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We study compact and weakly compact multipliers on L(S), L(S)∗∗, and LUC(S)∗, where
the latter is the dual of LUC(S). We show that a left cancellative semigroup S is left
amenable if and only if there is a nonzero compact (or weakly compact) multiplier on
L(S)∗∗. We also prove that S is left amenable if and only if there is a nonzero compact (or
weakly compact) multiplier on LUC(S)∗.
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1. Introduction. Let S be a locally compact, Hausdorff topological semigroup. Let

M(S) be the space of all complex Borel measures on S. It is known thatM(S)= C0(S)∗,

therefore,M(S) is a Banach space and with convolutionµ∗ν(ψ)=∫∫ψ(xy)dµ(x)dν(y)
(µ,ν ∈ M(S), ψ ∈ C0(ψ)), M(S) is a Banach algebra. The subalgebra L(S) of M(S)
is defined by L(S) = {µ ∈ M(S) | x → |µ| ∗ δx, x → δx ∗ |µ| from S to M(S) are

norm continuous} [1]. A semigroup S is called foundation if S = ⋃µ∈L(S) suppµ. A

trivial example is a topological group and in this case L(S)= L1(G). Let Cb(S) be the

set of all bounded continuous function on S. Let LUC(S) = {f ∈ Cb(S) | x → lxf is

norm continuous}, RUC(S) = {f | f ∈ Cb(S), x → rxf is norm continuous} where

lxf (y) = f(xy), rxf(y) = f(yx). When S is foundation, it is known that L(S) has

a bounded approximate identity [1], and therefore, the multiplier algebra of L(S) is

M(S) [4]. Let L(S)∗ and L(S)∗∗ be the first and second duals of L(S) and similarly,

M(S)∗ and M(S)∗∗ be the first and second duals of M(S). We also use the notation

LUC(S)∗, RUC(S)∗ for the duals of LUC(S), and RUC(S), respectively. The subalge-

bras LUC(S) and RUC(S) are Banach C∗-subalgebras of Cb(S). With Arens product,

L(S)∗∗ and M(S)∗∗ are Banach algebra. Also, with the same type product LUC(S)∗ is

a Banach algebra. In this paper, among other things, we show that when S is a left can-

cellative foundation semigroup, then S is left (right) amenable if and only if there is a

nonzero left (right) compact or weakly compact multiplier on L(S)∗∗ (or LUC(S)∗).

2. Preliminaries. For a Banach algebra A, we denote by A∗ and A∗∗ the first and

second dual of A, respectively. On A∗∗ we define the first Arens product by

〈mn,f 〉 = 〈m,nf 〉, 〈nf ,a〉 = 〈n,fa〉, 〈fa,b〉 = f(ab) (2.1)

(m,n ∈ A∗∗; f ∈ A∗; a,b ∈ A). With this product A∗∗ is a Banach algebra. We can

also define a similar product on LUC(S)∗ such that 〈mn,f 〉 = 〈m,nf 〉, nf(x) =
n(lxf), lxf (y) = f(xy) (m,n ∈ LUC(S)∗; f ∈ LUC(S); x,y ∈ S). Clearly, LUC(S)∗

is a Banach algebra. A linear map on a Banach algebra A is called a multiplier if

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


356 ALIREZA MEDGHALCHI

T(xy)= T(x)y = xT(y) (x,y ∈A). The left (right) multiplier on L(S)∗∗ is defined by

lm(n)=mn, (lm(n)=nm). In general, LUC(S) and RUC(S) are different subalgebras

of Cb(S) and LUC(S) = RUC(S) if and only if LUC(S) (resp., RUC(S)) is right (resp.,

left) introverted, (see [2, Theorem 4.4.5]). For example, if S is a compact semitopolog-

ical semigroup or a totally bounded topological group, then LUC(S)= RUC(S) [2].

The semigroup S is called left amenable if there is a positive functionalm on LUC(S)
such that m(laf)=m(f), ‖m‖ = 1 for all f ∈ LUC(S), a∈ S. Such m is called a left

invariant mean on LUC(S) [7].

Let A be a Banach algebra and B a closed subalgebra of A and i : B→A the inclusion

mapping, then π : A∗ → B∗ is the restriction mapping which is norm decreasing and

onto (by the Hahn-Banach theorem). Following Ghahramani and Lau [3], we have the

following lemma (see [3, Lemmas 1.1, 1.2, 1.4, Proposition 1.3]).

Lemma 2.1. (a) Let f ∈A∗, b ∈ B. Then bπ(f)=π(i(b)f).
(b) The mapping π∗ : B∗∗ →A∗∗ is a homeomorphism whenever B∗∗ has the weak∗-

topology and π∗(B∗∗) has the relative weak∗-topology.

Lemma 2.2. Let B be a closed ideal in A, n∈A∗∗. If (aα) is a bounded net in A such

that aα →n, then i(b)aα
ω∗
������������������������������������������������→π∗(b)n (b ∈ B).

Proposition 2.3. Let B be a right (or left) ideal of A. Then π∗(B∗∗) is a right (resp.,

left) ideal of A∗∗.

Lemma 2.4. Let A be a commutative Banach algebra. Then any weak∗-closed right

ideal in A∗∗ is an ideal. If X = specA, then h(n) = 〈n,δx〉 is a multiplicative on A∗∗,

where δx(ψ)= 〈x,ψ〉.

3. Multipliers on LUC(S)∗ and L(S)∗∗. First we prove a theorem which is new even

for topological groups.

Theorem 3.1. Let S be a right cancellative topological semigroup with identity e.
Then the following are equivalent:

(a) S is left amenable.

(b) There is a nonzero compact (or weakly compact) right multiplier on LUC(S)∗.

Proof. (a)⇒(b). Let S be left amenable andm be a left invariant mean on LUC(S).
Then 〈nm,f 〉 = 〈n,mf 〉, mf(x) = m(lxf) = m(f) (f ∈ LUC(S)∗, f ∈ LUC(S)).
Therefore, 〈nm,f 〉 = 〈n,m(f)〉 =m(f)〈n,1〉, that is, nm = 〈n,1〉m. Thus lm(n) =
〈n,1〉m is a rank one operator and hence compact.

(b)⇒(a). Let T be a nonzero weakly compact right multiplier on LUC(S)∗. Then

T(m) = T(mδe) = mT(δe) = lT(δe)m. So, T = ln where n = T(δe). Note that δe ∈
LUC(S)∗ and δe(f)= f(e) (f ∈ LUC(S)). Now, letA= {δxn | x ∈ S} = {δxT(δe) | x ∈
S} = {T(δx) | x ∈ S} which is weakly compact. By Krein-Smulian’s theorem K = coωA
is weakly compact [2]. Now, we show that if k ≠ k′ ∈ K, then ‖δxk1‖ ≤ ‖k1‖. On the

other hand, if we define

g(y)=


f(t), y = tx,
0, otherwise,

(3.1)
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then g is well defined and belongs to β(S) (the space of bounded functions on S), then

δxg(t) = δx(ltg) = g(tx) = rxg(t) = f(t). Let k̄1 be the extension of k1 to β(S) (by

the Hahn-Banach theorem). Then
∥∥k1

∥∥= ∥∥k̄∥∥≤ sup
{∣∣〈k̄1,f

〉∣∣f ∈ β(S)}

= sup
{∣∣〈k̄1,δxg

〉∣∣g ∈ β(S)}

= sup
{∣∣〈δxk̄1,g

〉∣∣g ∈ β(S)}

= ∥∥δxk̄1

∥∥

= ∥∥δxk1

∥∥.

(3.2)

It follows that ‖δxk1‖ = ‖k1‖≠ 0. Now, we show that if k,k′ ∈ co(A), and k≠ k′, then

a similar argument shows that ‖δx(k−k′)‖≠ 0. Finally, we show that 0 
∈ {δx(k−k′) |
x ∈ S} since, by a completely similar argument, we have ‖δxα(k−k′)‖ = ‖k−k′‖≠ 0.

Therefore, 0 
∈ {δx(k−k′) | x ∈ S}−. Hence, by Ryll-Nardzewski fixed point theorem

[2], there exists a point q ∈ K such that δxq = q. It follows that δx|q| = |δxq| =
|q|, and ‖q‖ = ‖n‖ ≠ 0. Now, if we take m = |q|/‖q‖, then clearly δxm = m, so,

m(f)= δxm(f)= δx(mf)=mf(x)=m(xf). Therefore, m is a left invariant mean

on LUC(S), that is, S is left amenable.

For a foundation semigroup S, let i : LUC(S)→ L(S)∗ be such that 〈i(f ),µ〉 = 〈µ,f 〉
(f ∈ LUC(S), µ ∈ L(S)) is an embedding and π = i∗ : L(S)∗∗ → LUC(S)∗ is onto. It is

clear from the proof of [3, Lemma 2.2] for topological groups that π(E)= δe where E
is a right identity, π is a homomorphism and FG = Fπ(G). Also we have the following

proposition which is similar to [6, Theorem 2.3].

We prove the following proposition for foundation semigroups with identity e.

Proposition 3.2. Let E be a right identity in L(S)∗∗. Then π is an isometric iso-

morphism of EL(S)∗∗ onto LUC(S)∗.

Proof. Let I be the identity operator on L(S)∗∗. Then

L(S)∗∗ = EL(S)∗∗+(I−E)L(S)∗∗. (3.3)

Now, if m ∈ L(S)∗∗, then π((I − E)m) = π(m)−π(E)π(m) = π(m)− δeπ(m) =
π(m)−π(m) = 0. Thus (I − E)m ∈ kerπ . On the other hand, if m ∈ kerπ , then

Em= Eπ(m)= 0. So m=m−Em= (I−E)m∈ (I−E)L(S)∗∗. Thus,

kerπ = (I−E)L(S)∗∗. (3.4)

So, we have

L(S)∗∗ = EL(S)∗∗+kerπ. (3.5)

It follows that π is injective from EL(S)∗∗ onto L(S)∗∗/kerπ , therefore π is injec-

tive from EL(S)∗∗ onto LUC(S)∗, and so π is an algebra isomorphism. We also have

‖Em‖ = ‖Eπ(m)‖ ≤ ‖E‖‖π(m)‖ = ‖π(m)‖ ≤ ‖m‖, since π is a quotient map. Thus

‖π(Em)‖ ≤ ‖π‖‖Em‖ ≤ ‖Em‖ ≤ ‖π(m)‖. So ‖π(Em)‖ = ‖π(m)‖ = ‖Em‖, that is,

π is an isometry.
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Now, we have another main theorem.

Theorem 3.3. Let S be a right cancellative locally compact foundation semigroup

with identity e. Then the following are equivalent:

(a) S is left amenable.

(b) There is a nonzero compact (or weakly compact) right multiplier on L(S)∗∗.

Proof. (a)⇒(b). The proof of this part exactly reads the same line of the proof of

(a)⇒(b) of Theorem 3.1, so it is omitted.

(b)⇒(a). Let T be a nonzero weakly compact right multiplier on L(S)∗∗, so T = ln
for some n ∈ L(S)∗∗. Now lEn is also a nonzero right multiplier on EL(S)∗∗ where

E is a right identity of L(S)∗∗ with norm 1, since lEn(Em) = EmEn = Emn. Now

by Proposition 3.2, π(EL(S)∗∗) = (LUC(S))∗ isometrically isomorphic. If we define

l′n = lEn ◦π , then l′n is a nonzero right multiplier on LUC(S)∗. Therefore, S is left

amenable.

In [3, Theorem 2.1] it was also shown that a locally compact group G is amenable if

and only if there is a nonzero compact (weakly compact) right multiplier on M(G)∗∗.

But we are not able to extend this result to M(S)∗∗.

Proposition 3.4. A right multiplier ln(m)=mn (m∈ LUC(S)∗) is compact if and

only if the restriction of ln to M(S) is compact.

Note 3.5. It is clear that M(S) ⊆ LUC(S)∗ since, if µ ∈ M(S), then we can take

〈µ,f 〉 = ∫S f dµ (f ∈ LUC(S)).

Proof. Let ln be compact, then clearly the restriction of ln to M(S) is compact.

Conversely, let ln : M(S) → LUC(S)∗ be compact, where ln(µ) = µn (µ ∈ M(S)). Let

m∈ LUC(S)∗ with ‖m‖ ≤ 1. Since, the linear span of δx ’s is weak∗-dense in LUC(S)∗,

there is a net µα =
∑nα
i=1λα,iδxα,i such that µα →m in weak∗-topology. By compactness

of ln, there is a subnet (µα(β)) such that (µα(β)n) converges in norm.

Now, we have mn=ω∗− limµα(β)n. Thus mn= limµα(β)n with norm topology. It

follows that
{
mn | ‖m‖ ≤ 1

}⊆ {µn | µ ∈ L(S), ‖µ‖ ≤ 1
}
. (3.6)

Thus, ln is compact.

Theorem 3.6. Let S be a right cancellative semigroup with identity e and ln a right

multiplier on LUC(S)∗. Then ln can be written as a linear combination of four compact

right multiplier lni (i= 1,2,3,4), ni ≥ 0, ni ∈ LUC(S)∗.

Proof. Let e be the identity of S. Then T(m) = T(mδe) =mT(δe)lT(δe)(m). So,

T = ln (n = T(δe) ∈ LUC(S)∗). Let n = n+1 −n−1 + i(n+2 −n−2 ) where n+k ,n
−
k (k = 1,2)

are Hermitian. So, it suffices to show that ln+k and ln−k are compact. By Proposition 3.4

it suffices to prove that the restrictions of these operators to M(S) are compact. Now

since ln is compact on LUC(S)∗, {δxn | x ∈ S}− is compact. So {‖δxn‖x ∈ S}− is com-

pact. Since, ‖n+‖ ≤ ‖n‖, {(δxn)+ | x ∈ S} is compact. It follows that {δxn+ | x ∈ S}−
is compact. Since the linear span of δx , s is weak∗ dense in LUC(S)∗, {µn+ | µ ∈M(S),
‖µ‖ ≤ 1}− is compact. Therefore, ln+ is compact. This completes the proof.
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We denote by βS the space of all multiplicative linear functional on LUC(S). We

have another main theorem.

Theorem 3.7. Let S be a finite topological semigroup. Then there exists n ∈ βS
such that ln is compact. Conversely, if S is a subsemigroup of a topological group with

identity, and there exists n∈ βS such that ln is compact, then S is finite.

Proof. Let S be finite, then by [2, Corollary 4.1.8],AP(S)= C(S). Also, by [2, Propo-

sition 4.4.8], AP(S)= LUC(S)= RUC(S). Therefore, LUC(S)= C(S). So βS is topologi-

cally isomorphic to S. On the other hand, since lsS ⊆ S is compact, l∗s C(S) is compact.

Hence, ln is compact.

Conversely, let ln be compact for some n ∈ βS, by Theorem 3.6, we may assume

that n is positive, then Tn(f) = nf (f ∈ LUC(S)) is compact. Now, let F = rangeTn.

Clearly Tn is an algebra homomorphism, since, Tn(fg) = n(fg)(x) = 〈n,lxfg〉 =
n((lxf)(lxg)) = n(lxf)n(lxg) = Tn(f)Tn(g). Also Tn preserves conjugation. So, by

[8, Theorem 5.3], ‖Txf‖ ≥ ‖f‖ (f ∈ LUC(S)). So by open mapping theorem, Tn is a

homeomorphism. Since Tn is compact, F is closed. Also, {Tnf | f ∈ LUC(S), ‖Tnf‖ ≤
1} ⊆ {Tnf | f ∈ LUC(S), ‖f‖ ≤ 1}, so {Tnf | f ∈ LUC(S), ‖Tnf‖ ≤ 1} is com-

pact. Therefore F is reflexive. It follows that F is finite dimensional (see [8, Exercise

2]). Let {m1,m2, . . . ,mk} be the spectrum of F and we can assume that mi is posi-

tive. If we define m(f) = (1/k)∑ki=1mi(Tnf), then clearly, m ≥ 0, m(1) = 1. Also,

since S is left cancellative, l∗x{m1, . . . ,mk} = {m1, . . . ,mk}. Therefore, 〈mi,Tnlx(f )〉 =
〈mi,lxTn(f)〉 = 〈l∗xmi,Tn(f)〉 = 〈mj,Tn(f)〉, for some 1 ≤ j ≤ k. It follows that

m(lxf) =m(f), that is, m is a left-invariant mean on LUC(S), so by [5, Theorem 3]

S is finite.
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