MULTIPLIERS ON L(S), $L(S)^{**}$, AND $LUC(S)^{*}$ FOR A LOCALLY COMPACT TOPOLOGICAL SEMIGROUP

ALIREZA MEDGHALCHI

Received 16 January 2001

We study compact and weakly compact multipliers on L(S), $L(S)^{**}$, and $LUC(S)^*$, where the latter is the dual of LUC(S). We show that a left cancellative semigroup *S* is left amenable if and only if there is a nonzero compact (or weakly compact) multiplier on $L(S)^{**}$. We also prove that *S* is left amenable if and only if there is a nonzero compact (or weakly compact) multiplier on $LUC(S)^*$.

2000 Mathematics Subject Classification: 43A20.

1. Introduction. Let *S* be a locally compact, Hausdorff topological semigroup. Let M(S) be the space of all complex Borel measures on S. It is known that $M(S) = C_0(S)^*$, therefore, M(S) is a Banach space and with convolution $\mu * v(\psi) = \iint \psi(xy) d\mu(x) dv(y)$ $(\mu, \nu \in M(S), \psi \in C_0(\psi)), M(S)$ is a Banach algebra. The subalgebra L(S) of M(S)is defined by $L(S) = \{\mu \in M(S) \mid x \to |\mu| * \delta_x, x \to \delta_x * |\mu| \text{ from } S \text{ to } M(S) \text{ are } \}$ norm continuous} [1]. A semigroup S is called foundation if $S = \bigcup_{\mu \in L(S)} \operatorname{supp} \mu$. A trivial example is a topological group and in this case $L(S) = L^1(G)$. Let $C_b(S)$ be the set of all bounded continuous function on S. Let $LUC(S) = \{f \in C_b(S) \mid x \to l_x f \text{ is }$ norm continuous}, $RUC(S) = \{f \mid f \in C_b(S), x \to r_x f \text{ is norm continuous}\}\$ where $l_x f(y) = f(xy), r_x f(y) = f(yx)$. When S is foundation, it is known that L(S) has a bounded approximate identity [1], and therefore, the multiplier algebra of L(S) is M(S) [4]. Let $L(S)^*$ and $L(S)^{**}$ be the first and second duals of L(S) and similarly, $M(S)^*$ and $M(S)^{**}$ be the first and second duals of M(S). We also use the notation $LUC(S)^*$, $RUC(S)^*$ for the duals of LUC(S), and RUC(S), respectively. The subalgebras LUC(S) and RUC(S) are Banach C*-subalgebras of $C_h(S)$. With Arens product, $L(S)^{**}$ and $M(S)^{**}$ are Banach algebra. Also, with the same type product $LUC(S)^{*}$ is a Banach algebra. In this paper, among other things, we show that when S is a left cancellative foundation semigroup, then S is left (right) amenable if and only if there is a nonzero left (right) compact or weakly compact multiplier on $L(S)^{**}$ (or $LUC(S)^{*}$).

2. Preliminaries. For a Banach algebra A, we denote by A^* and A^{**} the first and second dual of A, respectively. On A^{**} we define the first Arens product by

$$\langle mn, f \rangle = \langle m, nf \rangle, \quad \langle nf, a \rangle = \langle n, fa \rangle, \quad \langle fa, b \rangle = f(ab)$$
(2.1)

 $(m, n \in A^{**}; f \in A^*; a, b \in A)$. With this product A^{**} is a Banach algebra. We can also define a similar product on $LUC(S)^*$ such that $\langle mn, f \rangle = \langle m, nf \rangle$, $nf(x) = n(l_x f)$, $l_x f(y) = f(xy)$ $(m, n \in LUC(S)^*; f \in LUC(S); x, y \in S)$. Clearly, $LUC(S)^*$ is a Banach algebra. A linear map on a Banach algebra A is called a multiplier if

T(xy) = T(x)y = xT(y) ($x, y \in A$). The left (right) multiplier on $L(S)^{**}$ is defined by $l_m(n) = mn$, ($l_m(n) = nm$). In general, LUC(S) and RUC(S) are different subalgebras of $C_b(S)$ and LUC(S) = RUC(S) if and only if LUC(S) (resp., RUC(S)) is right (resp., left) introverted, (see [2, Theorem 4.4.5]). For example, if *S* is a compact semitopological semigroup or a totally bounded topological group, then LUC(S) = RUC(S) [2].

The semigroup *S* is called left amenable if there is a positive functional *m* on *LUC*(*S*) such that $m(l_a f) = m(f)$, ||m|| = 1 for all $f \in LUC(S)$, $a \in S$. Such *m* is called a left invariant mean on LUC(S) [7].

Let *A* be a Banach algebra and *B* a closed subalgebra of *A* and $i: B \to A$ the inclusion mapping, then $\pi: A^* \to B^*$ is the restriction mapping which is norm decreasing and onto (by the Hahn-Banach theorem). Following Ghahramani and Lau [3], we have the following lemma (see [3, Lemmas 1.1, 1.2, 1.4, Proposition 1.3]).

LEMMA 2.1. (a) Let $f \in A^*$, $b \in B$. Then $b\pi(f) = \pi(i(b)f)$.

(b) The mapping $\pi^* : B^{**} \to A^{**}$ is a homeomorphism whenever B^{**} has the weak^{*}-topology and $\pi^*(B^{**})$ has the relative weak^{*}-topology.

LEMMA 2.2. Let *B* be a closed ideal in *A*, $n \in A^{**}$. If (a_{α}) is a bounded net in *A* such that $a_{\alpha} \to n$, then $i(b)a_{\alpha} \xrightarrow{\omega^*} \pi^*(b)n$ $(b \in B)$.

PROPOSITION 2.3. Let *B* be a right (or left) ideal of *A*. Then $\pi^*(B^{**})$ is a right (resp., left) ideal of A^{**} .

LEMMA 2.4. Let A be a commutative Banach algebra. Then any weak^{*}-closed right ideal in A^{**} is an ideal. If $X = \operatorname{spec} A$, then $h(n) = \langle n, \delta_X \rangle$ is a multiplicative on A^{**} , where $\delta_X(\psi) = \langle x, \psi \rangle$.

3. Multipliers on $LUC(S)^*$ and $L(S)^{**}$. First we prove a theorem which is new even for topological groups.

THEOREM 3.1. Let *S* be a right cancellative topological semigroup with identity *e*. Then the following are equivalent:

(a) *S* is left amenable.

(b) There is a nonzero compact (or weakly compact) right multiplier on $LUC(S)^*$.

PROOF. (a) \Rightarrow (b). Let *S* be left amenable and *m* be a left invariant mean on LUC(S). Then $\langle nm, f \rangle = \langle n, mf \rangle$, $mf(x) = m(l_x f) = m(f)$ $(f \in LUC(S)^*, f \in LUC(S))$. Therefore, $\langle nm, f \rangle = \langle n, m(f) \rangle = m(f) \langle n, 1 \rangle$, that is, $nm = \langle n, 1 \rangle m$. Thus $l_m(n) = \langle n, 1 \rangle m$ is a rank one operator and hence compact.

(b) \Rightarrow (a). Let *T* be a nonzero weakly compact right multiplier on $LUC(S)^*$. Then $T(m) = T(m\delta_e) = mT(\delta_e) = l_{T(\delta_e)}m$. So, $T = l_n$ where $n = T(\delta_e)$. Note that $\delta_e \in LUC(S)^*$ and $\delta_e(f) = f(e)$ ($f \in LUC(S)$). Now, let $A = \{\delta_x n \mid x \in S\} = \{\delta_x T(\delta_e) \mid x \in S\} = \{T(\delta_x) \mid x \in S\}$ which is weakly compact. By Krein-Smulian's theorem $K = \overline{co}^{\omega}A$ is weakly compact [2]. Now, we show that if $k \neq k' \in K$, then $\|\delta_x k_1\| \le \|k_1\|$. On the other hand, if we define

$$g(y) = \begin{cases} f(t), & y = tx, \\ 0, & \text{otherwise,} \end{cases}$$
(3.1)

then *g* is well defined and belongs to $\beta(S)$ (the space of bounded functions on *S*), then $\delta_x g(t) = \delta_x (l_t g) = g(tx) = r_x g(t) = f(t)$. Let \bar{k}_1 be the extension of k_1 to $\beta(S)$ (by the Hahn-Banach theorem). Then

$$\begin{aligned} ||k_1|| &= ||\bar{k}|| \le \sup \left\{ \left| \langle \bar{k}_1, f \rangle \right| f \in \beta(S) \right\} \\ &= \sup \left\{ \left| \langle \bar{k}_1, \delta_X g \rangle \right| g \in \beta(S) \right\} \\ &= \sup \left\{ \left| \langle \delta_X \bar{k}_1, g \rangle \right| g \in \beta(S) \right\} \\ &= ||\delta_X \bar{k}_1|| \\ &= ||\delta_X k_1||. \end{aligned}$$

$$(3.2)$$

It follows that $||\delta_x k_1|| = ||k_1|| \neq 0$. Now, we show that if $k, k' \in co(A)$, and $k \neq k'$, then a similar argument shows that $||\delta_x (k-k')|| \neq 0$. Finally, we show that $0 \notin \{\delta_x (k-k') | x \in S\}$ since, by a completely similar argument, we have $||\delta_{x\alpha}(k-k')|| = ||k-k'|| \neq 0$. Therefore, $0 \notin \{\delta_x (k-k') | x \in S\}^-$. Hence, by Ryll-Nardzewski fixed point theorem [2], there exists a point $q \in K$ such that $\delta_x q = q$. It follows that $\delta_x |q| = |\delta_x q| = |q|$, and $||q|| = ||n|| \neq 0$. Now, if we take m = |q|/||q||, then clearly $\delta_x m = m$, so, $m(f) = \delta_x m(f) = \delta_x (mf) = mf(x) = m(_x f)$. Therefore, m is a left invariant mean on LUC(S), that is, S is left amenable.

For a foundation semigroup *S*, let $i: LUC(S) \to L(S)^*$ be such that $\langle i(f), \mu \rangle = \langle \mu, f \rangle$ $(f \in LUC(S), \mu \in L(S))$ is an embedding and $\pi = i^*: L(S)^{**} \to LUC(S)^*$ is onto. It is clear from the proof of [3, Lemma 2.2] for topological groups that $\pi(E) = \delta_e$ where *E* is a right identity, π is a homomorphism and $FG = F\pi(G)$. Also we have the following proposition which is similar to [6, Theorem 2.3].

We prove the following proposition for foundation semigroups with identity *e*.

PROPOSITION 3.2. Let *E* be a right identity in $L(S)^{**}$. Then π is an isometric isomorphism of $EL(S)^{**}$ onto $LUC(S)^*$.

PROOF. Let *I* be the identity operator on $L(S)^{**}$. Then

$$L(S)^{**} = EL(S)^{**} + (I - E)L(S)^{**}.$$
(3.3)

Now, if $m \in L(S)^{**}$, then $\pi((I-E)m) = \pi(m) - \pi(E)\pi(m) = \pi(m) - \delta_e \pi(m) = \pi(m) - \pi(m) = 0$. Thus $(I-E)m \in \ker \pi$. On the other hand, if $m \in \ker \pi$, then $Em = E\pi(m) = 0$. So $m = m - Em = (I-E)m \in (I-E)L(S)^{**}$. Thus,

$$\ker \pi = (I - E)L(S)^{**}.$$
(3.4)

So, we have

$$L(S)^{**} = EL(S)^{**} + \ker \pi.$$
(3.5)

It follows that π is injective from $EL(S)^{**}$ onto $L(S)^{**} / \ker \pi$, therefore π is injective from $EL(S)^{**}$ onto $LUC(S)^{*}$, and so π is an algebra isomorphism. We also have $||Em|| = ||E\pi(m)|| \le ||E|| ||\pi(m)|| = ||\pi(m)|| \le ||m||$, since π is a quotient map. Thus $||\pi(Em)|| \le ||\pi|| ||Em|| \le ||Em|| \le ||\pi(m)||$. So $||\pi(Em)|| = ||\pi(m)|| = ||Em||$, that is, π is an isometry.

Now, we have another main theorem.

THEOREM 3.3. Let *S* be a right cancellative locally compact foundation semigroup with identity *e*. Then the following are equivalent:

(a) S is left amenable.

(b) There is a nonzero compact (or weakly compact) right multiplier on $L(S)^{**}$.

PROOF. (a) \Rightarrow (b). The proof of this part exactly reads the same line of the proof of (a) \Rightarrow (b) of Theorem 3.1, so it is omitted.

(b)⇒(a). Let *T* be a nonzero weakly compact right multiplier on $L(S)^{**}$, so $T = l_n$ for some $n \in L(S)^{**}$. Now l_{En} is also a nonzero right multiplier on $EL(S)^{**}$ where *E* is a right identity of $L(S)^{**}$ with norm 1, since $l_{En}(Em) = EmEn = Emn$. Now by Proposition 3.2, $\pi(EL(S)^{**}) = (LUC(S))^*$ isometrically isomorphic. If we define $l'_n = l_{En} \circ \pi$, then l'_n is a nonzero right multiplier on $LUC(S)^*$. Therefore, *S* is left amenable.

In [3, Theorem 2.1] it was also shown that a locally compact group *G* is amenable if and only if there is a nonzero compact (weakly compact) right multiplier on $M(G)^{**}$. But we are not able to extend this result to $M(S)^{**}$.

PROPOSITION 3.4. A right multiplier $l_n(m) = mn$ ($m \in LUC(S)^*$) is compact if and only if the restriction of l_n to M(S) is compact.

NOTE 3.5. It is clear that $M(S) \subseteq LUC(S)^*$ since, if $\mu \in M(S)$, then we can take $\langle \mu, f \rangle = \int_S f d\mu \ (f \in LUC(S)).$

PROOF. Let l_n be compact, then clearly the restriction of l_n to M(S) is compact. Conversely, let $l_n : M(S) \to LUC(S)^*$ be compact, where $l_n(\mu) = \mu n$ ($\mu \in M(S)$). Let $m \in LUC(S)^*$ with $||m|| \le 1$. Since, the linear span of δ_x 's is weak*-dense in $LUC(S)^*$, there is a net $\mu_{\alpha} = \sum_{i=1}^{n_{\alpha}} \lambda_{\alpha,i} \delta_{x_{\alpha,i}}$ such that $\mu_{\alpha} \to m$ in weak*-topology. By compactness of l_n , there is a subnet ($\mu_{\alpha(\beta)}$) such that ($\mu_{\alpha(\beta)}n$) converges in norm.

Now, we have $mn = \omega^* - \lim \mu_{\alpha(\beta)} n$. Thus $mn = \lim \mu_{\alpha(\beta)} n$ with norm topology. It follows that

$$\{mn \mid ||m|| \le 1\} \subseteq \{\mu n \mid \mu \in L(S), ||\mu|| \le 1\}.$$
(3.6)

Thus, l_n is compact.

THEOREM 3.6. Let *S* be a right cancellative semigroup with identity *e* and l_n a right multiplier on $LUC(S)^*$. Then l_n can be written as a linear combination of four compact right multiplier l_{n_i} (i = 1, 2, 3, 4), $n_i \ge 0$, $n_i \in LUC(S)^*$.

PROOF. Let *e* be the identity of *S*. Then $T(m) = T(m\delta_e) = mT(\delta_e)l_{T(\delta_e)}(m)$. So, $T = l_n$ $(n = T(\delta_e) \in LUC(S)^*)$. Let $n = n_1^+ - n_1^- + i(n_2^+ - n_2^-)$ where n_k^+, n_k^- (k = 1, 2) are Hermitian. So, it suffices to show that $l_{n_k^+}$ and $l_{n_k^-}$ are compact. By Proposition 3.4 it suffices to prove that the restrictions of these operators to M(S) are compact. Now since l_n is compact on $LUC(S)^*$, $\{\delta_x n \mid x \in S\}^-$ is compact. So $\{\|\delta_x n\| x \in S\}^-$ is compact. Since, $\|n^+\| \le \|n\|$, $\{(\delta_x n)^+ \mid x \in S\}$ is compact. It follows that $\{\delta_x n^+ \mid x \in S\}^-$ is compact. Since the linear span of δ_x , *s* is weak^{*} dense in $LUC(S)^*$, $\{\mu n^+ \mid \mu \in M(S), \|\mu\| \le 1\}^-$ is compact. Therefore, l_{n^+} is compact. This completes the proof.

358

We denote by βS the space of all multiplicative linear functional on LUC(S). We have another main theorem.

THEOREM 3.7. Let *S* be a finite topological semigroup. Then there exists $n \in \beta S$ such that l_n is compact. Conversely, if *S* is a subsemigroup of a topological group with identity, and there exists $n \in \beta S$ such that l_n is compact, then *S* is finite.

PROOF. Let *S* be finite, then by [2, Corollary 4.1.8], AP(S) = C(S). Also, by [2, Proposition 4.4.8], AP(S) = LUC(S) = RUC(S). Therefore, LUC(S) = C(S). So βS is topologically isomorphic to *S*. On the other hand, since $\overline{l_s S} \subseteq S$ is compact, $l_s^* C(S)$ is compact. Hence, l_n is compact.

Conversely, let l_n be compact for some $n \in \beta S$, by Theorem 3.6, we may assume that n is positive, then $T_n(f) = nf$ ($f \in LUC(S)$) is compact. Now, let $F = \operatorname{range} T_n$. Clearly T_n is an algebra homomorphism, since, $T_n(fg) = n(fg)(x) = \langle n, l_x fg \rangle =$ $n((l_x f)(l_x g)) = n(l_x f)n(l_x g) = T_n(f)T_n(g)$. Also T_n preserves conjugation. So, by [8, Theorem 5.3], $||T_x f|| \ge ||f||$ ($f \in LUC(S)$). So by open mapping theorem, T_n is a homeomorphism. Since T_n is compact, F is closed. Also, $\{T_n f \mid f \in LUC(S), ||T_n f|| \le 1\}$ is compact. Therefore F is reflexive. It follows that F is finite dimensional (see [8, Exercise 2]). Let $\{m_1, m_2, ..., m_k\}$ be the spectrum of F and we can assume that m_i is positive. If we define $m(f) = (1/k) \sum_{i=1}^k m_i(T_n f)$, then clearly, $m \ge 0$, m(1) = 1. Also, since S is left cancellative, $l_x^*\{m_1, ..., m_k\} = \{m_1, ..., m_k\}$. Therefore, $\langle m_i, T_n l_x(f) \rangle =$ $\langle m_i, l_x T_n(f) \rangle = \langle l_x^* m_i, T_n(f) \rangle = \langle m_j, Tn(f) \rangle$, for some $1 \le j \le k$. It follows that $m(l_x f) = m(f)$, that is, m is a left-invariant mean on LUC(S), so by [5, Theorem 3] S is finite.

REFERENCES

- A. C. Baker and J. W. Baker, Algebras of measures on a locally compact semigroup. III, J. London Math. Soc. (2) 4 (1972), 685-695.
- [2] J. F. Berglund, H. D. Junghenn, and P. Milnes, Analysis on Semigroups. Function Spaces, Compactifications, Representations, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York, 1989.
- F. Ghahramani and A. T. M. Lau, Multipliers and ideals in second conjugate algebras related to locally compact groups, J. Funct. Anal. 132 (1995), no. 1, 170–191.
- [4] F. Ghahramani and A. R. Medgalchi, *Compact multipliers on weighted hypergroup algebras*, Math. Proc. Cambridge Philos. Soc. 98 (1985), no. 3, 493–500.
- [5] E. Granirer and A. T. M. Lau, *Invariant means on locally compact groups*, Illinois J. Math. 15 (1971), 249–257.
- [6] A. T. M. Lau and J. Pym, Concerning the second dual of the group algebra of a locally compact group, J. London Math. Soc. (2) 41 (1990), no. 3, 445-460.
- J.-P. Pier, Amenable Locally Compact Groups, Pure and Applied Mathematics, John Wiley & Sons, New York, 1984.
- [8] M. Takesaki, Theory of Operator Algebras. I, Springer-Verlag, New York, 1979.

ALIREZA MEDGHALCHI: DEPARTMENT OF MATHEMATICS, TEACHER TRAINING UNIVERSITY, 566 TALEGHANI AVENUE, 13614 TEHRAN, IRAN

E-mail address: medghal2000@yahoo.com