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Given multiplicatively-regular elements a and b in a semiring R, and given an element c of
R, we find a complete set of solutions to the equation aXb = c. This result is then extended
to equations over matrix semirings.
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1. Semirings. We follow the notation and terminology of [5], to which the reader is

referred for all undefined notions and unproven assertions. Let R be a semiring. An

element a is multiplicatively regular if and only if there exists an element a− of R,

called a generalized inverse of a, satisfying aa−a= a. If such an element exists then

the element a× = a−aa− satisfies the conditions aa×a = a and a×aa× = a×. We call

the element a× of R a Thierrin-Vagner inverse of a. The details are given in [5].

If a is multiplicatively idempotent then it has a Thierrin-Vagner inverse and, indeed,

we can choose a× = a. Thus we can always assume that 0× = 0 and 1× = 1. If a has a

multiplicative inverse, we can choose a× = a−1. If R is a semifield we see that every

element is multiplicatively regular. This happens, for example, in such important and

applicable semirings as the schedule algebra (R∪{−∞},max,+).
Regularity in fuzzy matrix rings is studied in [2]. For algorithms to calculate Moore-

Penrose pseudoinverses of matrices over additively-idempotent semirings, which are

special cases of Thierrin-Vagner inverses, refer to [7]. Also refer to [3] for calculation

of generalized inverses for semirings of matrices over bounded distributive lattices.

We note too that if a ∈ R is multiplicatively regular then so is a× and so are a×a
and aa×, and indeed (a×a)× = a×a and (aa×)× = aa×. Moreover, both of these el-

ements are multiplicatively idempotent. Thus we have two functions from the set

of all multiplicatively-regular elements of R to the set I×(R) of all multiplicatively-

idempotent elements of R given by λ : a� a×a and ρ : a� aa× and these functions

satisfy λ2 = λ and ρ2 = ρ. Moreover, for each a∈ R we have

aλ(a)= a= ρ(a)a,
λ
(
a×
)
a× = a× = a×ρ(a×). (1.1)

We are interested in the following problem: given multiplicatively-regular elements

a,b ∈ R and given an element c ∈ R, find a complete set of solutions to the equation

aXb = c in R. Such problems arise in various contexts—for example in the theory of

formal codes [1] or in the context of rewriting systems and similar problems in formal
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language theory. Also see [9]. They also appear in the consideration of fuzzy and

semiring-valued relations [4] and fuzzy bilinear equations [8], and arise naturally in

control theory with coefficients taken from the (max,+) algebra or from the semiring

of fuzzy numbers. For certain noncommutative rings, such as rings of matrices or

rings of operators over a linear space, they have an extensive literature, and the results

there can often be extended to matrix semirings over semirings, for example.

Note that if there exists a solution x to the equation

aXb = c, (1.2)

then

c = axb = ρ(a)(axb)λ(b)= ρ(a)cλ(b). (1.3)

Conversely, if c ∈ R satisfies ρ(a)cλ(b) = c, then a×cb× is a solution for (1.2). Thus

(1.2) has a nonempty set of solutions if and only if c satisfies this condition. This

allows us to rephrase our problem as follows: given multiplicatively regular elements

a,b ∈ R and given an element c ∈ R satisfying ρ(a)cλ(b) = c, find a complete set of

solutions of (1.2) in R.

Leta be an element of a semiringR. An elementa[r] ofR is called a right complement

of a if and only if aa[r] = 0 and a+a[r] = 1. An element a[l] of R is a left complement

of a if and only if a[l]a= 0 and a[l]+a= 1. If a has both a right complement a[r] and

a left complement a[l], then these must be equal. Indeed, we note that in this case

a[l] = a[l](a+a[r])= a[l]a+a[l]a[r] = a[l]a[r]
= aa[r]+a[l]a[r] = (a+a[l])a[r] = a[r]. (1.4)

Such an element is called a complement of a and is denoted by a⊥. Complements,

when they exist, are necessarily unique.

Example 1.1. Right and left complements need not be the same. For example, let

S be the ring of all upper-triangular matrices over the ring Z of integers, and let R be

the semiring ideal(S) consisting of S and of all (two-sided) ideals of S. The operations

on R are the usual addition and multiplication of ideals. If I = [Z Z0 0

]
andH = [0 Z

0 Z

]
then

it is easy to verify that H = I[l] but H ≠ I[r].

Complements of elements of a semiring are studied in [5, Chapter 5]; they play a very

important role in the theory and applications of semirings. Since the inspiration for

complements came from lattice theory, they were assumed to be two-sided. However,

here we have to look at the notion of a one-sided complement.

Note that if a∈ R has a right complement then a∈ I×(R) since

a= a1= a
(
a+a[r]

)
= a2+aa[r] = a2 (1.5)

and the same is, of course, true if a has a left complement. Thus, if we denote the

set of all elements of R having a right (resp., left) complement by rcomp(R) (resp.,

lcomp(R)), and if we denote the set of all elements of R having a complement by

comp(R), we see that

rcomp(R)∩ lcomp(R)= comp(R), (1.6)
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and if we denote the set of all elements of R having a one-sided complement by

ocomp(R), that is, ocomp(R)= rcomp(R)∪ lcomp(R), then we see that

ocomp(R)⊆ I×(R). (1.7)

Also, we note that if a∈ rcomp(R) then any right complement a[r] of a belongs to

lcomp(R) and, indeed, a itself is a left complement of a[r]. Similarly, if a∈ lcomp(R)
then any left complement of a belongs to rcomp(R). Thus we see that ocomp(R) is

closed under taking left and right complements.

Note that if γ : R→ S is a morphism of semirings, then γ(ocomp(R))⊆ ocomp(S).
Indeed, ifa∈ R has a right complementa[r] then 0S = γ(0R)= γ(aa[r])= γ(a)γ(a[r])
and 1S = γ(1R)= γ(a+a[r])= γ(a)+γ(a[r]) so γ(a[r]) is a right complement of γ(a).
Similarly, if a has a left complement a[l] then γ(a[l]) is a left complement of γ(a).

Assume that a and b are multiplicatively-regular elements of R such that λ(a) has

a right complement λ(a)[r] and that ρ(b) has a left complement ρ(b)[l]. Then we

note that aλ(a)[r] = ρ(a)aλ(a)[r] = aλ(a)λ(a)[r] = 0 and ρ(b)[l]b = ρ(b)[l]bλ(b) =
ρ(b)[l]ρ(b)b = 0.

Given an element c of R, define a function αc : R→ R by setting

αc :y � �→ a×cb×+λ(a)yρ(b)[l]+λ(a)[r]y. (1.8)

Then the foregoing discussion leads us to the following result.

Proposition 1.2. If a and b are multiplicatively-regular elements of a semiring R
satisfying the condition that λ(a) ∈ rcomp(R) and ρ(b) ∈ lcomp(R), and if c is an

element of R satisfying ρ(a)cλ(b)= c, then a complete set of solutions of (1.2) is given

by {αc(y) |y ∈ R}. If c does not satisfy this condition then (1.2) has no solutions in R.

Proof. If c does not satisfy the given condition then we have already seen that

(1.2) has no solutions in R. Assume therefore that it does. From the hypothesis of the

theorem we then see that

aαc(y)b = ρ(a)cλ(b)+ρ(a)ayρ(b)[l]b+aλ(a)[r]yb
= ρ(a)cλ(b)
= c,

(1.9)

so αc(y) is a solution to (1.2) for any y ∈ R. Moreover, we note that if x ∈ R is a

solution of (1.2) then αc(x)= x. Indeed, if axb = c then

αc(x)= a×cb×+λ(a)xρ(b)[l]+λ(a)[r]x
= λ(a)xρ(b)+λ(a)xρ(b)[l]+λ(a)[r]x
= λ(a)x

[
ρ(b)+ρ(b)[l]

]
+λ(a)[r]x

= λ(a)x+λ(a)[r]x
=
[
λ(a)+λ(a)[r]

]
x

= x

(1.10)

and the proof is complete.
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In particular, we have the following examples.

Example 1.3. Suppose that R is a semiring. If a and b are multiplicatively-regular

elements of R satisfying the condition that both λ(a) and ρ(b) have additive inverses,

then we can set λ(a)[r] = 1− λ(a) and ρ(b)[l] = 1− ρ(b). In this case, both λ(a)
and ρ(b) in fact belong to comp(R). This surely happens if R is a ring.

Example 1.4. Suppose that R is a Boolean algebra. If a and b are multiplicatively-

regular elements of R, we can set λ(a)[r] = a′ and ρ(b)[l] = ρ(b)′.
Example 1.5. Following the terminology of [5], we say that a semiring R is plain

if and only if a+ b = b for a,b ∈ R implies that a = 0. It is simple if and only if

a+1 = 1 for all a ∈ R, and it is yoked if for each pair a, b of elements of R there

exists an element c of R satisfying a+ c = b or b+ c = a. By [5, Example 5.6] we

see that every multiplicatively-idempotent element of a plain simple yoked semir-

ing has a complement and so, for such semirings, λ(a)[r] and ρ(b)[l] exist for all

multiplicatively-regular elements a and b of R.

Among the most applicable families of semirings which are not rings are zerosum-

free semirings, namely semirings which satisfy the condition that a+b = 0 when and

only when a = b = 0. Bounded distributive lattices are examples of such semirings,

as are semirings of (two-sided) ideals of rings and information algebras in the sense

of [6]. We make some remarks concerning the behavior of one-sided complements in

such semirings.

Proposition 1.6. If R is a zerosumfree semiring and if a ∈ rcomp(R) while b ∈
ocomp(R) then aba[r] = 0.

Proof. Indeed, if b′ is a one-sided complement of b then

aba[r]+ab′a[r] = a(b+b′)a[r] = aa[r] = 0, (1.11)

and so aba[r] = 0 since R is zerosumfree.

Similarly, if a∈ lcomp(R) while b ∈ ocomp(R) then a[l]ba= 0.

Proposition 1.7. If R is a zerosumfree semiring and if a,b ∈ rcomp(R) then a+
a[r]b ∈ rcomp(R).

Proof. Indeed, we note that a+a[r]b+a[r]b[r] = a+a[r](b+b[r]) = a+a[r] =
1 while (a + a[r]b)a[r]b[r] = a[r]ba[r]b[r]. But we have already seen that a[r] ∈
ocomp(R) so, by Proposition 1.6, ba[r]b[r] = 0. Thus a[r]b[r] is a right complement

of a+a[r]b.

Similarly, we note that if a,b ∈ lcomp(R) then a+ba[l] ∈ rcomp(R).

Proposition 1.8. If R is a zerosumfree semiring and if a,b ∈ rcomp(R) then ab ∈
rcomp(R). Moreover, if rcomp(R) is closed under sums then every element of rcomp(R)
is additively idempotent.

Proof. Indeed, we note that ab+ (a[r]+ab[r]) = a(b+b[r])+a[r] = a+a[r] = 1

and (ab)(a[r]+ab[r])=aba[r]+a(bab[r]) and this equals 0, as we have already noted.
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Now assume that rcomp(R) is closed under sums. Then, in particular, 1 + 1 ∈
rcomp(R) so, if a ∈ rcomp(R) we see that a+a = a(1+1) ∈ rcomp(R). Let b be a

right complement of a+a. Then ab+ab = (a+a)b = 0 and, by zerosumfreeness, we

deduce that ab = 0. Therefore a = a1 = (a+a+b) = a2+a2 = a+a, showing that a
is additively idempotent.

Similarly, we note that if a,b ∈ lcomp(R) then ab ∈ lcomp(R) and if lcomp(R) is

closed under sums then each of its members is additively idempotent.

2. Semimodules over matrix semirings. IfR is a semiring then so is the set �n×n(R)
of all n×n matrices over R, with addition and multiplication defined in the standard

manner. We denote the additive identity in �n×n(R) by On×n and the multiplicative

identity in �n×n(R) by In×n. Moreover, if k and n are positive integers then the set

�k×n(R) of all k×nmatrices overR is canonically a left semimodule over �k×k(R) and

a right semimodule over �n×n(R). We denote the additive identity in �k×n(R) byOk×n.

Furthermore, if A∈�k×n(R) and B ∈�n×k(R), then the products AB ∈�k×k(R) and

BA∈�n×n(R) are defined in the usual manner. A generalized inverse of A∈�k×n(R)
is a matrix A− ∈ �n×k(R) satisfying AA−A = A. If such a generalized inverse ex-

ists, then A is multiplicatively regular. Again, if A is multiplicatively regular then the

Thierrin-Vagner inverse of A is defined to be A× =A−AA− ∈ �n×k(R) and this matrix

satisfies AA×A = A and A×AA× = A×. If A ∈ �k×n(R) is regular then, as before, we

define the matrices λ(A)=A×A∈�n×n(R) and ρ(A)=AA× ∈�k×k(R).

Example 2.1. Consider the special case of A =
[a1...
ak

]
∈ �k×1(R). Then A has a

generalized inverse A− = [b1, . . . ,bk] if and only if the element e = ∑k
i=1biai of R

satisfies aie= ai for all 1≤ i≤ k.

Given A ∈ �k×n(R) and B ∈ �n×k(R) having generalized inverses, and given C ∈
�k×k(R), we then note, as above, that whenever there exists a matrix T ∈ �n×n(R)
satisfying ATB = C we have

C =ATB =AA×ATBB×B = (AA×)C(B×B)= ρ(A)Cλ(B). (2.1)

A matrix A∈�k×n(R) is right regularly complemented if and only if it has a gener-

alized inverse A− ∈�n×k(R) and there exists a multiplicatively-regular matrix A[r] ∈
�n×n(R) satisfying the conditions AA[r] = Ok×n and A×A+A[r] = In×n. Similarly,

B ∈�n×k(R) is left regularly complemented if and only if it has a generalized inverse

B− ∈�k×k(R) and there exists a multiplicatively-regular matrix B[l]�n×n(R) satisfy-

ing the conditions B[l]B =On×k and BB×+B[l] = In×n.

Example 2.2. Again, consider the special case of A =
[a1...
ak

]
∈ �k×1(R). Then A

is right regularly complemented if and only if it has a generalized inverse A− =
[b1, . . . ,bk] and if there exists a multiplicatively-regular element c = A[r] ∈ R satis-

fying aic = 0 for all 1≤ i≤n and
∑k
i=1biai+c = 1. Note that, in this case, c is a right

complement of
∑k
i=1biai. Similarly, A is left regularly complemented if and only if it

has a generalized inverse A− = [b1, . . . ,bk] and there exists a multiplicatively-regular
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matrix A[l] = [dij]∈�k×k(R) satisfying
∑k
i=1biai = 0 and

aibj+dij =

1 if i= j,

0 if i≠ j.
(2.2)

Suppose that A ∈ �k×n(R) and B ∈ �n×k(R) are matrices having generalized in-

verses and satisfying the condition that A is right regularly complemented while B
is left regularly complemented. Then each matrix C ∈ �k×k(R) defines a function

αC : �n×n(R)→�n×n(R) by setting

αC : Y � �→A×CB×+λ(A)YB[l]+λ(A)[r]Y . (2.3)

We can now generalize Proposition 1.2 as follows.

Proposition 2.3. Let R be a semiring. Let A ∈�k×n(R) and B ∈�n×k(R) be ma-

trices having generalized inverses and satisfying the condition that A is right regularly

complemented while B is left regularly complemented. Furthermore, let C ∈ �k×k(R)
be such that there exists a matrix T ∈�n×n(R) that satisfies ATB = C . Then a complete

set of solutions of (1.2) is given by

{
αC(Y) | Y ∈�n×n(R)

}
. (2.4)

If T does not satisfy this equation then (1.2) has no solutions in �n×n(R).

The proof is essentially the same as that of Proposition 1.2.
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