
IJMMS 29:4 (2002) 239–244
PII. S0161171202004696

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

ON THE EQUATION x2+2a ·3b =yn

FLORIAN LUCA

Received 1 December 1999 and in revised form 15 January 2000

We find all positive integer solutions (x,y,a,b,n) of x2 +2a ·3b = yn with n ≥ 3 and
coprime x and y .
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1. Introduction. The Diophantine equation x2+C = yn, where x and y are pos-

itive integers, n ≥ 3 and C is a given integer, has received considerable interest.

The earliest reference seems to be an assertion by Fermat that he had shown that

when C = 2, n = 3, the only solution is given by x = 5, y = 3; a proof was pub-

lished by Euler in 1770. The first result for general n is due to Lebesgue [9] who

proved that there are no solutions for C = 1. Ljunggren [10] solved this equation

for C = 2, Nagell [13, 14] solved it for C = 3, 4, and 5 and Chao [5] proved that it

has no solutions for C = −1. For an extensive list of references one should consult

Cohn’s beautiful paper [6] in which he develops a method by which he finds all solu-

tions of the above equation for 77 of the values of C ≤ 100. This equation was later

solved for two additional values of C ≤ 100 (namely, C = 74 and C = 86) by Mignotte

and de Weger [12]. It is interesting to mention that the equation x2+7 = yn is still

unsolved.

In recent years, a different form of the above equation has been considered, namely,

when C is no longer a fixed integer but a power of a fixed prime. Le [8] investigated

the equation x2+2m =yn. Arif and Muriefah solved the equation x2+3m =yn when

m is odd (see [2]). They also gave partial results in the case when m is even (see [1])

but the general solution in the case m is even was found by Luca in [11].

For any nonzero integer k, let P(k) be the largest prime dividing k. Let C1 be any

fixed positive constant. It follows, from the work of Bugeaud [4] and Turk [15], that if

x2+z =yn with (x,y)= 1, P(z) < C1, (1.1)

then max(|x|,|y|,n) is bounded by a constant computable in terms of C1 alone.

In this paper, we find all solutions of (1.1) when C1 = 5 and z > 0. More precisely,

we find all solutions of the equation

x2+2a ·3b =yn with a,b ≥ 0, n≥ 3, (x,y)= 1. (1.2)

The proof uses the new result on the existence of primitive divisors of the Lucas

numbers due to Bilu et al. [3] as well as a computational result of de Weger [7].
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2. The result

Theorem 2.1. All positive solutions of the equation

x2+2a ·3b =yn with a,b ≥ 0, n≥ 3, (x,y)= 1 (2.1)

have n= 4 or n= 3. For n= 4, the solutions are

(x,y)= (7,3),(23,5),(7,5),(47,7),(287,17). (2.2)

For n= 3, the solutions are

(x,y)=(5,3),(11,5),(10,7),(17,7),(46,13),(35,13),

(595,73),(955,97),(2681,193),(39151,1153).
(2.3)

In the statement of the theorem we have listed only the values of x, y , and n as

the values of the parameters a and b that can be determined from the prime factor

decomposition of x2−yn once x, y , and n are given.

From Lebesgue’s result, we know that the equation x2 + 1 = yn has no positive

solutions for n≥ 3 and from the work of Arif, Muriefah, and Luca, we know that the

only positive solutions of the equation x2+3m =yn with (x,y)= 1 are (x,y,m,n)=
(10,7,5,3) and (46,13,4,3). From now on, we assume that a > 0. In particular, both

x and y are odd.

3. The case n ≠ 3 or 4. In this section, we show that it suffices to assume that

n∈ {3,4}. Indeed, assume thatn≠ 4. We may certainly assume thatn is an odd prime.

If n≠ 3, it follows that n≥ 5. Write 2a ·3b = dz2 where d∈ {1,2,3,6}. Equation (2.1)

can be written as

(
x+i

√
dz
)(
x−i

√
dz
)
=yn. (3.1)

Since x is odd and dz2 is even, it follows that the two ideals [(x + i√dz)] and

[(x− i√dz)] are coprime in the ring of integers of Q(i
√
d). Since the class number

of Q(i
√
d) is 1 or 2 and n≥ 5 is prime, it follows that there exists an integer u and a

root of unity ε in Q(i
√
d) such that

x+i
√
dz = εun, x−i

√
dz = εun. (3.2)

Since ε is a root of unity belonging to a quadratic extension of Q , it follows that εk = 1

for some k∈ {1,2,3,4,6}. Since n≥ 5 is prime, it follows that up to a substitution one

may assume that ε = 1 in system (3.2). From (3.2) with ε = 1, it follows that

2i
√
dz =un−ūn. (3.3)

Since certainly

un−ūn
u−ū ∈ Z, (3.4)
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we have that

P
(
un−ūn
u−ū

)
< 5. (3.5)

From (3.5), we find that the Lucas number given by formula (3.4) has no primitive

divisor. From [3], it follows that there are at most 10 pairs (u,n) satisfying inequality

(3.5) and all of them appear in [3, Table 1]. A quick investigation reveals that none

of the u’s from [3, Table 1] belongs to Q(i
√
d) for some d ∈ {1,2,3,6}, which is the

desired contradiction.

4. The case n= 4. Let S = {k | P(k) < 5}. Then, we have the following preliminary

result.

Lemma 4.1. All solutions of the equation

x2 = k±l with k,l > 0, k,l∈ S, (k,l)= 1 (4.1)

are

(x,k,l)=(1,2,1),(2,3,1),(3,8,1),(5,24,1),(7,48,1),

(17,288,1),(1,4,3),(1,9,8),(5,16,9),(5,27,2),(7,81,32).
(4.2)

Proof of Lemma 4.1. This lemma is a particular case of a result of de Weger [7,

Chapter 7].

The proof of the theorem for n= 4. Rewrite (2.1) as

(
y2−x)(y2+x)= 2a ·3b. (4.3)

Since a> 0 and (x,y)= 1, it follows that (y2−x,y2+x)= 2. Thus,

y2−x = k, y2+x = l, with k,l > 0, k,l∈ S, (k,l)= 2. (4.4)

Hence,

y2 = k
2
+ l

2
, (4.5)

where k/2, l/2 ∈ S are positive and coprime. By Lemma 4.1, we obtain that (4.5) has

only 6 solutions. Five of them lead to solutions (2.2) of (2.1). One of the solutions of

(4.5) leads to

22+22 ·3= 24, (4.6)

which is not a convenient solution of (2.1) because x = 2 and y = 2 are not coprime.

The case n= 4 is therefore settled.

5. The case n= 3. We begin with another lemma.

Lemma 5.1. The only solutions of the equation

3x2 = k±l with k,l > 0, k,l∈ S, (k,l)∈ {1,3} (5.1)
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are

(x,k,l)=(1,2,1),(1,4,1),(1,6,3),(2,9,3),
(3,24,3),(5,72,3),(7,144,3),(17,864,3),

(1,12,9),(1,27,24),(5,48,27),(5,81,6),(7,243,96).
(5.2)

Proof of Lemma 5.1. This lemma too is a particular instance of the more general

computation of de Weger [7, Chapter 7].

The proof of the theorem for n = 3. Write again 2a · 3b = dz2 where d ∈
{1,2,3,6}. From arguments employed in Section 3, we know that there exist u and ε
in Q(i

√
d) such that y = |u|2, ε is a root of unity and

x+i
√
dz = εu3, x−i

√
dz = εu3. (5.3)

Clearly,

2i
√
dz = εu3−εu3. (5.4)

We distinguish two cases.

Case 1 (ε = 1). Equation (5.4) reads

2i
√
dz =u3−ū3. (5.5)

Assume first that u= a+ib√d with a and b integers. Then, we get

2i
√
dz = (a+ib√d)3−(a−ib√d)3

(5.6)

or

2i
√
dz = 2i

√
db
(
3a2−db2). (5.7)

Hence, b | z and

3a2 = db2± z
b
. (5.8)

Let k = db2 and l = z/b. Notice that k,l ∈ S. Moreover, notice that (k,l) ∈ {1,3}.
Indeed, if (k,l) �∈ {1,3}, it follows that there exists a prime p such that p | (k,l,a). In

particular, p | db2 and p | a, therefore p | a2+db2 = y . Since p | z and 2a ·3b = dz2,

we come to p | 2a ·3b. It follows now that p | (y3−2a ·3b) = x2 and therefore p | x.

This contradicts the fact that x and y are coprime. Now all solutions of (5.8) are given

by Lemma 5.1. For example, the solution

3·12 = 21+1 (5.9)

gives either a = 1, d = 2, b = 1, and z = 1 or a = 1, d = 1, b = 1, and z = 2. The first

possibility yields y = a2+db2 = 1+2 = 3 and dz2 = 2, which leads to the solution

33 = 2+52 of (2.1). The second possibility gives y = a2+db2 = 2 and dz2 = 4, which

leads to the solution 23 = 22+22 of (2.1). This is not an acceptable solution, since

x = 2 and y = 2 are not coprime.
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All the solutions of (2.1) for the case n= 3 except for (x,y)= (10,7) are obtained

in this way by identifying a, b, d, and z from (5.8) via Lemma 5.1.

When d= 3, we also need to investigate the case in which

u= a+i
√

3b
2

(5.10)

for some odd integers a and b. From (5.5), we simply get that

16i
√

3z = (a+i√3b
)3−(a−i√3b

)3
(5.11)

or

16i
√

3z = 2i
√

3b
(
3a2−3b2). (5.12)

It follows that b divides z and

3a2 = 3b2± 8z
b
. (5.13)

From Lemma 5.1, we derive that (5.13) has only two convenient solutions, namely,

3·12 = 3·32−8·3 and 3·72 = 3·34−8·12. These lead to the solutions (x,y)= (10,7)
and (595,73) of (2.1).

Case 2 (ε ≠ 1). It is easy to see that the only case in which one may not be able to set

ε = 1 in system (5.4) is when d= 3. In this case, one may assume that ε = (1+i√3)/2
and that u = (a+i√3b)/2 for some integers a and b such that a ≡ b (mod2). Then

(5.4) becomes

2i
√

3z =
(

1+i√3
2

)
·
(
a+i√3b

2

)3

−
(

1−i√3
2

)
·
(
a−i√3b

2

)3

. (5.14)

This equation is equivalent to

16z = a3+3a2b−9ab2−3b3. (5.15)

Assume first that both a and b are odd. Then, from (5.15), it follows that

16z = (a3−ab2)+(3a2b−3b3)−8ab2 = (a2−b2)(a+3b)−8ab2. (5.16)

Since a and b are both odd, we obtain that 16 | (a2 −b2)(a+ 3b). Equation (5.16)

forces 16 | 8ab2, which is impossible.

Assume now that botha and b are even. Sincey = (a/2)2+3(b/2)2 is odd, it follows

that exactly one of the numbers a/2 and b/2 is even. Equation (5.15) now implies that

2z =
(
a
2

)3

+3
(
a
2

)2(b
2

)
−9
(
a
2

)(
b
2

)2

−3
(
b
2

)3

. (5.17)

However, (5.17) is now impossible, because precisely one of the numbers a/2 and b/2
is even and the other one is odd. Hence, this case can never occur.

The theorem is therefore completely proved.
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