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with minimum distance d= 3 for an arbitrary length n.
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1. Introduction. In this section, we define some particular operations and discuss

q-ary lexicographic codes with minimum distance d. The game-theoretic operations

of nim-addition ⊕ and nim-multiplication ⊗ which are used in the Game of Nim are

introduced by Definitions 1.1 and 1.2.

The Game of Nim is played by two players, with one or more piles of counters. Each

player, in turn, removes from one to all counters of a pile. The player taking the last

counter wins.

Definition 1.1. Let (α1 ···αr), (β1 ···βr ) be the binary representation of α, β,

respectively. For each i, α⊕β has a 0 digit in the position i where αi = βi, and α⊕β
has a 1 in the position i where αi �= βi. In other words, α⊕β is the Exclusive OR (XOR)

of each digit in their binary representations.

For example, the nim-addition table for numbers less than 4 is given in Table 1.1.

Table 1.1

⊕ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

There is a nim-multiplication ⊗ which, together with nim-addition ⊕, converts the

integers into a field [1]. With nim-multiplication, we know that 0⊗α must be 0 which

is the zero of the field. Also 1⊗αmust be α. Since the elements other than 0, 1 satisfy

α⊗α=α⊕1 in the finite field of order 4, we have 2⊗2= 3. Next 2⊗3 cannot be one

of 0,2,3 and so must be 1.

In general, using the above value α we can define the following nim-multiplication.

Definition 1.2. The nim-multiplication α⊗β is defined by α⊗β=mex{(α′⊗β)⊕
(α⊗β′)⊕ (α′ ⊗β′) | α′ < α, β′ < β}, where mex (minimal excluded number) means

the least nonnegative integer not included.
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For example, the nim-multiplication table for numbers less than 4 is given in

Table 1.2.

Table 1.2

⊗ 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 3 1

3 0 3 1 2

The following is an easy rule enabling us to compute nim-additions:

(1) the nim-sum of a number of distinct 2-powers (“2-power” means a power of 2

in the ordinary sense) is their ordinary sum;

(2) the nim-sum of two equal numbers is 0.

For finite numbers, the nim-multiplication follows from the following rules, anal-

ogous to those for nim-addition. We will use the term Fermat 2-power to denote the

numbers 22a in the ordinary sense;

(3) the nim-product of a number of distinct Fermat 2-powers is their ordinary

product;

(4) the square of a Fermat 2-power is the number obtained by multiplying it by 3/2
in the ordinary sense.

In [1], ⊕ and ⊗ convert the numbers 0,1,2, . . . into a field of characteristic 2. Also,

for all a, the numbers less than 22a form a subfield isomorphic to the Galois field

GF(22a).
Consider the lexicographic codes (for short, lexicodes) with base B = 22a . A word

of this code is a sequence x = ···x3x2x1 of elements of {0,1, . . . ,22a −1}. The set of

words is ordered lexicographically, that is, the word x = ···x3x2x1 is smaller than

y= ···y3y2y1, written x< y, in case of some r we have xr < yr and xs =ys for all s
greater than r .

Lexicodes are defined by saying a word in the code in case it does not conflict with

any previous codewords. That is, the lexicode with minimum distance d is defined by

saying that two words do not conflict in case the Hamming distance between them is

not less than d. We write �n,d for the 4-ary lexicode consisting of the codewords with

length n or less and minimum distance d.

In [2], Conway and Sloane showed that lexicodes with base B = 2a are closed under

nim-addition, and if B = 22a the lexicodes are closed under nim-multiplication by

scalars. Therefore if B is of the form 22a , then the lexicode is a linear code over GF(B).

2. The basis and decoding for �4,3

Lemma 2.1. Let en be the basis of length n in �4,3. Then 111 = e3, 1012 = e4, and

10013= e5.

Proof. Since the weight of en must be greater than or equal to 3, the first basis

has at least 3 nonzero digits, and so the smallest codeword is 111. The second basis

e4 is the type of 10ab, where neither a nor b is zero. Let “ab”n be the first two
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digits of en. Since “ab”3 = “11”, “ab”4 is lexicographically ordered “12”, and then

d(α⊗e3,1012) ≥ 3, for α ∈ GF(4). Therefore, 1012 = e4. In a similar way, we obtain

10013= e5.

Theorem 2.2. There is no basis en, where n= 6, 17s+5 (s ∈N) in �4,3.

Proof. Suppose that 1000ab ∈�4,3. Let α∈ GF(4). If neither a nor b is zero, there

exists ei (3≤ i≤ 5) such that d(1000ab,αei) < 3. This contradicts the hypothesis. In

all other cases, the weight of 1000ab is 2, and so the basis of length 6 does not exist.

Consider the basis e7 of length 7. Then 10000ab of length 7 also conflicts with

any smaller basis, for all “ab”. Thus 10000ab needs a digit 1 in the 6th position. If

“ab”= “0b” (b ≠ 0), then 110000b does not conflict with any smaller codeword. Hence

1100001 is the smallest codeword with more digits than e5, that is, 1100001 = e7.

Therefore, for 7≤n≤ 21, “ab”n takes ordered digit from “01” to “33”.

Suppose that there exists a basis of length 22, that is, 10···01000ab ∈ �4,3. Since

there exists ei (7≤ i≤ 21) such that d(10···01000ab,ei) < 3 for any “ab”, this is a

contradiction to the hypothesis. So the basis of length 22 does not exist.

We consider the basis of length 23, that is, 110···01000ab=e23. Although “ab”23 =
α⊗ “ab”i for any α, i ≤ 22, we have wt(110···01000ab ⊕ (α ⊗ ei)) ≥ 3. Hence,

110···01 00000 is the smallest codeword with more digits than e21, that is, 110···
0100000 = e23. Therefore, for 23 ≤ n ≤ 38, “ab”n takes ordered digit from “00” to

“33”. As a result, neither e6 nor e17s+5 (s ∈N) exists in �4,3.

As we have seen in the proof of Theorem 2.2, the basis en has digit 1’s in the nth,

6th, and (17s+5)th positions, for all s ∈N satisfying 6< 17s+5<n.

The following tables give “ab”n corresponding to the length n, where 7 ≤ n ≤ 21

or 17p+6≤n≤ 17q+4, for p ∈N and q = p+1.

Table 2.1

ab 00 01 02 03 10 11 12 13

n 7 8 9 10 11 12 13

ab 20 21 22 23 30 31 32 33

n 14 15 16 17 18 19 20 21

Table 2.2

ab 00 01 02 03 10 11 12 13

n 23 24 25 26 27 28 29 30

n 40 41 42 43 44 45 46 47

ab 20 21 22 23 30 31 32 33

n 31 32 33 34 35 36 37 38

n 48 49 50 51 52 53 54 55

Now we may consider the basis en satisfying n ≥ 7 and n ≠ 17s+5, s ∈ N, in the

following algorithm.
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Algorithm for the basis en

Step 1. Suppose that 7 ≤ n ≤ 21. The basis en has digit 1’s in the nth and 6th

positions. And “ab”n takes the (n−6)th lexicographically ordered digit from “01” to

“33” (see Table 2.1).

Step 2. Suppose that 17p+6 ≤ n ≤ 17q+4, for p ∈N and q = p+1. Then en has

digit 1’s in the nth, 6th and (17s+5)th positions, for all s ∈N satisfying 6< 17s+5<
n. And “ab”n takes the (n−17p−5)th lexicographically ordered digit from “00” to

“33” (see Table 2.2).

The following table gives the basis en, where n≥ 7, n≠ 17s+5, for s ∈N:

1 1 0 0 0 0 1 = e7

1 0 1 0 0 0 0 2 = e8

1 0 0 1 0 0 0 0 3 = e9

1 0 0 0 1 0 0 0 1 0 = e10

1 0 0 0 0 1 0 0 0 1 1 = e11

...

1 1 ··· 1 0 0 0 0 0 = e23

1 0 1 ··· 1 0 0 0 0 1 = e24

1 0 0 1 ··· 1 0 0 0 0 2 = e25

1 0 0 0 1 ··· 1 0 0 0 0 3 = e26

1 0 0 0 0 1 ··· 1 0 0 0 1 0 = e27

...

Example 2.3. We take n= 19 as the length. Since 7≤n≤ 21,

100000000 00001000ab = e19, (2.1)

by Step 1. Then “ab”19 takes the 13th order “31” from “01”. Therefore, we have

100000000 0000100031 = e19.

Example 2.4. Let n = 27. Since 6 < 17s+5 < n for s = 1, e27 has digit 1’s in the

27th, 22nd, and 6th positions, by Step 2. So we have

1000010 0000000000 00001000ab = e27. (2.2)

Since 17p+6≤n≤ 17q+4 for p = 1 and q = 2, “ab”27 takes the 5th order “10” from

“00”. Therefore, 1000010 0000000000 0000100010 = e27.

Example 2.5. Let n = 62. Since 6 < 17s+5 < n for s = 1,2,3, e62 has digit 1’s in

the 62nd, 56th, 39th, 22nd, and 6th positions, by Step 2. So we have 10 0000100000

0000000000 0100000000 0000000010 0000000000 00001000ab = e62. Since 17p+
6≤n≤ 17q+4 for p = 3 and q = 4, “ab”62 takes the 6th order “11” from “00”. There-

fore, we have 10 0000100000 0000000000 0100000000 0000000010 0000000000

0000100011 = e62.
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Below we discuss a decoding algorithm for �4,3.

Definition 2.6. For a given received vector r = anan−1 ···a2a1, ai ∈ GF(4), the

testing vector, denoted by t, in �4,3 is defined by t= (an⊗en)⊕···⊕(a3⊗e3), where

n �= 6, 17s+5, for s ∈N.

In the following remark we explain a decoding algorithm of �4,3 in more detail.

Remark 2.7. For a given received vector r= anan−1 ···a2a1, we obtain the testing

vector t= bnbn−1 ···b2b1, by Definition 2.6. Let s ∈N and α∈ GF(4), and let “f2f1”i
be the first two digits of ei in t.

(A) Certainly, the codeword c is a linear combination of some bases by scalar nim-

multiplication. From the given received vector, we can guess the bases which may

generate the codeword.

Ifd(t,r)= 1, we have the following two cases. First, one ofa1,a2 is not correct. In the

second case, one of the 6th, (17s+5)th digit is not correct. In all cases, t is obtained by

bases which do not depend on errored digit. Therefore, we have the desired codeword

c= t.

(B) Suppose that d(t,r) > 1. This means that both a1 and a2 are correct. Hence, we

have to find “d2d1” (d1,d2 ∈ GF(4)) such that “b2b1” ⊕ “d2d1”= “a2a1” because t is

more added by a component vector (ap ⊗ep) with “d2d1” of t. Therefore, if such a

vector exists, we have the desired codeword c= t ⊕ (ap⊗ep).
(C) Suppose that d(t,r) > 1. If there is not any component vector (ap ⊗ ep) with

“d2d1” in t, then one of the nonzero digits in r is not correct, letaq, for q �= 1,2,6,22, . . . .
Such a digit is obtained from the equation α⊗ (aq ⊗ “f2f1”q) = “d2d1”. Next, if we

obtain a digit a′q (�= aq) satisfying (an⊗ “f2f1”n)⊕···⊕ (a′q⊗ “f2f1”q)⊕···⊕ (a3⊗
“f2f1”3) = “a2a1”, then the desired codeword c is (an⊗en)⊕···⊕ (a′q⊗eq)⊕···⊕
(a3⊗e3).

(D) Suppose that d(t,r) > 1 and there is no component vector (ap⊗ep) with “d2d1”

in t. For all α, aq such that q �= 6, 17s + 5, if it does not satisfy the equation α⊗
(aq⊗ “f2f1”q) = “d2d1”, then r has a nonzero leading digit in the 6th or (17s+5)th
position. If r has a nonzero leading digit in the 6th position, then we have the desired

codeword c = t⊕(ak⊗ek), for some ak (7 ≤ k ≤ 21). If r has a nonzero leading digit

in the (17s+5)th position, then we have the desired codeword c = t⊕ (ak⊗ek), for

some ak (17s+6≤ k≤ 17s+21). In fact, we can obtain ak satisfying (ak⊗“f2f1”k)=
“d2d1”.

Decoding algorithm of �4,3

Step 1. Suppose that d(t,r)= 1. Then c= t.

Step 2. Suppose that d(t,r) > 1 and there is (ap⊗ep) with “d2d1” in t. Then c =
t⊕(ap⊗ep).

Step 3. Suppose that d(t,r) > 1 and there is no (ap⊗ep) with “d2d1” in t. If there

exist α, q such that α⊗ (aq⊗ “f2f1”q) = “d2d1”, then c = t ⊕ ((aq⊕a′q)⊗eq), where

a′q (�= aq) satisfies (aq⊕a′q) ⊗ “f2f1”q = “a2a1”
⊕n

i=3 (ai⊗“f2f1”i).
(Note that

⊕n
i=3 (ai⊗“f2f1”i) is the first two digits of t.)
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Step 4. Suppose that d(t,r) > 1 and there is no (ap⊗ep) with “d2d1” in t. If there

is no q such that α⊗(aq⊗“f2f1”q)= “d2d1” for all α, then c= t⊕(ak⊗ek), where ak
satisfies (ak⊗“f2f1”k)= “d2d1” for 7≤ k≤ 21 or 17s+6≤ k≤ 17s+21.

Example 2.8. Let r = 3001202011. Then t is (3 ⊗ e10) ⊕ (1 ⊗ e7) ⊕ (2 ⊗ e4) =
3001202012. Since d(r,t)= 1, therefore, c= t.

Example 2.9. Let r= 3011202012. Then t is (3⊗e10)⊕(1⊗e8)⊕(1⊗e7)⊕(2⊗e4)=
3011302010, and “d2d1”=“02”. Since d(r,t) > 1 and there is (1⊗ e8) with “02” in t,

therefore, c= t⊕(1⊗e8)= 3001202012.

Example 2.10. Let r = 3002202012. We have t = (3⊗ e10)⊕ (2⊗ e7)⊕ (2⊗ e4) =
3002102011, and “d2d1” = “03”. Then d(r,t) > 1 and there is no (ap⊗ep) with “03”

in t. Since there are α= 2, a7 = 2 satisfying α⊗(a7⊗“f2f1”7)= “03”, a7 is not correct.

We obtain a′7 (= 1) satisfying (2⊕a′7)⊗ “01”7 = “12”⊕ “11”, by Step 3. Therefore,

c= t⊕((2⊕1)⊗e7)= 3001202012.

Example 2.11. Let r = 1202012. We have t = (1⊗ e7)⊕ (2⊗ e4) = 1102022, and

“d2d1”=“30”. Then d(t,r) > 1 and there is no (ap ⊗ep) with “30” in t. Also, there is

no q such that α⊗ (aq ⊗ “f2f1”q) = “30” for all α. By Step 4, we have to obtain ak
(7 ≤ k ≤ 21) because a6 is nonzero. Since (3⊗ “10”10) = “30”, we obtain a10 (= 3).
Therefore, c= t⊕(3⊗e10)= 3001202012.
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