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1. Introduction. In [1], Andreotti and Stoll established vanishing theorems for uni-

form cohomology on polycylinders and, in [6], Nagel generalized their result to Lp-

cohomology 1≤p≤∞, Ck-cohomology, and Hölder cohomology. The obvious classical

spaces that were left out are the Sobolev spaces. In this paper, we prove vanishing

theorems for Sobolev cohomology on polycylinders and, at the same time, extend our

results to a particular generalization of polycylinders called locally polycylindrical do-

mains. A polycylinder Ω in Cn is a domain of the form Ω =D1×D2×···×Dn, where

each Dj is a nonempty, bounded open subset of C. And a bounded open set Ω is a

locally polycylindrical domain, if for each point x in the boundary ∂Ω of Ω, there is

an open neighborhood Ux of x in Cn such that Ω∩Ux is a polycylinder. A locally

polycylindrical domain is obviously Stein.

We use the method of establishing estimates for the ∂̄-operator, developed in [3].

This method has the advantage of giving results on polycylinders more general than

the polycylinders considered in [6]. We then use Leray’s isomorphism theorem and

Dolbeault isomorphism theorem with bounds to obtain a solution of the ∂̄-equation

on locally polycylindrical domains, from which we obtain the required vanishing theo-

rems.

A polycylinder is called admissible if it has each factor in C with a boundary with

plane measure zero. We assume throughout this paper that all polycylinders men-

tioned are admissible.

2. Preliminaries

2.1. In this section, we define some of the terms that we are going to use and state

our main results. Since a polycylinder is a locally polycylindrical domain, we state the

vanishing theorem for locally polycylindrical domains only.

Let U be an open set in Cn and let Lp,s(U), 1≤ p ≤∞, and s, a nonnegative integer,

denote the space of functions in U whose distributional derivatives of order ≤ s are

in Lp(U).
For f ∈ C∞(U), define

‖f‖(0)Lp,s (U) = ‖f‖(0,0)Lp,s (U) = ‖f‖Lp,s (U), (2.1)
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‖f‖Lp,s (U) as the p-s Sobolev norm of f on U ,

‖f‖(0,r )Lp,s (U) = max
i1<···<ir

∥∥∥∥ ∂rf
∂z̄i1 ···∂z̄ir

∥∥∥∥
(0)

Lp,s (U)
for 1≤ r ≤n,

‖f‖(n)Lp,s (U) = max
0≤r≤n

‖f‖(0,r )Lp,s (U).

(2.2)

If f = ∑′
(ζ̇1,...,ζ̇q)

fζ̇1···ζ̇qdz̄ζ̇1
∧ ··· ∧ dz̄ζ̇q is a C∞(0,q)-form on U where

∑′, the

summation, is over increasing multi-indices, we write f as
∑′
I fIdz̄I for short I =

(i1, . . . , iq), and set

‖f‖(n)
Lp,s(0,q)(U)

=max
I
‖f‖(n)Lp,s (U). (2.3)

Then corresponding to [5, Theorem 1], we have the following theorem.

Theorem 2.1. Let Ω be a polycylinder in Cn, 1 ≤ p ≤ ∞, and s a nonnegative in-

teger. There is a k > 0 such that if f is a smooth ∂̄-closed (0,q+1)-form on Ω with

‖f‖(n)
Lp,s(0,q+1)(Ω)

<∞, then there is a smooth (0,q)-form u on Ω with ∂u= f and

‖u‖(n)
Lp,s(0,q)(Ω)

≤K‖f‖(n)
Lp,s(0,q+1)(Ω)

. (2.4)

For general locally polycylindrical domains, we combine Theorem 2.1, Leray’s iso-

morphism theorem with bounds, and Dolbeault’s isomorphism theorem with bounds

to obtain the following result.

Theorem 2.2. Let Ω be a locally polycylindrical domain in Cn, 1 ≤ p ≤∞, and s a

nonnegative integer. If f is a smooth ∂̄-closed (0,q+1)-form onΩwith ‖f‖(n)
Lp,s(0,q+1)(Ω)

< ∞,

then there is a smooth (0,q)-form u on Ω with ∂̄u= f and

‖u‖(n)
Lp,s(0,q)(Ω)

<∞. (2.5)

2.2. We now define the Sobolev-space-holomorphic functions on Ω̄, and state our

last theorem in this section which follows from Theorem 2.2.

Let Ω be a locally polycylindrical domain and U ≠∅ a set open in Ω̄, then Bp,sΩ (U)
is the Banach space of holomorphic functions f on Ω∩U such that ‖f‖Lp,s (U∩Ω) <∞,

1 ≤ p ≤ ∞, and s is a nonnegative integer. If V is open in Ω̄ with ∅ ≠ V ⊂ U , the

restriction map γUV . Bp,sΩ (U) → Bp,sΩ (V) is defined. Then Bp,s0 = {Bp,sΩ (U),γUV } is the

canonical presheaf of p-s-Sobolev space holomorphic functions on Ω̄. The associated

sheaf �
p
s is the sheaf of germs of p-s-Sobolev space holomorphic functions on Ω̄.

From Theorem 2.2 we get the following result.

Theorem 2.3. Let Ω be a locally polycylindrical domain and �
p
s the sheaf of germs

of p-s-Sobolev space holomorphic functional on Ω̄. Then Hq(Ω̄,�p
s ) = 0 for q ≥ 1,

1≤ p ≤∞, and s is a nonnegative integer.

3. Dolbeault-Grothendieck lemma with bounds

3.1. In this section, we prove Theorem 2.1. We use the techniques developed in [3].

Since, for the most part we are dealing with smooth objects, the distributional deriva-

tives, used in defining the Sobolev spaces, are ordinary derivatives on the objects.
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However, in the next lemma, which is easy to prove, we need to take distributional

derivatives.

Lemma 3.1. Let Ω =D1×D2×···×Dn be a polycylinder in Cn and let f ∈ Lp,s(Ω),
1≤ p ≤∞, and s be a nonnegative integer. Define, for 1≤ j ≤n,

gj(z)=
∫
Dj

(
ζ−zj

)−1f
(
z1, . . . ,zj−1,ζ,zj+1, . . . ,zn

)
dζ∧dζ̄ for a.e. z ∈Ω. (3.1)

Then gj ∈ Lp,s(Ω) and there is a c > 0 depending on Ω, p, and s such that

∥∥gj∥∥Lp,s (Ω) ≤ c‖f‖Lp,s (Ω). (3.2)

3.2. We can now proceed with the proof of Theorem 2.1. The proof is by induc-

tion, the inductive statement being that the theorem is true if f does not involve

dz̄k+1, . . . ,dz̄n. When k= 0, there is nothing to prove because then f must be zero.

If k=n, then the statement is the theorem. We assume therefore that the theorem

is true if f does not involve dz̄k,dz̄k+1, . . . ,dz̄n and assume that

f = dz̄k∧g+h, (3.3)

where g is of type (0,q) and h is of type (0,q+1), and g and h are independent of

dz̄k, . . . ,dz̄n,

g =
′∑
I
gIdz̄I , h=

′∑
J
hJdz̄J . (3.4)

If I is an increasing multi-index and j is a positive integer not in I, (I,j) is the increas-

ing multi-index obtained by adding j to the integers in I, and (I,j1,j2) = ((I,j1),j2),
where j1 is not in I and j2 is not in (I,j1).

Now on Ω

0= ∂̄f = dz̄k∧

 n∑
j=1

dz̄j∧
( ′∑

I

∂gI
∂z̄j

dz̄I
)+ n∑

j=1

dz̄j∧

 ′∑

J

∂hj
∂z̄j

dz̄J

, (3.5)

hence if I0 is an increasing multi-index of length q, 1 ≤ j0 < k and j0 is not in I0, the

coefficient of dz̄k∧dz̄(I0,j0) in ∂̄f is

0=
∑

1≤j<k
(I,j)=(I0,j0)

ε(I,j)
∂gI
∂z̄j

± ∂hJ0

∂z̄k
, (3.6)

where (J0,k) = (I0,j0,k), ε(I,j) = ±1, the summation is over 1 ≤ j < k, and (I,j) =
(I0,j0); because

∂gI
∂z̄j

= 0, j > k, (3.7)

this, apart from a factor of ±1, being the coefficient of dz̄k∧dz̄j∧dz̄I in ∂̄f = 0.
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In Ω, let

GI(z)= 1
2πi

∫
Dk

(
ζk−zk

)−1gI
(
z1, . . . ,zk−1,ζk,zk+1, . . . ,zn

)
dζk∧dζ̄k. (3.8)

Then clearly GI ∈ C∞(Ω) and, by Lemma 3.1, there is a constant K1 > 0 such that

∥∥GI∥∥(n)Lp,s (Ω) ≤K1

∥∥gI∥∥(n)Lp,s (Ω),

∂GI
∂z̄k

= gI, ∂GI
∂z̄j

= 0, for j > k.
(3.9)

Let G =∑′
I GIdz̄I , then ‖G‖(n)

Lp,s(0,q)(Ω)
≤K1‖f‖(n)Lp,s(0,q+1)(Ω)

<∞ and

∂̄G =
′∑
I

n∑
j=1

∂GI
∂z̄j

dz̄j∧dz̄I = dz̄k∧g+h1, (3.10)

where h1 is the sum when j runs from 1 to k−1 and it is independent of dz̄k, . . . ,dz̄n.

Hence h−h1 = f − ∂̄G does not involve dz̄k, . . . ,dz̄n.

If I0 is an increasing multi-index of length q,1 ≤ j0 < k and j0 is not in I0, the

coefficient of dz̄(I0,j0) in h1 is

H(I0,j0) =
∑

1≤j<k
(I,j)=(I0,j0)

ε(I,j)
∂GI
∂z̄j

, (3.11)

the meaning of the symbols being as in (3.6). From (3.6), it follows that

H(I0,j0)(z)=±
1

2πi

∫
Dk

(
ζk−zk

)−1 ∂hj0
∂ζ̄k

(
z1, . . . ,zk−1,ζk,zk+1, . . . ,zn

)
dζk∧dζ̄k, (3.12)

where (I0,j0,k)= (J0,k).
From (3.9), (3.12), and (3.10) and Lemma 3.1, it follows that

∥∥h1

∥∥(n)
Lp,s(0,q+1)(Ω)

≤K2‖f‖(n)Lp,s(0,q+1)(Ω)
(3.13)

for some constant K2, hence

∥∥f − ∂̄G∥∥(n)Lp,s(0,q+1)(Ω)
≤ ‖f‖(n)

Lp,s(0,q+1)(Ω)
+K2‖f‖(n)Lp,s(0,q+1)(Ω)

<∞. (3.14)

By the induction hypothesis, since f − ∂̄G does not involve dz̄k, . . . ,dz̄n and ∂̄(f −
∂̄G)= 0 on Ω, there is a smooth (0,q)-form v on Ω, such that ∂̄v = f − ∂̄G on Ω and

‖v‖(n)
Lp,s(0,q)(Ω)

≤K3

∥∥f − ∂̄G∥∥Lp,s(0,q+1)(Ω)
≤K3

(
1+K2

)‖f‖(n)
Lp,s(0,q+1)(Ω)

(3.15)

for some constant K3 > 0.

Now let u= v+G, then ∂̄u= f on Ω and

‖u‖(n)
Lp,s(0,q)(Ω)

≤ (K1+K3
(
1+K2

))‖f‖(n)
Lp,s(0,q+1)(Ω)

, (3.16)

which completes the proof of Theorem 2.1 with K = (K1+K3(1+K2)).
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4. Leray’s isomorphism theorem with bounds

4.1. The formalism for the proof of the theorem which we are going to state in this

section, has been used over and over again in [2, 3, 4, 5], we therefore only sketch the

proof of that theorem.

Let � be the sheaf of germs of holomorphic functions in Cn. If U ⊂ Cn is open and

γ > 0 is an integer, let Γ(U,�γ) be the section of �γ on U , then

Γp,s
(
U,�γ

)
:= {f = (f1, . . . ,fγ

)∈ Γ(U,�γ) :
∥∥f1

∥∥
Lp,s (U)+···+

∥∥fγ∥∥Lp,s (U) <∞}. (4.1)

If � is a coherent analytic sheaf on neighborhood of the closure Ū of the polycylin-

der U , then by Cartan’s theorem A, there is an exact sequence

�m
λ
�→� �→ 0 (4.2)

of �-homomorphisms in a neighborhood of Ū , wherem is a positive integer. The space

Lp,s -bounded sections of � over U , Γp,s(U,�) is defined by

Γp,s(U,�) := λ(Γp,s(U,�m)). (4.3)

It can be shown easily that Γp,s(U,�) does not depend on λ and m.

Now, letΩ be a locally polycylindrical domain and let � be a coherent analytic sheaf

in a neighborhood of the closure of Ω. Then Ω is expressible as the union of a finite

number of polycylinders, so let � = {Uj}j∈I be a finite set of polycylinders such that

Ω = ∪j∈IUj . We define the Lp,s -bounded alternate q cochain group Cqp,s(�,�) of the

covering � with values in � by

Cqp,s(�,�) :=
{
c = (cα)∈ Cq(�,�) : cα ∈ Γp,s

(
Uα,�

)
, ∀α∈ Iq+1

q

}
, (4.4)

where α = (α0, . . . ,αq), Uα = Uα0 ∩Uα1 ∩···∩Uαq , and Cq(�,�) is the alternate q-

cochain group of the cover � with values in �.

The coboundary operator

δ : Cq(�,�) �→ Cq+1(�,�) (4.5)

maps Cqp,s(�,�) into Cq+1
p,s (�,�), hence we have the complex

C0
p,s(�,�)

δ
���������������������������������������→ C1

p,s(�,�)
δ
���������������������������������������→ ··· δ

���������������������������������������→ Cqp,s(�,�) δ
���������������������������������������→ Cq+1

p,s (�,�)
δ
���������������������������������������→ ··· , (4.6)

and Hq
p,s(�,�) is the qth cohomology group of this complex.

We then have the following theorem.

Theorem 4.1. The natural map

Hq
p,s(�,�) �→Hq(Ω,�) (4.7)

is an isomorphism for q ≥ 0, 1≤ p ≤∞, s ≥ 0.
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4.2. As in [2, 3, 4, 5], to prove Theorem 4.1, it is enough to show that Hq
p,s(�|σ |,�)

= 0 for all nerves σ of the covering � where �|σ | = {Uj∩|σ |}j∈I and |σ | is the support

of σ . And since for each nerve σ of the covering � the support of |σ | is a polycylinder,

we use Theorem 2.1 to show directly that Hq
p,s(�|σ |,�) = 0 for q ≥ 1, where as usual,

� is the sheaf of germs of holomorphic functions in Cn. Then from the short exact

sequence, m> 1,

0 �→ � �→ �m �→ �m−1 �→ 0 (4.8)

and induction, we show that Hq
p,s(�|σ |,�m) = 0 for q ≥ 1, 1 ≤ p ≤ ∞, s ≥ 0, m ≥ 1,

and σ is any nerve of the covering �.

Now, there is a terminating chain of syzygies

0 �→ �Pγ
λγ
��������������������������������→ �Pγ−1

λγ−1
�������������������������������������������������������������������������������→ ··· �→ �P0

λ0����������������������������→� �→0 (4.9)

in a neighborhood of the closure of |σ |, where γ is a natural number. Using induction

on the length γ of the terminating chain of syzygies and the fact thatHq
p,s(�|σ |,�m)= 0

for allm> 0, we arrive at the desired result thatHq
p,s(�|σ |,�)= 0, for q ≥ 1, 1≤ p ≤∞,

s ≥ 0, and σ is any nerve of the covering �, and the proof of the theorem is complete.

5. Dolbeault’s isomorphism theorem with bounds

5.1. The last thing we need to establish that Theorem 2.2 is Dolbeault’s isomor-

phism theorem with Sobolev bounds. Let Ω be a locally polycylindrical domain and

let �= {Uj}j∈I be a set of polycylinders such that Ω =∪j∈IUj . Let ξ0,q be the sheaf of

germs of C∞ forms of type (0,q) on Cn, and �0,q the sheaf of germs of ∂̄-closed C∞

forms of type (0,q) on Cn. Define Γ̂p,s(Ω,ξ0,q) and Γp,s(Ω,�0,q) by

Γp,s
(
Ω,ξ0,q) :=

{
f ∈ Γ(Ω,ξ0,q) : ‖f‖(n)

Lp,s(0,q)(Ω)
<∞

}
,

Γp,s
(
Ω,�0,q) :=

{
f ∈ Γ(Ω,�0,q) : ‖f‖Lp,s(0,q)(Ω) <∞

}
,

Γ̂p,s
(
Ω,ξ0,q) := {f ∈ Γp,s(Ω,ξ0,q) : ∂̄f ∈ Γp,s

(
Ω,�0,q+1)}.

(5.1)

Let � be the sheaf of germs of holomorphic functions in Cn as before. Then we have

the following theorem.

Theorem 5.1. The group Hq
p,s(�,�) is, for q > 0, 1≤ p ≤∞, and s ≥ 0, isomorphic

to the quotient space

Γp,s
(
Ω,�0,q)

∂̄Γp,s
(
Ω,ξ0,q−1

)∩Γp,s(Ω,ξ0,q
) . (5.2)

5.2. To prove Theorem 5.1, with Uα = Uα0 ∩Uα1 ∩···∩Uαq for a multi-index α =
(α0, . . . ,αq)∈ Iq+1, consider the exact sequence

0 �→ Γp,s
(
Uα,�0,q) �→ Γ̂p,s(Uα,ξ0,q) ∂̄

�→ Γp,s
(
Uα,�0,q+1) �→ 0. (5.3)
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The exactness follows from Theorem 2.1. With the cochain groups Cγp,s(�,�0,q) and

Ĉγp,s(�,ξ0,q) defined from the Γp,s(Uα,�0,q) and the Γ̂p,s(Uα,ξ0,q) in the obvious way,

we have the short exact sequence

0 �→ Cγp,s
(
�,�0,q) �→ Ĉγp,s(�,ξ0,q) ∂̄

�→ Cγp,s
(
�,�0,q+1) �→ 0. (5.4)

From which we get the long exact sequence

0 �→ Γp,s
(
Ω,�0,q) �→ Γ̂p,s(Ω,ξ0,q) �→ Γp,s(Ω,�0,q+1)

�→H1
p,s
(
�,�0,q) �→ Ĥ1

p,s
(
�,ξ0,q) �→H1

p,s
(
�,�0,q+1)H2

p,s
(
�,�0,q) �→ ··· , (5.5)

where Hγ
p,s(�,�0,q) is the γth cohomology group of the complex

C0
p,s
(
�,�0,q) �→ C1

p,s
(
�,�0,q) �→ ··· , (5.6)

and Ĥγ
p,s(�,ξ0,q) is that of the complex

Ĉ0
p,s
(
�,ξ0,q) �→ Ĉ1

p,s
(
�,ξ0,q) �→ ··· . (5.7)

Using the fact that ξ0,q is a fine sheaf, it is easy to show that Ĥγ
p,s(�,ξ0,q)= 0 for γ > 0.

Therefore,

Hγ
p,s
(
�,�0,q+1)≈Hγ+1

p,s
(
�,�0,q), γ ≥ 1,

H1
p,s
(
�,�0,q+1)≈ Γp,s

(
Ω,�0,q)

∂̄Γp,s
(
Ω,ξ0,q−1

)∩Γp,s(Ω,ξ0,q
) . (5.8)

Hence, when q > 0

Hq
p,s(�,�)=Hq

p,s
(
�,�0,0)≈Hq−1

p,s
(
�,�0,1)≈ ··· ≈H1

p,s
(
�,�0,q−1). (5.9)

This proves Theorem 5.1.

6. Vanishing theorems. We conclude the paper in this section by stating that the

same formalism used to establish [5, Theorem 2] works here also in establishing

Theorem 2.3, if we have Theorem 2.2 available. Therefore, all we need is to show

that, because of Theorem 5.1, we already have Theorem 2.2. This is because the lo-

cally polycylindrical domain we are dealing with, is Stein and so by Cartan’s theo-

rem, B Hq(Ω,�) = 0 for all coherent analytic sheaves, for q ≥ 1. Therefore for � in

Theorem 2.3, Hq
p,s(�,�)= 0 for all coherent analytic sheaves � defined in a neighbor-

hood of the closure of the locally polycylindrical domain Ω. In particular, Hq
p,s(�,�)=

0 for q ≥ 1 and therefore Theorem 2.3 follows from Theorem 5.1.

Remark 6.1. Perhaps, we should point out that Theorem 2.3 can be used to solve

the Sobolev-Corona problem when the locally polycylindrical domainΩ has a Lipschitz

boundary and ps > n, in which case Γp,s(Ω,�) is an algebra with members extending

continuously to the boundary of Ω.
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