AN APPLICATION TO KATO'S SQUARE ROOT PROBLEM

TOKA DIAGANA

Received 24 May 2001

We find all complex potentials Q such that the general Schrödinger operator on \mathbb{R}^n , given by $L = -\Delta + Q$, where Δ is the Laplace differential operator, verifies the well-known Kato's square problem. As an application, we will consider the case where $Q \in L^1_{loc}(\Omega)$.

2000 Mathematics Subject Classification: 47B44, 35J05.

1. Introduction. Let $\Omega \subseteq \mathbb{R}^n$, an open set and let's stand in the Hilbert space $H = L^2(\Omega, C)$ (= $L^2(\Omega)$). Consider Q, a measurable complex function and let Φ and Ψ be the sesquilinear forms given by,

$$\Phi(u,v) = \int_{\Omega} \nabla u \overline{\nabla v} \, dx \quad \forall u, v \in D(\phi) = H_0^1(\Omega),$$

$$\Psi(u,v) = \int_{\Omega} Q u \overline{v} \, dx \quad \forall u, v \in D(\Psi),$$
(1.1)

where $D(\Psi) = \{u \in L^2(\Omega) : Q | u |^2 \in L^1(\Omega)\}$. Assume that the potential Q verifies that there exists $\beta > 0$ and there exists $\theta \in (0, \pi/2)$, such that

$$\left|\arg(Q-\beta)\right| \le \frac{\pi}{2} - \theta.$$
 (1.2)

The sesquilinear forms Φ and Ψ are both closed, densely defined, and sectorial. According to Kato's first representation theorem (see [2]), we can associate to Φ and Ψ , *m*-sectorial linear operators defined, respectively, by

$$Au = -\Delta u \quad \text{with} \quad D(A) = \{ u \in H_0^1(\Omega) : \Delta u \in L^2(\Omega) \},\$$

$$Bu = Qu \quad \text{with} \quad D(B) = \{ u \in L^2(\Omega) : Qu \in L^2(\Omega) \}.$$
(1.3)

By Schrödinger operator, we mean a partial differential operator on \mathbb{R}^n of the form

$$L = A + B; \quad A = -\Delta; \quad B = Q = Q(x),$$
 (1.4)

where Δ is the *n*-dimensional Laplace operator $\Delta = \sum_{i=1}^{n} \partial^2 / \partial x_i^2$. The name comes from the form of Schrödinger's equation which, in units with h = m = 1 reads

$$i\frac{\partial u}{\partial t} = Lu. \tag{1.5}$$

Our aim here is to find all potentials *Q* such that

$$D(L^{1/2}) = D(A^{1/2}) \cap D(B^{1/2}) = D(L^{*1/2}).$$
(1.6)

For that we use the author results [1] related to the sum of linear operators connected to Kato's square root problem. The case where $\Omega = \mathbb{R}^n$ will be studied later as a consequence of the general case.

2. Schrödinger operators and Kato's condition

DEFINITION 2.1. A linear operator *C* is said to verify Kato's square root problem (or Kato's condition) if

$$D(C^{1/2}) = D(\Upsilon) = D(C^{*1/2}), \tag{2.1}$$

where Υ is the sesquilinear form associated to *C*.

HYPOTHESIS ON *Q*. Suppose that *Q* is chosen such as,

$$\overline{D(\Phi) \cap D(\Psi)} = L^2(\Omega).$$
(2.2)

PROPOSITION 2.2. Let A and B be the linear operators given by (1.3). Assume that the potential Q verifies (2.2). Then there exists a unique operator sum $A \oplus B$, which is *m*-sectorial, verifying Kato's condition and

- (i) $A \oplus B = \overline{A + B}$ if $\overline{A + B}$ is a maximal operator,
- (ii) $|\operatorname{Im}\langle (A \oplus B)u, u \rangle| \le \operatorname{Re}\langle (A \oplus B)u, u \rangle$, for all $u \in D(A \oplus B)$.

PROOF. Assume that *Q* verifies hypothesis (2.2). So, the sesquilinear form given by, $Y = \Phi + \Psi$, is a closed, sectorial, and densely defined. By Kato's first representation theorem (see [2]), there exists a unique *m*-sectorial sum operator, $A \oplus B$, associated to *Y*, verifying

$$\Upsilon(u,v) = \langle (A \oplus B)u, v \rangle \quad \forall u \in D(A \oplus B), v \in D(\Phi) \cap D(\Psi)$$
(2.3)

since *A* and *B* both verify Kato's condition, according to author's theorem (see [1, Theorem 2, page 462]), the operator $A \oplus B$ verifies the same condition, that is,

$$D((A \oplus B)^{1/2}) = D(\Phi) \cap D(\Psi) = D((A \oplus B)^{*1/2})$$
(2.4)

and (ii) is satisfied, where β is given by (1.2). The operator $A \oplus B$ is defined as

$$(A \oplus B)u = -\Delta u + Qu, \quad \forall u \in D(A \oplus B),$$

$$D(A \oplus B) = \{ u \in H_0^1(\Omega) : Q | u |^2 \in L^1(\Omega), \ -\Delta u + Qu \in L^2(\Omega) \}.$$
 (2.5)

Using also author's theorem (see [1, Theorem 2, page 462]), it follows that (i) is satisfied. $\hfill \Box$

3. Some applications. Consider the same operators, that is, $A = -\Delta$ and B = Q in $L^2(\Omega)$. Assume that $Q \in L^1_{loc}(\Omega)$, in this case (2.2) is satisfied. According to Brézis and Kato, the operator $\overline{A + B}$ is maximal in $L^2(\Omega)$ (then $A \oplus B = \overline{A + B}$ and Kato's condition is satisfied) and is given by (2.5).

180

CASE $\Omega = \mathbb{R}^n$. We always assume $Q \in L^1_{loc}(\mathbb{R}^n)$, it follows that

$$Au = -\Delta u \quad \text{with} \quad D(A) = H^2(\mathbb{R}^n); \quad D(A^{1/2}) = H^1(\mathbb{R}^n), \\ Bu = Qu \quad \text{with} \quad D(B^{1/2}) = \{ u \in L^2(\mathbb{R}^n) : Q | u |^2 \in L^1(\mathbb{R}^n) \},$$
(3.1)

and $D(A^{1/2}) \cap D(B^{1/2})$ is dense in $L^2(\mathbb{R}^n)$ because,

$$C_0^{\infty}(\mathbb{R}^n) \subseteq D(\Phi) \cap D(\Psi). \tag{3.2}$$

In conclusion, Kato's condition is satisfied by $\overline{A+B}$, that is,

$$D\left(\sqrt{A+B}\right) = D\left(\sqrt{A}\right) \cap D\left(\sqrt{B}\right) = D\left(\sqrt{A+B^*}\right).$$
(3.3)

For example when n = 1, then

$$D\left(\sqrt{A+B}\right) = H^1(\mathbb{R}) = D\left(\sqrt{A+B^*}\right). \tag{3.4}$$

REMARK 3.1. Condition (2.2) could be weakened as

$$\overline{D(A) \cap D(B)} = L^2(\Omega). \tag{3.5}$$

But in general the algebraic sum of two operators is not always defined (because this concept is not well adapted to problems arising in mathematical analysis).

ACKNOWLEDGEMENT. I would like to express my thanks to Prof. Hofmann about our discussions on this note.

REFERENCES

- T. Diagana, Sommes d'opérateurs et conjecture de Kato-McIntosh [Sums of linear operators and the Kato-McIntosh conjecture], C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 6, 461-464 (French).
- T. Kato, *Perturbation Theory for Linear Operators*, Die Grundlehren der mathematischen Wissenschaften, vol. 132, Springer-Verlag, New York, 1966.

Toka Diagana: Department of Mathematics, Howard University, 2441, Sixth Street, NW Washington, DC 20059, USA

E-mail address: tdiagana@howard.edu

181