SOME SEQUENCE SPACES AND STATISTICAL CONVERGENCE

E. SAVAŞ

Received 29 January 1999

We introduce the strongly (V, λ) -convergent sequences and give the relation between strongly (V, λ) -convergence and strongly (V, λ) -convergence with respect to a modulus.

2000 Mathematics Subject Classification: 40D25, 40A05, 40C05.

1. Introduction. Let $\lambda = (\lambda_n)$ be a nondecreasing sequence of positive numbers tending to ∞ , and $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 1$.

The generalized de la Vallée-Poussin mean is defined by

$$t_n = \frac{1}{\lambda_n} \sum_{k \in I_n} x_k, \tag{1.1}$$

where $I_n = [n - \lambda_n + 1, n]$. A sequence $x = (x_k)$ is said to be (V, λ) -summable to a number L (see [5]) if $t_n(x) \to L$ as $n \to \infty$. If $\lambda_n = n$, then (V, λ) -summability is reduced to (C, 1)-summability. We write

$$[V,\lambda] = \left\{ x = (x_k) : \text{ for some } L, \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} |x_k - L| = 0 \right\}$$
(1.2)

for sets of sequences $x = (x_k)$ which are strongly (V, λ) -summable to L, that is, $x_k \rightarrow L[V, \lambda]$.

We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that

- (i) f(x) = 0 if and only if x = 0;
- (ii) $f(x+y) \le f(x) + f(y)$ for all $x, y \ge 0$;
- (iii) f is increasing;
- (iv) f is continuous from the right at 0.

It follows that f must be continuous on $[0, \infty)$. A modulus may be bounded or unbounded. Maddox [6] and Ruckle [9] used the modulus f to construct sequence spaces. In this paper, we introduce the strongly (V,λ) -convergent sequences and give the relation between strongly (V,λ) -convergence and strongly (V,λ) -convergence with respect to a modulus.

2. Some sequence spaces

DEFINITION 2.1. Let f be a modulus. We define the spaces,

$$[V,\lambda,f] = \left\{ x = (x_k) : \lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} f(|x_k - L|) = 0, \text{ for some } L \right\},$$

$$[V,\lambda,f]_0 = \left\{ x = (x_k) : \lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} f(|x_k|) = 0 \right\}.$$
 (2.1)

When $\lambda_n = n$ then the sequence spaces defined above become $w_0(f)$ and w(f), respectively, where $w_0(f)$ and w(f) are defined by Maddox [6].

Note that if we put f(x) = x, then we have $[V, \lambda, f] = [V, \lambda]$ and $[V, \lambda, f]_0 = [V, \lambda]_0$, where

$$[V,\lambda]_0 = \left\{ x = (x_k) : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} |x_k| = 0 \right\}.$$
 (2.2)

We have the following result.

THEOREM 2.2. The spaces $[V, \lambda, f]$ and $[V, \lambda, f]_0$ are linear spaces.

PROOF. We consider only $[V, \lambda, f]$. Suppose that $x_i \to L$ and $y_j \to L'$ in $[V, \lambda, f]$ and that α , β are in \mathbb{C} . Then there exists integers T_{α} and M_{β} such that $|\alpha| \leq T_{\alpha}$ and $|\beta| \leq M_{\beta}$. We therefore have

$$\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} f(|\alpha x_{k} + \beta x_{k} - (\alpha L + \beta L')|) \\
\leq T_{\alpha} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} f(|x_{k} - L|) + M_{\beta} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} f(|x_{k} - L'|).$$
(2.3)

This implies that $\alpha x + \beta y \rightarrow \alpha L + \beta L'$ in $[V, \lambda, f]$. This completes the proof.

PROPOSITION 2.3 (see [7]). Let f be any modulus. Then $\lim_{t\to\infty} f(t)/t = \beta$ exists.

PROPOSITION 2.4. Let f be a modulus and let $0 < \delta < 1$. Then for each $x \ge \delta$ we have $f(x) \le 2f(1)\delta^{-1}x$.

This can be proved by using the techniques similar to those used in Maddox [6] and hence we omit the proof.

THEOREM 2.5. Let f be any modulus. If $\lim_{t\to\infty} f(t)/t = \beta > 0$, then $[V, \lambda, f] = [V, \lambda]$. **PROOF.** If $x \in [V, \lambda]$, then

$$s_n = \frac{1}{\lambda_n} \sum_{k \in I_n} |x_k - L| \longrightarrow 0 \quad \text{as } n \longrightarrow \infty, \text{ for some } L.$$
(2.4)

Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(t) < \varepsilon$ for every t with $0 \le t \le \delta$. We can write

$$\frac{1}{\lambda_n} \sum_{k \in I_n} f(|x_k - L|) = \frac{1}{\lambda_n} \sum_{k \in I_n, |x_k - L| \le \delta} f(|x_k - L|) + \frac{1}{\lambda_n} \sum_{k \in I_n, |x_k - L| > \delta} f(|x_k - L|)$$

$$\leq \frac{1}{\lambda_n} (\lambda_n \cdot \varepsilon) + 2f(1)\delta^{-1}s_n,$$
(2.5)

by Proposition 2.4, as $n \to \infty$. Therefore $x \in [V, \lambda, f]$. It is trivial that $[V, \lambda, f] \subset [V, \lambda]$ and this completes the proof.

3. λ -**statistical convergence.** In [3], Fast introduced the idea of statistical convergence, which is closely related to the concept of natural density or asymptotic density of subsets of the positive integers \mathbb{N} . In recent years, statistical convergence has been studied by several authors [1, 2, 4, 8, 10].

A sequence $x = (x_k)$ is said to be statistically convergent to the number *L* if for every $\varepsilon > 0$,

$$\lim_{n} \frac{1}{n} |\{k \le n : |x_k - L| \ge \varepsilon\}| = 0,$$
(3.1)

where the vertical bars indicate the number of elements in the enclosed set. In this case we write $s - \lim x = L$ or $x_k \rightarrow L(s)$ and s denotes the set of all statistically convergent sequences.

In this section, we introduce and study the concept of λ -statistical convergence and find its relation with $[V, \lambda, f]$ and s_{λ} .

DEFINITION 3.1. A sequence $x = (x_k)$ is said to be λ -statistically convergent or s_{λ} -convergent to *L* if for every $\varepsilon > 0$,

$$\lim_{n} \frac{1}{\lambda_n} \left| \left\{ k \in I_n : \left| x_k - L \right| \ge \varepsilon \right\} \right| = 0.$$
(3.2)

In this case, we write $s_{\lambda} - \lim x = L$ or $x_k \to L(s_{\lambda})$ and $s_{\lambda} = \{x : \text{ for some } L, s_{\lambda} - \lim x = L\}$. Note that if $\lambda_n = n$, then s_{λ} is same as s.

The following definition was introduced by Connor [2] as an extension of the original definition of statistical convergence which appeared in [3].

DEFINITION 3.2. Let *A* be a nonnegative regular summability method and let *x* be a sequence. Then *x* is said to be *A*-statistically convergent to *L* if $\chi_{S(x-Le:\varepsilon)}$ is contained in $w_0(A)$ for every $\varepsilon > 0$, where

$$w_0(A) = \Big\{ x : \lim_n \sum a_{n,k} | x_k | = 0 \Big\}.$$
(3.3)

In the above definition, if we define the matrix by

$$a_{n,k} = \begin{cases} \frac{1}{\lambda_n}, & \text{if } n \in I_n, \\ 0, & \text{if } n \notin I_n \end{cases}$$
(3.4)

we get λ -statistical convergence as a special case of *A*-statistical convergence.

Let ∇ denote the set of all nondecreasing sequences $\lambda = (\lambda_n)$ of positive numbers tending to ∞ such that $\lambda_{n+1} \leq \lambda_n + 1$ and $\lambda_1 = 1$.

We have the following result.

THEOREM 3.3. Let $\lambda \in \nabla$ and f be any modulus. Then $[V, \lambda, f] \subset (s_{\lambda})$.

E. SAVAŞ

PROOF. Suppose that $\varepsilon > 0$ and $x \in [V, \lambda, f]$. Since,

$$\frac{1}{\lambda_n} \sum_{k \in I_n} f(|x_k - L|) \ge \frac{1}{\lambda_n} \sum_{k \in I_n, |x_k - L| \ge \varepsilon} f(|x_k - L|)$$

$$\ge \frac{1}{\lambda_n} f(\varepsilon) \cdot |\{k \in I_n : |x_k - L| \ge \varepsilon\}|$$
(3.5)

from which it follows that $x \in (s_{\lambda})$. This completes the proof.

THEOREM 3.4. $(s_{\lambda}) = [V, \lambda, f]$ if and only if f is bounded.

PROOF. Suppose that *f* is bounded and that $x \in (s_{\lambda})$. Since *f* is bounded, there is a constant *M* such that $f(x) \le M$ for all $x \ge 0$. Given $\varepsilon > 0$, we have

$$\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} f(|x_{k} - L|) \leq \frac{1}{\lambda_{n}} \sum_{k \in I_{n}, |x_{k} - L| \geq \varepsilon} f(|x_{k} - L|) + \frac{1}{\lambda_{n}} \sum_{k \in I_{n}, |x_{k} - L| < \varepsilon} f(|x_{k} - L|) \\
\leq \frac{M}{\lambda_{n}} |\{k \in I_{n} : |x_{k} - L| \geq \varepsilon\}| + f(\varepsilon).$$
(3.6)

Taking the limit as $\varepsilon \to 0$, the result follows. Conversely, suppose that f is unbounded so that there is a positive sequence $0 < t_1 < t_2 < \cdots < t_i < \cdots$ such that $f(t_i) \ge \lambda_i$. Define the sequence $x = (x_i)$ by putting $x_{k_i} = t_i$ for $i = 1, 2, \ldots$ and $x_i = 0$ otherwise. Then we have $x \in (s_\lambda)$, but $x \notin [V, \lambda, f]$.

REFERENCES

- [1] J. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8 (1988), no. 1-2, 47-63.
- [2] _____, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), no. 2, 194–198.
- [3] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244 (1952) (French).
- [4] J. A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301–313.
- [5] L. Leindler, Über die verallgemeinerte de la Vallée-Poussinsche Summierbarkeit allgemeiner Orthogonalreihen, Acta Math. Acad. Sci. Hungar. 16 (1965), 375-387 (German).
- [6] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 1, 161–166.
- [7] _____, Inclusions between FK spaces and Kuttner's theorem, Math. Proc. Cambridge Philos. Soc. 101 (1987), no. 3, 523–527.
- [8] D. Rath and B. C. Tripathy, On statistically convergent and statistically Cauchy sequences, Indian J. Pure Appl. Math. 25 (1994), no. 4, 381–386.
- [9] W. H. Ruckle, *FK spaces in which the sequence of coordinate vectors is bounded*, Canad. J. Math. 25 (1973), 973–978.
- T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), no. 2, 139–150.

E. SAVAŞ: DEPARTMENT OF MATHEMATICS, YÜZÜNCÜ YIL UNIVERSITY, VAN, TURKEY *E-mail address*: ekremsavas@yahoo.com

306