
c = 4

PSOR w/ no
relaxation

PSOR
w/optimal
relaxation

Two-step
w/no
relaxation

Two-step
w/optimal
relaxation

4 DNC 50, λ= .21 16 10, λ= 1.25

10 DNC 52, λ= .21 74 18, λ= 1.45

50 DNC 68, λ= .21 199 36, λ= 1.65

100 DNC 91, λ= .21 219 48, λ= 1.62

500 DNC 91, λ= .21 240 60, λ= 1.6

7.3. Murty’s example for Murty’s and Lemke’s methods. Consider then×n upper

triangular matrix U with entries uij given by

uij =




0 if i > j,

1 if i= j,
2 if i < j.

(7.4)

This matrix is a P -matrix and has a unique solution for every b ∈ Rn. For n ≥ 2,

2n−1 pivots are required to solve LCP(U,e) using Murty’s algorithm [16], a classic piv-

oting method used to solve LCPs. When n= 100, we find that roughly 1031 pivots are

required using Murty, whereas 1530 cycles are needed if the two-step is used. Solving

LCP(UT ,e) for n≥ 2 with another well-known pivoting scheme, Lemke’s method [14]

also requires 2n−1, while the two-step converges in exactly one cycle with no relax-

ation! Of course, these examples are contrived and are meant only as pathologies.

8. Conclusion and possible future directions. Several algorithms have been pre-

sented. Firstly, they provide yet another means for which one might solve both linear

and generalized linear complementarity problems. Secondly, the class of such prob-

lems, for which the matrices involved are P -matrices, also represents a class of prob-

lems where the solution is the intersection of a number of closed nonconvex sets and

alternating projections onto each set leads to a solution. It is our belief that this is

the first such classification. Since these are merely extensions of intersecting lines of

linear systems (which happen to be convex), some properties of linear systems ap-

pear to apply to the intersections of piecewise linear systems. Unfortunately, one of

these properties is that convergence can be extremely slow if opposing hyperplanes

are “close” in the sense that the angle between their normals is small. This may be

compounded in the case of bent hyperplanes and worsens as the number of segments

in each hyperplane increase (as in the GLCP). In order for the representative matrices

to all be P in the GLCP, many of the angles between bends of consecutive hyperplanes

must be small. Fortunately, over- and under-relaxation appears to speed up conver-

gence in many cases. One property of linear systems that is lost is convexity, and

hence the nonexapansivity of the projection operators.

Currently we are looking into other forms of acceleration and possible pre-

conditioning of the system. Attempts to pre-condition so far have not been successful

due, in part, to the fact that orthogonality (of the axes, in particular) is lost for various
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parts of the problem, while it may or may not be introduced to other parts. If one

knew approximately where the solution lay, then one could possibly take advantage

of this by, say, pre-multiplying by a matrix that enlarges the acute angles between

the hyperplanes, thereby increasing the rate of convergence.
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