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In 1994, the following infinite family of congruences was conjectured for the partition
function cφ2(n) which counts the number of 2-colored Frobenius partitions of n: for all
n≥ 0 and α≥ 1, cφ2(5αn+λα)≡ 0(mod5α), where λα is the least positive reciprocal of
12 modulo 5α. In this paper, the first four cases of this family are proved.

2000 Mathematics Subject Classification: 05A17, 11P83.

1. Background and introduction. In his 1984 Memoir of the American Mathemat-

ical Society, Andrews [2] introduced two families of partition functions, φk(m) and

cφk(m), which he called generalized Frobenius partition functions. In this paper, we

will focus our attention on one of these functions, namely cφ2(m), which denotes the

number of generalized Frobenius partitions of m with 2 colors. In [2], Andrews gives

the generating function for cφ2(m):

∑
m≥0

cφ2(m)qm =
(
q2;q4

)
∞(

q;q2
)4
∞
(
q4;q4

)
∞
, (1.1)

where (a;b)∞ = (1−a)(1−ab)(1−ab2)(1−ab3)··· . Andrews then proves the fol-

lowing: for all n≥ 0,

cφ2(5n+3)≡ 0(mod5), (1.2)

cφ2(2n+1)≡ 0(mod4). (1.3)

More recently, Sellers [9] conjectured the following infinite family of congruences

satisfied by cφ2.

Conjecture 1.1. For all n≥ 0 and α≥ 1,

cφ2
(
5αn+λα

)≡ 0
(
mod5α

)
, (1.4)

where λα is the least positive reciprocal of 12 modulo 5α.

The case α= 1 is (1.2).

The reader will note the similarity of this conjecture to the well-known family of

congruences for p(m), the classical partition function of m: for all n≥ 0,

p
(
5αn+γα

)≡ 0
(
mod5α

)
, (1.5)
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where γα is the least positive reciprocal of 24 modulo 5α. (For two different proofs

of (1.5), see [1, 6].) Unfortunately, (1.4) has proven to be much more difficult to prove

than (1.5).

The goal of this paper is to prove the following theorem.

Theorem 1.2. For all n≥ 0 and α= 1,2,3,4,

cφ2
(
5αn+λα

)≡ 0
(
mod5α

)
, (1.6)

where λα is the least positive reciprocal of 12 modulo 5α.

In order to prove this theorem, we implement a finitization technique developed

recently (cf. [3]). In essence, we prove that, for fixed α,

cφ2
(
5αn+λα

)≡ 0
(
mod5α

) ∀n (1.7)

if and only if

cφ2
(
5αn+λα

)≡ 0
(
mod5α

) ∀n≤ C(α), (1.8)

where C(α) is an explicit constant dependent on α. We then compute all values of

cφ2 needed to utilize the equivalence above. The development of C(α) requires the

theory of modular forms as outlined below.

2. Determination of C(α). In this section, we use the theory of modular forms

to determine the constant C(α). We do so by constructing a modular form whose

Fourier coefficients inherit the congruence properties modulo 5α of cφ2 in the desired

arithmetic progression. Then, thanks to a theorem of Sturm [10], we will be able to

provide explicitly a constant C(α) such that if a congruence for the Fourier coefficients

of our modular form (or equivalently, for cφ2) holds for all n≤ C(α), the congruence

must hold for all n.

For a general introduction to the theory of modular forms, see [7]. For an exposition

focused on the results we use below, see [3].

We now state Sturm’s theorem [10].

Theorem 2.1 (Sturm). If f(z) = ∑∞
n=0a(n)qn and g(z) = ∑∞

n=0b(n)qn are holo-

morphic modular forms of weight k with respect to some congruence subgroup Γ of

SL2(Z)with integer coefficients, then f(z)≡g(z)(mod l) where l is prime if and only if

Ordl
(
f(z)−g(z))> k

12

[
SL2(Z) : Γ

]
, (2.1)

where Ordl(F(q)) :=min{n |A(n) �≡ 0(mod l)}.
Sturm’s theorem also holds when the prime l is replaced by 5α, or in fact by any

positive integer. Thus, when we let g(z)= 0, Sturm’s theorem allows us to determine

when the coefficients a(n) of a holomorphic modular form have the property that

a(n)≡ 0(mod5α) for all n.

We are now ready to state the main result needed to prove Theorem 1.2.
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Theorem 2.2. Suppose that α is a positive integer, and let

C(α) := 6
(
b−1+4ε ·5α−1)5α−1−

⌈
b
12

⌉
, (2.2)

where b = b(α) is the smallest integer greater than 4 · 5α−2 with b ≡ 5α(mod12),
ε = ε(α)= 1 if α is odd, and ε = ε(α)= 2 if α is even. Then

cφ2
(
5αn+λα

)≡ 0
(
mod5α

) ∀n (2.3)

if and only if

cφ2
(
5αn+λα

)≡ 0
(
mod5α

) ∀n≤ C(α), (2.4)

where λα is the least positive reciprocal of 12 modulo 5α.

Proof. Let

f(z)= η5(2z)
η4(z)η2(4z)

ηb
(
2·5αz)

(
η5(z)
η(5z)

)ε·5α−1

=
∞∑
n=0

a(n)qn, (2.5)

where η(z) is the Dedekind eta-function, defined by η(z) = q1/24(q;q)∞, q = e2πiz,

b = b(α) is the smallest integer greater than 4·5α−2 with b ≡ 5α(mod12), ε = ε(α)= 1

if α is odd, and ε = ε(α)= 2 if α is even.

Using results from [4, Theorems 3 and 5] on the properties of η-products, we find

that f(z) is a holomorphic modular form of weight (b−1)/2+2ε·5α−1 and character

χ0, the trivial character, with respect to Γ0(16·5α).
Notice that

(
η5(z)
η(5z)

)ε·5α−1

= 1+5α
∞∑
n=1

h(n)qn, (2.6)

where the h(n) are integers, and thus the Fourier coefficients of f(z) are congruent

to the Fourier coefficients of

η5(2z)
η4(z)η2(4z)

ηb
(
2·5αz)(mod5α

)
. (2.7)

Next, note that in terms of eta-functions,

∑
n≥0

cφ2(n)qn = q1/12 η5(2z)
η4(z)η2(4z)

. (2.8)

Thus, if we let

q−2b·5α/24ηb
(
2·5αz)= ∞∑

n=0

d
(
2·5αn)q2·5αn, (2.9)

then

a
(
5αn+λα+2b ·5α−2

24

)
≡

∞∑
m=0

d
(
2·5αm)cφ2

(
5αn+λα−2·5αm)(mod5α

)
. (2.10)
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Since d(0)= 1, this becomes

a
(
5αn+λα+2b ·5α−2

24

)
≡cφ2

(
5αn+λα

)

+
∞∑
m=1

d
(
2·5αm)cφ2

(
5αn+λα−2·5αm)(mod5α

)
.

(2.11)

By induction, it is easy to see that cφ2(5αn+λα)≡ 0(mod5α) for all n≤ C(α) if and

only ifa(5αn+λα+(2b ·5α−2)/24)≡ 0(mod5α) for alln≤ C(α). Hence, we also have

that cφ2(5αn+λα)≡ 0(mod5α) for alln if and only if a(5αn+λα+(2b ·5α−2)/24)≡
0(mod5α) for all n.

Now notice that λα+(2b ·5α−2)/24≡ 0(mod5α) by hypothesis, so consider

f1(z)= f(z) | T5α =
∞∑
n=0

a
(
5αn

)
qn, (2.12)

which is also a holomorphic modular form of weight (b−1)/2+2ε·5α−1 and character

χ0 with respect to Γ0(16·5α). (See [7, pages 153–175] for a full explanation of the action

of the Hecke operators Tp .) We find by Sturm’s theorem that a(5αn)≡ 0(mod5α) for

all n if and only if

a
(
5αn

)≡ 0
(
mod5α

) ∀n≤
(
(b−1)/2+2ε ·5α−1

)(
16·5α)

12

∏
p|10

(
1+ 1

p

)
. (2.13)

Therefore, cφ2(5αn+λα) ≡ 0(mod5α) for all n if and only if the congruence holds

for all n≤ C(α).
For certain values of α, it is not difficult to make modest improvements to Theorem

1.2. In the case α = 4, this modest improvement will bring C(α) more comfortably

within the realm of computational feasibility.

Theorem 2.3. Let

C(4) := 198745. (2.14)

Then

cφ2(625n+573)≡ 0(mod625) ∀n (2.15)

if and only if

cφ2(625n+573)≡ 0(mod625) ∀n≤ C(4). (2.16)

Proof. Let

f(z)= η5(2z)
η4(z)η2(4z)

η44(625z)η7(1250z)η10(2500z)
(
η5(z)
η(5z)

)250

=
∞∑
n=0

a(n)qn, (2.17)

where q = e2πiz. We find that f(z) is a holomorphic modular form of weight 530 and

character χ0, the trivial character, with respect to Γ0(2500).
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Notice that

(
η5(z)
η(5z)

)250

= 1+625
∞∑
n=1

h(n)qn, (2.18)

where the h(n) are integers, and thus the Fourier coefficients of f(z) are congruent

to the Fourier coefficients of

η5(2z)
η4(z)η2(4z)

η44(625z)η7(1250z)η10(2500z)(mod625). (2.19)

Recalling that

∑
n≥0

cφ2(n)qn = q1/12 η5(2z)
η4(z)η2(4z)

, (2.20)

if we let

q−61250/24η44(625z)η7(1250z)η10(2500z)=
∞∑
n=0

d(625n)q625n, (2.21)

then

a
(

625n+573+ 61250−2
24

)
≡

∞∑
m=0

d(625m)cφ2(625n+573−625m)(mod625).

(2.22)

Since d(0)= 1, this becomes

a(625n+573+2552)≡cφ2(625n+573)

+
∞∑
m=1

d(625m)cφ2(625n+573−625m)(mod625).
(2.23)

By induction, it is easy to see that cφ2(625n+573) ≡ 0(mod625) for all n ≤ C(4) if

and only if a(625n+573+2552)≡ 0(mod625) for all n≤ C(4). Hence, we also have

that cφ2(625n+573) ≡ 0(mod625) for all n if and only if a(625n+573+2552) ≡
0(mod625) for all n.

Now notice that 573+2552≡ 0(mod625), so consider

f1(z)= f(z) | T625 =
∞∑
n=0

a(625n)qn, (2.24)

which is also a holomorphic modular form of weight 530 and character χ0 with respect

to Γ0(2500). We find by Sturm’s theorem that a(625n) ≡ 0(mod625) for all n if and

only if

a(625n)≡ 0(mod625) ∀n≤ (530)(2500)
12

∏
p|10

(
1+ 1

p

)
. (2.25)

Therefore, cφ2(625n+573)≡ 0(mod625) for alln if and only if the congruence holds

for all n≤ C(4).
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3. Calculating the needed values of cφ2. From the above discussion, we can prove

the congruences desired for all n after calculating the first M values of cφ2, for any

M > 5αC(α)+λα. We calculate the necessary terms using recurrences.

The recurrences needed for cφ2(m) are easily developed. Recurrences are suitable

for calculating the values of cφ2(m) for small m. This, of course, is the historical

approach to the calculation of partition function values. For example, this was the

technique used by MacMahon to compute the first 200 values of p(m) [5, Table IV].

This same table was used by Ramanujan [8] in conjecturing several of the congruences

in (1.5).

We now prove a result from which the necessary recurrences follow.

Theorem 3.1.


 ∑
n≥0

cφ2(n)qn



 ∑
n∈Z
(−1)nqn

2


=


 ∑
n≥0

p(n)q2n




 ∑
n∈Z

qn
2


. (3.1)

Proof. From Jacobi’s triple product identity [1, Theorem 2.8], we see that

∑
n∈Z
(−1)nqn

2 = (q2;q2)
∞
(
q;q2)2

∞,
∑
n∈Z

qn
2 =

(
q2;q2

)5
∞

(q;q)2∞
(
q4;q4

)2
∞
. (3.2)

Also, since

∑
n≥0

p(n)qn = 1
(q;q)∞

, (3.3)

it is clear that

∑
n≥0

p(n)q2n = 1(
q2;q2

)
∞
. (3.4)

Then


 ∑
n≥0

cφ2(n)qn



 ∑
n∈Z
(−1)nqn

2


=

(
q2;q4

)
∞(

q;q2
)4
∞
(
q4;q4

)
∞
·(q2;q2)

∞
(
q;q2)2

∞

=
(
q2;q2

)2
∞(

q;q2
)2
∞
(
q4;q4

)2
∞

= 1(
q2;q2

)
∞
·

(
q2;q2

)5
∞

(q;q)2∞
(
q4;q4

)2
∞

=

 ∑
n≥0

p(n)q2n




 ∑
n∈Z

qn
2


.

(3.5)
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From this theorem, we have the following recurrences:

cφ2(2k)= p(k)+2
∑
m≥1

(−1)m+1cφ2
(
2k−m2)+2

∑
m≥1

p
(
k−2m2),

cφ2(2k+1)= 2
∑
m≥1

(−1)m+1cφ2
(
2k+1−m2)+2

∑
m≥0

p
(
k−2m(m+1)

)
.

(3.6)

Since p(n) satisfies p(n) = p(n−1)+p(n−2)−p(n−5)−p(n−7)+··· , where the

values in question are the pentagonal numbers, the above recurrences can easily be

implemented to calculate several values of cφ2.

Using these recurrences, we have calculated the necessary 124, 216, 198 values of

cφ2 on a Linux PC with 768MB of RAM and a 600Mhz Pentium III processor. The

calculations, all performed modulo 625, were completed in approximately 147 hours

of computing time.

With these calculations complete and the congruences checked modulo 625,

Theorem 1.2 has been proven.

4. Closing remarks. While it would be nice to prove additional cases of (1.4) using

this technique, it is clear that C(α) grows too rapidly to make such an approach

feasible. For example, the proof of the α= 5 case of (1.4) would require the calculation

of C(5) = 11279958 values of cφ2 in the arithmetic progression 55n+λ5. Hence, we

would have to calculate the first 3.5×1010 values of cφ2 (approximately).

Certainly, a proof of Conjecture 1.1 via modular forms or generating function ma-

nipulations is still desired. This was originally requested in [9], and we renew that

request here, given the new computational information that is now known about this

partition function and the fact that Theorem 1.2 is proven.
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