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1. Introduction. It is well known that a large number of papers is devoted to the

study of weak continuity and strong continuity definitions between topological spaces.

Much of these were given using open, semiopen, preopen concepts, and so forth in

topological spaces. Their theories run, either in part or in whole, parallel to their theory

of continuous functions. Some authors like Kohli [8] and Kandil [7] tried to unify their

definitions and properties.

Throughout the present paper, (X,τ) means topological space on which no sepa-

ration axioms are assumed unless otherwise explicitly stated.

Let A be a subset of X, the closure, semiclosure, and interior of A will be denoted

by clA, sclA, and intA, respectively. The subset A is called semiopen [10] (resp.,

preopen [12], α-open [15], and β-open [2]) if A ⊂ cl(intA) (resp., A ⊂ int(clA), A ⊂
scl(intA), and A⊂ cl(int(clA))).

Definition 1.1 [7]. Let (X,τ) be a topological space. A mapping ϕ : P(X)→ P(X)
is called an operation on P(X), where P(X) denotes the family of all the subsets of X,

if and only if for each A∈ P(X)−{φ}, intA⊂Aϕ and φ=φϕ, where Aϕ denotes the

value of ϕ in A. The class of all operations on P(X) is denoted by O(X,τ).

Definition 1.2 [7]. Let (X,τ) be a topological space. A partial order “≤” on O(X,τ)
is defined in the following way:ϕ1 ≤ϕ2 �Aϕ1 ⊆Aϕ2 , for eachA⊆X, whereϕ1,ϕ2 ∈
O(X,τ).

Definition 1.3 [7]. An operation ϕ ∈ O(X,τ) is called monotonous if and only if

A⊆ B⇒Aϕ ⊆ Bϕ, for each A,B ⊆X.

Throughout, all the operations on P(X) are assumed to be monotonous.

Definition 1.4. Let (X,τ) be a topological space, G,H∈P(X), andϕ∈O(X,τ). Then

(i) G is called ϕ-open if and only if G ⊆Gϕ,

(ii) H is called ϕ-closed if and only if X−H is ϕ-open.

• If Xϕ =X then each set of the form Gϕ is ϕ-open.

• If each G ∈ P(X), G ⊆Gϕ, then all the subsets of X are ϕ-open.

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


292 M. KÜÇÜK AND Y. KÜÇÜK

• If each G ∈ P(X), G ⊆Gϕ, then G is ϕ-open if and only if G =Gϕ.

• If we take ϕ = int, then ϕ-open sets are open sets.

• Any union of ϕ-open sets is ϕ-open [5].

The class of all ϕ-open (ϕ-closed) subsets of X is denoted by Oϕ(X) (Cϕ(X)). For

each x ∈ X, the class of ϕ-open neighborhoods of x is denoted by Nϕ(X,x), that is,

Nϕ(X,x)= {V ⊆X : x ∈ V ∈Oϕ(X)}.
The definitions of ϕ1,2-closure and ϕ1,2-interior of any subset A of X were given

by El-Monsef et al. [1]. Similarly, the definition ϕ1,2-frontier of A can be given in the

following way.

Definition 1.5. Let (X,τ) be a topological space, x ∈ X, A∈ P(X), and ϕ1,ϕ2 ∈
O(X,τ). Then

(i) the ϕ1,2-closure of A, denoted by ϕ1,2-clA, is defined by x ∈ϕ1,2-clA� A∩
Uϕ2 ≠∅, for all U ∈Nϕ1(X,x) (see [7]);

(ii) the ϕ1,2-interior of A, denoted by ϕ1,2- intA, is defined by x ∈ ϕ1,2- intA�
Uϕ2 ⊆A, for some U ∈Nϕ1(X,x) (see [7]);

(iii) the ϕ1,2-frontier of A, denoted by ϕ1,2-∂A, is defined by x ∈ ϕ1,2-∂A� A∩
Uϕ2 ≠∅ and (X−A)∩Uϕ2 ≠∅, for all U ∈Nϕ1(X,x).

Definition 1.6. Let (X,τ) be a topological space, A ∈ P(X) and ϕ1,ϕ2 ∈ O(X,τ).
Then

(i) A is ϕ1,2-open if and only if A⊂ϕ1,2- intA.

(ii) A is ϕ1,2-closed if and only if ϕ1,2-clA⊂A.

The class of all ϕ1,2-open (ϕ1,2-closed) subsets of X is denoted by Oϕ1,2(X)
(Cϕ1,2(X)). For each x ∈ X, the class of ϕ1,2-open neighborhoods of x is denoted by

Nϕ1,2(X,x), that is, Nϕ1,2(X,x)= {V ⊆X : x ∈ V ∈Oϕ1,2(X)} (see [7]).

Proposition 1.7. Let (X,τ) be a topological space and A ⊆ X. Then the following

statements are true:

(1) ϕ1,2-∂A=ϕ1,2-clA∩ϕ1,2-cl(X\A).
(2) ϕ1,2-∂A=ϕ1,2-clA−(ϕ1,2- intA).
(3) ϕ1,2-clA=ϕ1,2-∂A∪ϕ1,2- intA.

Proof. The proof is immediate by definition of ϕ1,2-frontier.

2. Unified framework. The definition of ϕ1,2ψ1,2-continuity of any function f de-

fined from a topological space (X,τ) to a topological space (Y ,ϑ) can be given in the

following way.

Definition 2.1. Let (X,τ), (Y ,ϑ) be topological spaces. A function f : (X,τ) →
(Y ,ϑ) is said to be ϕ1,2ψ1,2-continuous at a point x ∈ X if for each V ∈Oψ1(Y) with

f(x) ⊆ V, there exists U ∈ Oϕ1(X,x) such that f(Uϕ2) ⊆ Vψ2 or Uϕ2 ⊆ f−1(Vψ2). If

f has this property at each point x ∈X, then f is ϕ1,2ψ1,2-continuous on X.

The above definition plays a very important unification role in topology, because

ϕ1,2ψ1,2-continuity reduces to a lot of existing continuity notions for some particular

choices of the operations involved. Of course, there are a lot of other possible cases

that can still be considered. We have the following table.
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Table 2.1

Operation Operation Operation Operation Continuity type

ϕ1 ϕ2 ψ1 ψ2 ϕ1,2ψ1,2-continuous

int I int I continuous

int cl int cl θ-continuous [6]

int int◦cl int int◦cl δ-continuous [16]

int I int cl weakly-continuous [9]

int cl int I strongly θ-continuous [16]

int I int int◦cl almost continuous [19]

int cl int int◦cl almost strongly continuous [18]

int int◦cl int I super continuous [14]

int int◦cl int cl weakly θ-continuous

cl◦ int I int I semi-continuous [10]

cl◦ int I cl◦ int I irresolute [4]

cl◦ int scl cl◦ int scl semi-irresolute

cl◦ int scl cl◦ int I strongly irresolute

int◦cl◦ int I int I α-continuous [13]

int◦cl I int I pre-continuous [12]

cl◦ int◦cl I int I β-continuous [1]

cl◦ int I int cl weakly semi-continuous

int◦cl I int I weakly pre-continuous

cl◦ int scl int cl θ-semi-continuous [3]

cl◦ int I int int◦cl almost semi-continuous

cl◦ int cl int I semi-strongly θ-continuous

int◦cl◦ int I int cl weakly α-continuous

int I int◦cl cl θ-strongly continuous

cl◦ int I cl◦ int scl quasi-irresolute

int◦cl◦ int I int◦cl◦ int I α-irresolute [11]

cl◦ int I int scl semi-weakly continuous [17]

The following theorem characterizesϕ1,2ψ1,2-continuous functions in terms of the

ϕ1,2ψ1,2-interior, ϕ1,2ψ1,2-closure, and ϕ1,2ψ1,2-frontier of sets.

Theorem 2.2. Let (X,τ), (Y ,ϑ) be topological spaces, and let ϕ1,ϕ2 ∈ O(X,τ),
ψ1,ψ2 ∈ O(Y,ϑ), I ≤ ψ2. Then the following statements are equivalent for a function

f : (X,τ)→ (Y ,ϑ):
(1) f ϕ1,2ψ1,2-continuous;

(2) f−1(V)⊆ϕ1,2- int(f−1(Vψ2)) for each V ∈Oψ1(Y);
(3) for each x ∈ X and V ∈ Nψ1(Y ,f (x)) there exists U ∈ Nϕ1(X,x) such that

Uϕ2 ⊆ f−1(Vψ2);
(4) f−1(Vψ2)∈Nϕ1,2(X,x) for each x ∈X and V ∈Nψ1(Y ,f (x));
(5) f(ϕ1,2-clA)⊆ψ1,2-cl(f (A)) for every A⊆X;

(6) ϕ1,2-cl(f−1(B))⊆ f−1(ψ1,2-cl(B)) for every B ⊆ Y ;

(7) f−1(ψ1,2- int(B))⊆ϕ1,2- int(f−1(B)) for every B ⊆ Y ;
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(8) ϕ1,2-∂(f−1(B))⊆ f−1(ψ1,2-∂(B)) for every B ⊆ Y ;

(9) f(ϕ1,2-∂(A))⊆ψ1,2-∂(f(A)) for every A⊆X;

(10) f(ϕ1,2-∂(A))⊆ψ1,2-cl(f (A)) for every A⊆X.

Proof. (1)⇒(2). Let V ∈Oψ1(Y) and x ∈ f−1(V). Then f(x)∈ V and, by (1), there

exists U ∈Oϕ1(X,x) such that f(Uϕ2)⊆ Vψ2 and hence Uϕ2 ⊆ f−1(Vψ2). Therefore,

x ∈ϕ1,2- int(f−1(Vψ2)).
(2)⇒(3). Let x ∈X and V ∈Nψ1(Y ,f (x)). Then, there exists T ∈Oψ1(Y ,f (x)) such

that Tψ2 ⊆ Vψ2 . By (2), we have f−1(T)⊆ϕ1,2- int(f−1(Tψ2)). Because x ∈ f−1(T), we

have x ∈ϕ1,2- int(f−1(Tψ2)). By definition ofϕ1,2-interior, there exists U ∈Oϕ1(X,x)
such that Uϕ2 ⊆ f−1(Tψ2)⊆ f−1(Vψ2) and hence Uϕ2 ⊆ f−1(Vψ2).

(3)⇒(4). Let x ∈ X and V ∈ Nψ1(Y ,f (x)). By (3), there exists U ∈ Nϕ1(X,x) such

that Uϕ2 ⊆ f−1(Vψ2). So, we have f−1(Vψ2)∈Nϕ1,2(X,x).
(4)⇒(5). Suppose that A ⊆ X and f(x) ∉ ψ1,2-cl(f (A)). Then, there exists V ∈

Nψ1(Y ,f (x)) such that f(A)∩ Vψ2 = ∅. So, we have f−1(f (A))∩ f−1(Vψ2) = ∅
and hence A∩ f−1(Vψ2) = ∅. Since, by (4), f−1(Vψ2) ∈ Nϕ1,2(X,x), then there ex-

ists U ∈ Oϕ1(X,x) such that Uϕ2 ⊆ f−1(Vψ2). So, we have A∩Uϕ2 = ∅ and hence

x ∉ϕ1,2-cl(A). Therefore f(x) ∉ f(ψ1,2-cl(A)).
(5)⇒(6). Let B ⊆ Y . Because f(f−1(B))⊆ B, we haveψ1,2-cl(f (f−1(B)))⊆ψ1,2-cl(B).

By (5), f(ϕ1,2-cl(f−1(B))) ⊆ ψ1,2-cl(f (f−1(B))) ⊆ ψ1,2-cl(B). By applying f−1 to all

sides of inclusion, we get ϕ1,2-cl(f−1(B))⊆ f−1(ψ1,2-cl(B)).
(6)⇒(7). Let B ⊆ Y and x ∈ f−1(ψ1,2- int(B)). Then, x ∉ X\f−1(ψ1,2- int(B)) =

f−1(Y\ψ1,2- int(B)) = f−1(ψ1,2-cl(Y\B)), and hence x ∉ f−1(ψ1,2-cl(Y\B)). By (6),

ϕ1,2-cl(f−1(Y\B)) ⊆ f−1(ψ1,2-cl(Y\B)). Then x ∉ ϕ1,2-cl(f−1(Y\B)) = ϕ1,2-cl(X\
f−1(B))=X\ϕ1,2- int(f−1(B)), and hence x ∈ϕ1,2- int(f−1(B)).

(7)⇒(1). Let x ∈ X, and V ∈ Nψ1(Y ,f (x)). Since V ⊆ Vψ2 , we have f(x) ∈
ψ1,2- int(Vψ2), and hence x ∈ f−1(ψ1,2- int(Vψ2)). By (7), x ∈ ϕ1,2- int(f−1(B)). By

the definition of ϕ1,2- int, there exists U ∈ Oϕ1(X,x) such that Uϕ2 ⊆ f−1(Vψ2). So,

we have f(Uϕ2)⊆ Vψ2 .

(6)⇒(8). Let B ⊆ Y . We have

ϕ1,2-∂
(
f−1(B)

)=ϕ1,2-cl
(
f−1(B)

)∩ϕ1,2-cl
(
X\f−1(B)

)

=ϕ1,2-cl
(
f−1(B)

)∩ϕ1,2-cl
(
f−1(Y\B))

⊆ f−1(ψ1,2-cl(B)
)∩f−1(ψ1,2-cl(Y\B))

= f−1(ψ1,2-∂(B)
)
.

(2.1)

(8)⇒(9). Let A ⊆ X, then A ⊆ f−1(f (A)), we get ϕ1,2-∂(A) ⊆ ϕ1,2-∂(f−1(f (A))) ⊆
f−1(ψ1,2-∂(f(A))), and henceϕ1,2-∂(A)⊆ f−1(ψ1,2-∂(f(A))). This gives f(ϕ1,2-∂(A))
⊆ψ1,2-∂(f(A)).

(9)⇒(5). Let A ⊆ X and y ∈ f(ϕ1,2-cl(A)). There exists x ∈ ϕ1,2-cl(A) such that

f(x) = y . Since x ∈ ϕ1,2-cl(A) = ϕ1,2-∂(A)∪ϕ1,2- int(A), then x∈ϕ1,2-∂(A) or x∈
ϕ1,2- int(A). So, we have y=f(x)∈f(ϕ1,2-∂(A)) or y=f(x)∈ f(ϕ1,2- int(A)).

On the other hand, f(ϕ1,2-cl(A)) = f(ϕ1,2-∂(A)∪ϕ1,2- int(A)) ⊆ ψ1,2-∂(f(A))∪
f(A) ⊆ ψ1,2-cl(f (A)) ∪ψ1,2-cl(f (A)) = ψ1,2-cl(f (A)). Therefore, f(ϕ1,2-cl(A)) ⊆
ψ1,2-cl(f (A)).
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(5)⇒(10). LetA⊆X. Byϕ1,2-∂(A)⊆ϕ1,2-cl(A), we have f(ϕ1,2-∂(A))⊆ f(ϕ1,2-cl(A))
⊆ψ1,2-cl(f (A)), and hence f(ϕ1,2-∂(A))⊆ψ1,2-cl(f (A)).

(10)⇒(5). Let A⊆X. By ϕ1,2-cl(A)=ϕ1,2-∂(A)∪ϕ1,2- int(A), we get f(ϕ1,2-cl(A))
=f(ϕ1,2-∂(A)∪ϕ1,2- int(A))=f(ϕ1,2-∂(A))∪f(ϕ1,2- int(A))⊆ψ1,2-cl(f (A))∪f(ϕ1,2-

int(A))=ψ1,2-cl(f (A)).
Therefore, f(ϕ1,2-cl(A))⊆ψ1,2-cl(f (A)).

Corollary 2.3. If f : (X,τ)→ (Y ,ϑ) is ϕ1,2ψ1,2-continuous, then f : (X,Oϕ1,2(X))
→ (Y ,Oψ1,2(Y)) is continuous.

Proof. Let x ∈ X and V ∈ Oψ1,2(Y ,f (x)). Then x ∈ f−1(V), and there exists a

W ∈ Oψ1(Y ,f (x)) such that Wψ2 ⊆ V . Since f is ϕ1,2ψ1,2-continuous at x, for W ∈
Oψ1(Y ,f (x)) there exists a U ∈ Oϕ1(X,x) such that Uϕ2 ⊆ f−1(Wψ2) ⊆ f−1(V). If

x ∈ϕ1,2- int(f−1(V)), then f−1(V)∈Oϕ1,2(X,x).
The reverse implication of the corollary is not true.

Example 2.4. Let (X,τ), (Y ,ϑ) be topological spaces defined by X = {a,b,c},
τ = {φ,X,{a},{c},{a,c}}, Y = {a,b,c}, ϑ = {φ,X,{b}}, and ϕ1,ϕ2 ∈ O(X,τ) defined

by ϕ1 = τ- int, and for any A∈ P(X), we have

Aϕ2 =


{a,b}, A= {a};
A, otherwise,

(2.2)

ψ1,ψ2 ∈O(Y,ϑ) defined by ψ1 = ϑ- int, and for any B ∈ P(Y), we have

Bψ2 =


{b,c}, B = {b};
B, otherwise.

(2.3)

Then Oϕ1,2(X) = {φ,X,{c}} and Oψ1,2(Y) = {φ,Y}. Let I be identity function. Be-

cause I−1({b}ψ2)={b,c}∉Nϕ1,2(X,b), I is notϕ1,2ψ1,2-continuous but I : (X,Oϕ1,2(X))
→ (Y ,Oψ1,2(Y)) is continuous.

To give a sufficient condition that the converse implication of Corollary 2.3 is true,

we need to give the definition of ϕ1,2-T2 space.

Definition 2.5. Let (X,τ) be a topological space andϕ1,ϕ2 ∈O(X,τ), then (X,τ) is

(i) ϕ1,2-T1 space if and only if {x} is ϕ1,2-closed for each x ∈X,

(ii) ϕ1,2-T2 space if and only if any distinct pointsx,y ofX haveϕ1-neighborhoods

U ∈Nϕ1(X,x), V ∈Nϕ1(X,y), and Uϕ2∩Vϕ2 =∅ (see [7]).

Theorem 2.6. Let (X,τ), (Y ,ϑ) be topological spaces, (Y ,ϑ) is ϕ1,2-T2 space, and

I <ψ2. Then f : (X,τ)→ (Y ,ϑ) isϕ1,2ψ1,2-continuous if and only if f : (X,Oϕ1,2(X))→
(Y ,Oψ1,2(Y)) is continuous.

Proof. (⇒). Proved.

(⇐). Let f : (X,Oϕ1,2(X))→ (Y ,Oψ1,2(Y)) be continuous, x ∈ X, and V ∈ Nϕ1(Y ,
f (x)). Since (Y ,ϑ) isϕ1,2-T2 space, we have V ∈Oϕ1,2(Y ,f (x)). By hypothesis, f−1(V)
∈ Oϕ1,2(X). Since x ∈ f−1(V), there exists U ∈ Nϕ1(X,x) such that Uϕ2 ⊆ f−1(V)
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and hence Uϕ2 ⊆ f−1(V) ⊆ f−1(Vψ2), and we have f(Uϕ2) ⊆ Vψ2 . So f is ϕ1,2ψ1,2-

continuous.

Theorem 2.7. Let (X,τ), (Y ,ϑ) be topological spaces, I = ψ2. Then the following

statements are equivalent:

(1) f : (X,τ)→ (Y ,ϑ) is ϕ1,2ψ1,2-continuous;

(2) f−1(V)∈Oϕ1,2(X) for every V ∈Oψ1(Y);
(3) f−1(K)∈ Cϕ1,2(X) for every K ∈ Cψ1(Y).

Proof. (1)⇒(2). Let f be ϕ1,2ψ1,2-continuous, V ∈Oϕ1(Y), and x ∈ f−1(V). Since

f(x) ∈ V and f is ϕ1,2ψ1,2-continuous, there exists U ∈ Nϕ1(X,x) such that Uϕ2 ∈
f−1(Vψ2) = f−1(V). So, we have x ∈ ϕ1,2- int(f−1(V)). Therefore, f−1(V) ⊆ ϕ1,2-

int(f−1(V)), and hence f−1(V)∈Oϕ1,2(X).
(2)⇒(1). Let x ∈ X and V ∈ Oϕ1(Y ,f (x)). By (2), f−1(V) ∈ Oϕ1,2(X,x), and there

exists U ∈Nϕ1(X,x) such that Uϕ2 ⊆ f−1(V)= f−1(Vψ2).
(2)⇒(3). Let K ∈ Cψ1(Y), then Y\K ∈ Oϕ1(Y). By hypothesis, we have f−1(Y\K) =

X\f−1(K)∈Oϕ1,2(X). This implies f−1(K)∈ Cϕ1,2(X).
(3)⇒(2). It can be easily seen.

Definition 2.8. Let (X,τ) be a topological space. An operation ϕ ∈O(X,τ) is said

to be regular with respect to the family Ω ⊆ P(X), if for each x ∈ X and U,V ∈ Ω
containing x there exists W ∈Ω containing x such that Wϕ ⊆Uϕ∩Vϕ (see [7]).

An operatorϕ2 ∈O(X,τ) is said to beϕ1,2-regular if and only if Ω =Oϕ1(X), where

ϕ1 ∈O(X,τ).
Theorem 2.9. Let (X,τ), (Y ,ϑ) be topological spaces. Let ϕ1,ϕ2 ∈ O(X,τ) and

ϕ2 ∈ O(X,τ) be a ϕ1,2-regular operator. Then for any function f : (X,τ) → (Y ,ϑ),
f is ϕ1,2ψ1,2-continuous if and only if for each x ∈ X, W ∈ Nϕ1(X,x), and V ∈
Nψ1(Y ,f (x)), there exists U ∈Nϕ1(X,x) such that Uϕ2 ⊆Wϕ2∩f−1(Vψ2).

Proof. (⇐). Letx∈f−1(ψ1,2- int(B)), for any B⊆Y . Then we have f(x)∈ψ1,2- int(B).
By definition of ψ1,2-interior, there exists G ∈Oψ1(Y ,f (x)) such that f(x)∈Gψ2 ⊆ B
and hence x ∈ f−1(Gψ2). So, we have x ∈ Wϕ2 ∩ f−1(Vψ2), for all W ∈ Nϕ1(X,x).
By hypothesis, there exists U ∈ Nϕ1(X,x) such that x ∈ Uϕ2 ⊆ Wϕ2 ∩ f−1(Vψ2) ⊆
f−1(Vψ2) ⊆ f−1(B), and hence x ∈ ϕ1,2- int(f−1(B)). Therefore, f−1(ψ1,2- int(B)) ⊆
ϕ1,2- int(f−1(B)).

(⇒). Let V ∈ Nψ1(Y ,f (x)). There exists T ∈ Oψ1(Y ,f (x)) such that f(x) ∈ Tψ2 ⊆
V ⊆ Vψ2 and hence f(x) ∈ ψ1,2- int(Vψ2). Therefore, x ∈ f−1(ψ1,2- int(Vψ2)). By

ϕ1,2ψ1,2-continuity of f , x ∈ϕ1,2- int(f−1(Vψ2)). By definition of ϕ1,2-interior, there

existsU ∈Oϕ1(X,x) such that x ∈Uϕ2 ⊆ f−1(Vψ2). Sinceϕ2 isϕ1,2-regular operator,

there exists U∗ ∈Oϕ1(X,x) such that x ∈U∗ϕ2 ⊆Uϕ2∩f−1(Vψ2)⊆Wϕ2∩f−1(Vψ2).

The following theorem characterizes the set of ϕ1,2ψ1,2-noncontinuous points

denoted by ϕ1,2ψ1,2-NC(f ) of any function f .

Theorem 2.10. Let (X,τ), (Y ,ϑ) be topological spaces, and let f : (X,τ)→ (Y ,ϑ)
be any function, ϕ1,ϕ2 ∈ O(X,τ), ψ1,ψ2 ∈ O(Y,ϑ), and I =ψ2. Then ϕ1,2ψ1,2-NC(f ) =
∪{f−1(V)∩ϕ1,2-∂(f−1(V)) | V ∈Oψ1(Y)}.
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Proof. Let x ∈ ϕ1,2ψ1,2-NC(f ). Then f is not continuous at x. So there exits

W ∈ Oψ1(Y ,f (x)) such that f(Uϕ2) � Wϕ2 for each U ∈ Oϕ1(X,x). Hence for each

U ∈Oϕ1(X,x), we have∅≠ f(Uϕ2)∩(Y −W)= f(Uϕ2∩f−1(Y −W))= f(Uϕ2∩(X−
f−1(W))). Therefore, we getUϕ2∩(X−f−1(W))≠∅ and hencex∈ϕ1,2-cl(X\f−1(W)).
On the other hand, x ∈ ϕ1,2-cl(X\f−1(W))∩f−1(W) = f−1(W)∩ϕ1,2-∂(f−1(W)) ⊆
∪{f−1(V) ∩ϕ1,2-∂(f−1(V)) | V ∈ Oψ1(Y)}. Finally, we get x ∈ ∪{f−1(V) ∩ϕ1,2-

∂(f−1(V)) | V ∈ Oψ1(Y)}. This shows that ϕ1,2ψ1,2-NC(f ) ⊆ ∪{f−1(V) ∩ ϕ1,2-

∂(f−1(V)) | V ∈Oψ1(Y)}.
To show the reverse inclusion, let x ∈ ∪{f−1(V)∩ϕ1,2-∂(f−1(V)) | V ∈ Oψ1(Y)}.

There exists V ∈ Oψ1(Y) such that x ∈ f−1(V)∩ϕ1,2-∂(f−1(V)) = f−1(V)\(ϕ1,2-

int(f−1(V))), and hence x ∉ ϕ1,2- int(f−1(V)). Suppose f is ϕ1,2ψ1,2-continuous at

x. Since x ∈ f−1(V) and V ∈ Oψ1(Y), there exists U ∈ Oϕ1(X,x) such that Uϕ2 ⊆
f−1(Vψ2)= f−1(V), and hence x ∈ϕ1,2- int(f−1(V)). This is a contradiction.

Theorem 2.11. Let (X,τ),(Y ,ϑ) be topological spaces and let ϕ1,ϕ2,ϕ3,ϕ4 ∈
O(X,τ), ψ1,ψ2,ψ3,ψ4 ∈ O(Y,ϑ) be operators with the property ϕ3 ≥ϕ1, ϕ2 ≥ϕ4, ψ1 ≥
ψ3, and ψ4 ≥ψ2. Then for any function f : (X,τ)→ (Y ,ϑ), f is ϕ1,2ψ1,2-continuous if

and only if f is ϕ3,4ψ3,4-continuous.

Proof. Let x ∈X and V ∈Oψ3(Y ,f (x)). Since V ⊆ Vψ3 ⊆ Vψ1 and hence V ⊆ Vψ1 ,

we have V ∈ Oψ1(Y ,f (x)), by ϕ1,2ψ1,2-continuity of f , there exists U ∈ Oϕ1(X,x)
such that Uϕ2 ⊆ f−1(Vψ2)⊆ f−1(Vψ4). By Uϕ4 ⊆Uϕ2 and Vψ2 ⊆ Vψ4 , we have Uϕ4 ⊆
Uϕ2 ⊆ f−1(Vψ2) ⊆ f−1(Vψ4), and hence Uϕ4 ⊆ f−1(Vψ4). Therefore, f is ϕ3,4ψ3,4-

continuous.

Theorem 2.12. Let (X,τ) be a topological space, and let ϕ1,ϕ2,ϕ3,ϕ4 ∈O(X,τ) be

operators with the property ϕ1 ≥ϕ3, ϕ2 ≥ϕ4. Then the identity function I : (X,τ)→
(Y ,ϑ) is ϕ1,2, ϕ3,4-continuous.

Proof. Let x ∈ X and V ∈ Oϕ3(Y ,I(x)). Since Vϕ3 ⊆ Vϕ1 , then we have V ∈
Oϕ1(Y ,I(x)). So we get I(Vψ2) = Vψ2 ⊆ Vψ4 and hence I(Vψ2) ⊆ Vψ4 . Therefore, I
is ϕ1,2, ϕ3,4-continuous.

The last two theorems give the following diagrams:

δ-continuity θ-continuity,

strongly θ-continuity super continuity continuity

almost strongly θ-continuity δ-continuity almost continuity

θ-continuity weakly θ-continuity weakly continuity,

semicontinuity β-continuity

continuity α-continuity pre-continuity

almost continuity θ-continuity weakly continuity,
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strongly irresolute irresolute semi-irresolute

continuity semicontinuity,

continuity almost cont. θ-cont. weakly θ-cont.

semicontinuity almost semicont. θ-semicont. weakly semicont.

(2.4)

3. Some properties of ϕ1,2ψ1,2-continuous functions

Theorem 3.1. Let f : (X,τ) → (Y ,ϑ) be a one-to-one and ϕ1,2ψ1,2-continuous

function and let (Y ,ϑ) be a ψ1,2-T2(ψ1,2-T1) topological space. Then (X,τ) is a

ϕ1,2-T2(ϕ1,2-T1) topological space.

Proof. We prove (X,τ) is a ϕ1,2-T2. The other case can be proved similarly. Let

x,y ∈X andx ≠y . Since f is a one-to-one function, we have f(x)≠ f(y). Since (Y ,ϑ)
is a ϕ1,2-T2, then there exist V1 ∈Nψ1(Y ,f (x)), V2 ∈Nψ1(Y ,f (y)), and Vψ2

1 ∩Vψ2
2 =

∅. Since f is ϕ1,2ψ1,2-continuous, then there exist U1 ∈ Nϕ1(X,x), U2 ∈ Nϕ1(X,y)
such that f(Uϕ2

1 )⊆ Vψ2
1 and f(Uϕ2

2 )⊆ Vψ2
2 and f(Uϕ2

1 )∩f(Uϕ2
2 )=∅. Hence we have

Uϕ2
1 ∩Uϕ2

2 =∅. Therefore (X,τ) is a ϕ1,2-T2.

Theorem 3.2. The topological space (X,τ) is a ϕ1,2-Ti (i = 1,2) if and only if for

any x,y ∈X and x ≠y there exists a (Y ,ϑ) topological space with ϕ1,2-T2, a function

f from (X,τ) to (Y ,ϑ) such that ϕ1,2ψ1,2-continuous, and f(x)≠ f(y).

Proof. We prove the theorem for i= 2. The other case can be proved similarly.

(⇒). Suppose (X,τ) is aϕ1,2-T2, it is easy to check that the identity function defined

from (X,τ) to (X,τ) is the desired function f .

(⇐). Let x,y ∈ X and x ≠ y . By hypothesis, there exists a (Y ,ϑ) topological space

with ϕ1,2-T2, an f function from (X,τ) to (Y ,ϑ) such that ϕ1,2ψ1,2-continuous and

f(x)≠f(y). Since (Y ,ϑ) isϕ1,2-T2 and f(x)≠f(y), then there existV1∈Nψ1(Y ,f (x)),
V2 ∈Nψ1(Y ,f (y)), and Vψ2

1 ∩Vψ2
2 =∅. Since f is ϕ1,2ψ1,2-continuous, then there ex-

ist U1 ∈ Nϕ1(X,x), U2 ∈ Nϕ1(X,y) such that f(Uϕ2
1 ) ⊆ Vψ2

1 and f(Uϕ2
2 ) ⊆ Vψ2

2 and

f(Uϕ2
1 )∩f(Uϕ2

2 ) = ∅. Hence we have Uϕ2
1 ∩Uϕ2

2 = ∅. Therefore (X,τ) is a ϕ1,2-T2.

Definition 3.3. Let (X,τ) be a topological space and ϕ1,ϕ2 ∈O(X,τ).
(i) The family Ω ⊆ Oϕ1(X) is called a ϕ1,2-open cover of a set K if and only if

K ⊆∪{Uϕ2 |U ∈Ω}.
(ii) Let the family Ω ⊆ Oϕ1(X) be a ϕ1,2-open cover of a set K. The subfamily Ω∗

of Ω is called a ϕ1,2-open subcover of the set K if and only if K ⊆ ∪{Uϕ2 | U ∈ Ω∗}
(see [7]).

(iii) Any subset K of X is calledϕ1,2-compact if and only if eachϕ1,2-open cover of

K has a finite ϕ1,2-open subcover of K.

(iv) The set X is called ϕ1,2-compact if and only if it is ϕ1,2-compact (see [7]).

Theorem 3.4. Let f be aϕ1,2ψ1,2-continuous function defined from (X,τ) to (Y ,ϑ)
and A⊆X be ϕ1,2-compact. Then f(A) is ψ1,2-compact.
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Proof. Let the family Ωf(A) = {V ∈ Oψ1(Y) | i ∈ ∆} be a ψ1,2-open cover of f(A)
andy ∈ f(A). There exist x ∈A and iy ∈∆ such thaty = f(x) andy ∈ Viy . Since f is

ϕ1,2ψ1,2-continuous, there exists Uiy ∈Nϕ1(X,x) such that f(Uϕ2
iy )⊆ V

ψ2
iy and hence

ΩA = {Uiy | y ∈ f(A), i ∈ ∆} is a ϕ1-open cover of A. From ϕ1,2-compactness of A,

there exists a finite subfamily ∆◦ of ∆ such that A ⊆ ⋃i∈∆◦ Uiy . So the family Ω∗f(A)=
{Viy | i∈∆◦} ⊆Ωf(A) is a ψ1,2-open cover of f(A). Then f(A) is ψ1,2-compact.

Theorem 3.5. Let f : (X,τ)→ (Y ,ϑ) be a ϕ1,2ψ1,2-continuous function and (X,τ)
be a ϕ1,2-compact space. Then (Y ,ϑ) is ψ1,2-compact.

Proof. The proof is immediate from Theorem 3.4.

Definition 3.6 [7]. Let (X,τ) be a topological space andϕ1,ϕ2 ∈O(X,τ). A subset

D of X is called ϕ1,2-dense in X if and only if ϕ1,2-cl(D)=X.

Theorem 3.7. Let f ,g : (X,τ) → (Y ,ϑ) be ϕ1,2ψ1,2-continuous functions and ϕ2

regular with respect to Oϕ1(X) and let (Y ,ϑ) be ψ1,2-T2 space. If D ⊆ X is a closed

ψ1,2-dense set and f(x)= g(x) for each x ∈D. Then f = g.

Proof. Suppose x0 ∈ X and x0 ∉ D. Then f(x0) ≠ g(x0). Since (Y ,ϑ) is ψ1,2-T2,

then there exist V1 ∈ Nψ1(Y ,f (x0)), V2 ∈ Nψ1(Y ,g(x0)), and Vψ2
1 ∩Vψ2

2 = ∅. Since

f ,g are ϕ1,2ψ1,2-continuous at x0, then there exist U1 ∈Nϕ1(X,x0), U2 ∈Nϕ1(X,x0)
such that f(Uϕ2

1 ) ⊆ Vψ2
1 and g(Uϕ2

2 ) ⊆ Vψ2
2 . By regularity of ϕ2, there exists U0 ∈

Nϕ1(X,x0) such thatUϕ2
0 ⊆Uϕ2

1 ∩Uϕ2
2 . So, by Vψ2

1 ∩Vψ2
2 =∅, we haveUϕ2

0 ∩D =∅ and

hence x ∉ϕ1,2-cl(D). This contradicts theϕ1,2-closedness of D and D =ϕ1,2-cl(D)=
X. So, we have D =X.

Theorem 3.8. Let (Xi,τi), (Yi,ϑi) (i= 1,2) be topological spaces, and F = f1×f2 :

(X1×X2, τ1×τ2)→ (Y1×Y2, ϑ1×ϑ2), ϕ11,ϕ12 ∈ O(X1,τ1), ϕ21,ϕ22 ∈ O(X2,τ2), and let

ψ11,ψ12 ∈O(Y1,ϑ1), ψ21,ψ22 ∈O(Y2,ϑ2) be operators.

If f1 : (X1,τ1) → (Y1,ϑ1) is ϕ11,12ψ11,12-continuous and f2 : (X2,τ2) → (Y2,ϑ2) is

ϕ21,22ψ21,22-continuous, then F is a ϕ1,2ψ1,2-continuous function, where ϕ1,ϕ2 ∈
O(X1×X2,τ1×τ2),ψ1,ψ2 ∈O(Y1×Y2,ϑ1×ϑ2), andψ2 is monotonous and compatible withψ12

and ψ22.

Proof. Let (x,y) ∈ X1×X2 and V ∈ Oψ1(Y1×Y2,(f1(x),f2(y))). Then there ex-

ist V1 ∈ Oψ11(Y1,f1(x)) and V2 ∈ Oψ21(Y2,f2(y)) such that (f1(x),f2(y)) ∈ V1×V2.

Since f1 is ϕ11,12ψ11,12-continuous and f2 is ϕ21,22ψ21,22-continuous, then there ex-

ist U1 ∈ Oϕ11(X1,x) and U2 ∈ Oϕ21(X2,y) such that Uϕ12
1 ⊆ f−1

1 (Vψ12
1 ) and Uϕ21

2 ⊆
f−1

2 (Vψ21
2 ). Since U1×U2 ∈Oϕ1(X1×X2,(x,y)), we have F(Uϕ12

1 ×Uϕ21
2 )= f1(U

ϕ12
1 )×

f2(U
ϕ21
2 )⊆ Vψ12

1 ×Vψ21
2 ⊆ Vψ2 . Therefore, F is a ϕ1,2ψ1,2-continuous function.

Theorem 3.9. Let (X,τ), (Y ,ϑ), and let (Z,�) be topological spaces and let f1 :

(X,τ) → (Y ,ϑ), f2 : (X,τ) → (Z,�) be any functions. Let f : (X,τ) → (Y × Z, τ ×
�) be a function defined by f(x) = (f1(x),f2(x)) for each x ∈ X, and let ϕ1,ϕ2 ∈
O(X,τ), ψ1,ψ2 ∈O(Y,ϑ), γ1,γ2 ∈O(Z,�), and ξ1,ξ2 ∈O(Y×Z,τ×�) be operators. Then the

following statements are true:

(i) if A⊆X, B ⊆ Y , C ⊆ Z , and f(A)⊆ B×C , then f1(A)⊆ B and f2(A)⊆ C ;
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(ii) if T ∈Oξ1(Y ×Z,f(x)), then there exist V ∈Oψ1(Y ,f1(x)), W ∈Oγ1(Z,f2(x))
such that f(x)∈ V ×W and Vψ2×Wγ2 ⊆ Tξ2 ;

(iii) if A1,A2 ⊆ X, B ⊆ Y , C ⊆ Z , and f1(A1)×f2(A2) ⊆ B×C , then f(A1∩A2) ⊆
B×C .

Theorem 3.10. Let (X,τ), (Y ,ϑ), and (Z,�) be topological spaces and f1 : (X,τ)
→ (Y ,ϑ) and f2 : (X,τ) → (Z,�) any functions. Let f : (X,τ)→ (Y ×Z, τ×�) be a

function defined by f(x) = (f1(x),f2(x)) for each x ∈ X and let ϕ1,ϕ2 ∈ O(X,τ),
ψ1,ψ2 ∈O(Y,ϑ), γ1,γ2 ∈O(Z,�), and ξ1,ξ2 ∈O(Y×Z,τ×�) be operators with the property

ξ2 compatible withψ2 and γ2. Then f isϕ1,2ξ1,2-continuous if and only if f1 isϕ1,2ψ1,2-

continuous and f2 is ϕ1,2γ1,2-continuous.

Proof. (⇒). Let x ∈ X, V ∈ Oψ1(Y ,f1(x)), and W ∈ Oγ1(Z,f2(x)). Then we have

V ×W ∈ Oξ1(Y × Z,f(x)). By ϕ1,2ξ1,2-continuity of f , there exists U ∈ Oϕ1(X1,x)
such that f(Uϕ2) ⊆ (V ×W)ξ2 = Vψ2 ×Wγ2 . By Theorem 3.9(i), we have f1(Uϕ2) ⊆
Vψ2 and f2(Uϕ2) ⊆ Wγ2 , and hence f1 is ϕ1,2ψ1,2-continuous and f2 is ϕ1,2γ1,2-

continuous.

(⇐). Conversely, let x ∈X and T ∈Oξ1(Y ×Z,f(x)). By Theorem 3.9(ii), there exist

V ∈ Oψ1(Y ,f1(x)) and W ∈ Oγ1(Z,f2(x)) such that f(x) ∈ V ×W and Vψ2 ×Wγ2 ⊆
Tξ2 . Since f1 is ϕ1,2ψ1,2-continuous and f2 is ϕ1,2γ1,2-continuous, then there exist

U1,U2 ∈Oϕ1(X1,x) such that f1(U
ϕ2
1 )⊆ Vψ2 and f2(U

ϕ2
2 )⊆Wγ2 , and hence f1(U

ϕ2
1 )×

f2(U
ϕ2
2 ) ⊆ Vψ2 ×Wγ2 ⊆ Tξ2 . By Theorem 3.9(iii), we have f((U1∩U2)ϕ2) ⊆ Tξ2 . Thus

f is ϕ1,2ξ1,2-continuous.

Theorem 3.11. Let (X,τ), (Y ,ϑ), and (Z,�) be topological spaces and ϕ1,ϕ2 ∈
O(X,τ), ψ1,ψ2 ∈ O(Y,ϑ), γ1,γ2 ∈ O(Z,�). If f : (X,τ) → (Y ,ϑ) is ϕ1,2ψ1,2-continuous

and g : (Y ,ϑ)→ (Z,�) is ψ1,2γ1,2-continuous function. Then g ◦f : (X,τ)→ (Z,�) is

ϕ1,2γ1,2-continuous.

Proof. Let f : (X,τ) → (Y ,ϑ) be a ϕ1,2ψ1,2-continuous and g : (Y ,ϑ) → (Z,�)
a ψ1,2γ1,2-continuous function. Let any x ∈ X and W ∈ Oγ1(Z,(g ◦ f)(x)). Since g
is ψ1,2γ1,2-continuous at f(x), there is a V ∈ Oψ1(Y ,f (x)) such that g(Vψ2) ⊆Wγ2 .

Since f isϕ1,2ψ1,2-continuous atx, there existsU∈Oϕ1(X,x) such that f(Uϕ2)⊆Vψ2 .

Therefore, we obtain (g ◦ f)(Uϕ2) = g(f(Uϕ2)) ⊆ g(Vψ2) ⊆ Wγ2 . This proves the

ϕ1,2γ1,2-continuity of g◦f at x.

Definition 3.12 [7]. A topological space (X,τ) is called ϕ1,2-hyperconnected if

X =Uϕ2 for each U ∈Oϕ1(X).

Theorem 3.13. If f : (X,τ) → (Y ,ϑ) is a ϕ1,2ψ1,2-continuous surjection function

and (X,τ) is ϕ1,2-hyperconnected, then (Y ,ϑ) is ψ1,2-hyperconnected.

Proof. Let any x ∈ X and V ∈ Oψ1(Y ,f (x)). By ϕ1,2ψ1,2-continuity of f , there

exists U ∈ Oϕ1(X,x) such that f(Uϕ2) ⊆ Vψ2 . Since (X,τ) is ϕ1,2-hyperconnected,

we have Y = f(X)= f(Uϕ2)⊆ Vψ2 and hence Y = Vψ2 .
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