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Ideals are used to define homological functors in additive categories. In abelian categories
the ideals corresponding to the usual universal objects are principal, and the construction
reduces, in a choice dependent way, to homology groups. The applications considered in
this paper are: derived categories and functors.
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1. Introduction. Categorification is by now a commonly used procedure [1, 6, 9].

The concept of an additive category generalizes that of a ring in the same way group-

oids generalize the notion of groups. Additive categories were called “rings with sev-

eral objects” in [14], and were studied by imitating results and proofs from noncom-

mutative homological ring theory, to additive category theory. Alternatively, the addi-

tive category theory may be applied, as in [15], to the ring theory. Subsequent related

papers adopted the “ideal theory” point of view, for example, [5], and in [17] the prob-

lem of lifting algebraic geometry to the category theory level was considered and a

notion of prime spectrum of a category was defined.

In this paper, we consider the Dedekind’s original aim for introducing ideals [7],

and leading to the study of general rings, not only principal ideal rings (PIR). In the

context of categories, we relax the requirements of an exact category for the existence

of kernels and cokernels, and define homological objects in an intrinsic way, using

ideals. The former are not “intrinsic” concepts. Universal constructions in category

theory represent classes of morphisms in terms of a (universal) generator (a limit).

The use of “coordinates” in geometry, or the use of generators and relations in algebra

is opposed to the intrinsic point of view which emphasizes the “global object,” which

in our case is the ideal.

To fix the ideas, consider an example, kernels:

A
f

B

K

ker(f )

X

0

∃!φ

x
(1.1)

Via categorification, the morphisms whose composition with f is zero is in the one

object category case (ring) a right ideal. The existence of kernels in the categorical

sense means that this right ideal is principal, and the universality property means

that it is free as a right module, that is, the one generator forms a base, and therefore,
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it is unique modulo a “unit” (isomorphism):

Ker(f ) := {ker(f )◦φ | ∀φ}=AnnR(f) := {x | fx = 0
}
. (1.2)

Rephrasing the above equalities, ker(f ) exists (categorical level) if and only if AnnR(f)
is a free and principal right ideal (ring theory level).

What benefit we have from this (re)interpretation? To define homology of com-

plexes in a category, we normally assume that there exists a null family of morphisms

and kernels and cokernels exist. Instead, we may consider the intrinsic approach to

generalize homology in the context of additive categories, using ideals.

In Section 2, we review the notion of an ideal in a category, and introduce some new

related concepts as well as operations with ideals. In Section 3, we define the notions

of kernel, cokernel, image, and coimage in terms of ideals. These notions allow the

definition of the homology of a complex in an additive category in an intrinsic way.

This approach provides an extension of the usual methods of homological algebra,

and extends the ordinary homology. If the category is exact, the homology modules

are represented on projectives by the usual homology groups (see Theorem 3.10).

The applications to derived categories of abelian categories, are considered in Section

4. The theory of triangulated categories was developed to provide a setup for homo-

logical algebra in additive categories which are not exact, for example, the derived

categories [3, page 45]. Our approach is the natural extension to the general case.

The construction of derived functors of functors which are not additive is consid-

ered. In Section 5, we consider axioms for an additive category, formally yielding the

structure of an abelian category in terms of ideals.

2. Ideals in additive categories. Let � be a preadditive category, that is, a cate-

gory such that for any two objects A, B in �, Hom(A,B) is an object in the category

�b of abelian groups. We consider the notion of ideal as originally defined by [11,

page 300], and consistent with the correspondence rings-additive categories, through

categorification.

Definition 2.1. An ideal (left/right) is a collection {I(A,B)}A,B∈Ob(�) of abelian

subgroups I(A,B) ⊂ Hom�(A,B) indexed by pairs of objects of �, which is stable

under (left/right) composition with morphisms (whenever defined).

We consider also such families of abelian subgroups indexed by objects of subcat-

egories of �. If �, � are subcategories of �, and ideal (left/right) from � to � is a

family {I(A,B)}A∈Ob(�),B∈Ob(�) of abelian subgroups I(A,B) ⊂ Hom�(A,B), which is

stable under composition (left/right) with morphisms from �.

An ideal (bilateral) is a left ideal which is also a right ideal. Bilateral ideals can be

characterized as follows (see [13, page 36]).

Proposition 2.2. Ideals are in a one-to-one correspondence with subfunctors of

Hom : �op��→�b.

Left (right) ideals may be viewed as families I(A)A∈Ob(�) of subfunctors of the corre-

sponding canonical representable functors Hom(A,·). The notation I(A) = IA is also

used.
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The condition that I(A) is a subfunctor of Hom(A,·) ensures that the family is stable

under left composition with arbitrary morphisms φ :X → Y , where A,X,Y ∈Ob(�):

I(A)(φ)=Hom(A,φ)|I(A,X) �

I(A)

I(B)

⇓I(f ) �b

A

I(A,Y)

I(A,X)
X

φ

Y

I(B,X)

φ◦·

·◦f
I(A,X)

φ◦·

I(B,Y) ·◦f I(A,Y)

(2.1)

The double arrow denotes a set of morphisms, and the left diagram is 2-commutative,

that is, ηA,X is the 2-morphism corresponding to the inclusion of sets. Composing φ
with morphisms from I(A,X) may result in a proper subset of I(A,Y).

The diagram from the right represents the naturality of the transformation I(f )
associated to a morphism f :A→ B. Its commutativity is equivalent to the associativity

of the composition of morphisms in �.

There is an alternative terminology for right (left) ideals. A right (left) ideal (from

�) to P ∈Ob(�) is called a right (left) ideal in [14, page 18], and a right P-ideal in [15,

page 140]. It is essentially a (co)sieve at P [13, page 37], by adjoining null morphisms

ending at P if necessary (see also [2, page 171] and [17, page 139]).

The support of the left (right) ideal I is defined as the full subcategory of � con-

sisting of objects A, such that I(A,X) ≠ 0 (I(X,A) ≠ 0) for at least one object X of

�. Since any ideal can be extended trivially outside its support, we assume all ideals

defined on �.

As an example, for a given morphism f consider the class of morphisms g◦f (f ◦g)
which left (right) factors through f . It is the principal left (right) ideal generated by

a morphism f [17, page 142], and it is denoted by 〈f | (|f 〉), or alternatively by �f
(f�). As another example, consider the category �(X) of open sets and inclusions,

canonically associated to a topological space X. The principal left ideal generated by

an open set U is essentially the family of open sets containing U [13, page 70].

An ideal I supported on � is called proper if it is different from Hom|� and 0|�
(compare [17, page 145]). In particular, the left ideal supported at A consisting of all

morphisms with codomain the object A is not a proper ideal. It is the total sieve on A
(maximal sieve on A [13, page 38]). A maximal ideal is defined as usual as a proper

ideal not contained in another proper ideal [17, page 141].

The product of two ideals (left/right) I and J is the ideal generated by the class of

products of morphisms f ◦g with f ∈ I and g ∈ J (zero if the class of generators

is empty).

The intersection of two left (right) ideals is the class of common morphisms. As an

example, if the domain of g is the codomain of f , then the product of the left principal

ideal (l.p.i.) 〈g| and the r.p.i. |f 〉 is a bilateral ideal equal to their intersection. It is the

bilateral ideal 〈g◦f 〉 generated by their composition, and it is denoted by 〈g|f 〉:

A
f
������������������������������������������→ B g

�����������������������������������������→ C, 〈g|f 〉 = 〈g|∩|f〉= 〈g|·|f〉=�(g◦f)�. (2.2)
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If I is a bilateral ideal, �̂ = �/I is the category having the same object as � and

morphisms are cosets modulo the ideal I. Note that I also defines a subcategory �

by restricting the morphisms to those in I. If I and J ⊂ I are two ideals, then I/J :

�/J��/J →�b is the quotient ideal associating to a pair of objects (A,B) the quotient

group I(A,B)/J(A,B). To see this, apply Proposition 2.2 to the sequence of inclusions

J ⊂ I ⊂Hom�, to conclude that I/J is an ideal of the quotient category �/J.

To define a quotient of left (right) ideals, we need the notion of a module [2,

page 171] and [15, page 140]. A left (right) �-module is an additive functorM : �→�b
(M : �op → �b). It extends in a natural way the one object case, when � is the one

object additive category {∗R} associated to a ring R = End(∗R) (tautological categori-

fication [9]). Then an R-module structure φ : R → End(M) on the abelian group M is

the same as a functor M : �→�b. We denote by �-mod (mod-�) the category of left

(right) �-modules.

Definition 2.3. If I and J ⊂ I are two right ideals, then their quotient I/J : � →
mod-� is defined as the family of right modules (I/J)A = IA/JA. Denoting for clarity

F = IA, G = JA, and η : F → G the corresponding inclusion, we have the following

diagram defining the functor I/J on morphisms (f :X → Y):

F(X)

F(f)

ηX
G(X)

G(f)

canX
F/G(X)

∃!F/G(f)

F(Y)
ηY

G(Y)
canY

F/G(Y)

(2.3)

Following the noncommutative ring theory, for example, [10], we define the left

(right) annihilator �(S) (�(S)) of a nonempty class of morphisms S as the class of

morphisms f such that f ◦a= 0 (a◦f = 0) for all a∈ S. A left (right) ideal I is called

an annihilator left (right) ideal of � if I = �(S) (I = �(S)) for some nonempty class

of morphisms S.

3. Homology. To define the homology of a complex in �, we consider the families

of morphisms, rather than the limits giving the usual universal objects.

Definition 3.1. The right (left) annihilator of a left (right) ideal I is called the

kernel ideal (cokernel ideal), and is denoted by Ker(I) (Coker(I)). The coimage ideal

of a left ideal I is Coim(I) = Coker(Ker(I)). The image ideal of a right ideal J is

Im(J)= Ker(Coker(J)).
If I is a principal left (right) ideal generated by f , the following brief notation is

used:

Ker(f )=�(< f |), Coker(f )=�(|f >)
Im(f )= Ker

(
Coker(f )

)
, Coim(f )= Coker

(
Ker(f )

)
.

(3.1)

From the definitions the following lemma is clear.

Lemma 3.2. (1) Ker(I) and Im(I) are right ideals. The Coker(I) and Coim(I) are left

ideals.
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If I = 〈f |, then Ker(I) is a sieve on the domain of f and Im(I) is a sieve on the

codomain of f . Also Coker(I) is a cosieve on the codomain of F and Coim(I) is a

cosieve on the domain of f .

Note that a left (right) ideal I is contained in its coimage (image), since Ker and

Coker reverse inclusions:

I ⊂ J �⇒ Ker(J)⊂ Ker(I), (3.2)

while Im and Coim preserve inclusions.

A left (right) ideal I is called closed if it coincides with its coimage (image).

Lemma 3.3. Kernels, cokernels, images, and coimages are closed ideals, for example

Ker
(
Coker

(
Ker(I)

))= Ker(I), I left ideal. (3.3)

Proof. We prove the statement corresponding to kernels. If I is a left ideal, then

I ⊂ Coker(Ker(I)), so that Ker(Coker(Ker(I)))⊂ Ker(I). Now, ifψ∈ Ker(I), for allψ∈
Coker(ker(I))ψ◦φ= 0, andφ∈Ker(Coker(Ker(I))). Therefore, Ker(Coker(Ker(I)))=
Ker(I).

If Ker(f ) (Im(f )) is a principal right ideal, then a generator is a kernel of f in the

usual sense, and is denoted by ker(f ) (im(f )). Similarly for the principal left ideals

Coker(f )= |coker(f )〉 and Coim(f )= |coim(f )〉.
In what follows, we use the terms kernel, cokernel, and so forth as an abbreviation

for the corresponding ideals, not assumed to be principal. The following lemma is

essential for defining homology in terms of ideals.

Lemma 3.4. If the morphisms g and f are composable, then the following conditions

are equivalent:

(a) The sequence of two morphisms is a complex: g◦f = 0.

(b) The image of f is contained in the kernel of g: Im(f )⊂ Ker(g).
(c) The cokernel of f contains the coimage of g: Coker(f )⊃ Coim(g).

Proof. The sequence g ◦f = 0 is translated as g ∈ Coker(f ). Applying Ker and

using Lemma 3.2, Im(f )⊂ Ker(g) follows.

Conversely, Coker reverses the previous relation

Coker
(
Ker(g)

)⊂ Coker
(
Ker

(
Coker(f )

))
. (3.4)

Since the set from left containsg and the set from right equals Coker(f ) by Lemma 3.3,

we obtain g ∈ Coker(f ), that is, g◦f = 0.

The equivalence of (a) and (c) follows by duality.

Let �h(�) be the category of homological complexes in �.

Definition 3.5. The right homology of the complex C• is the family of right mod-

ules 	R• (C•) defined as the quotient of right ideals

	R
n
(
C•
)= Ker

(
dn
)

Im
(
dn+1

) . (3.5)
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The left homology of the complex C• is the family of left modules 	L•(C•) defined as

the quotient of left ideals

	L
n
(
C•
)= Coker

(
dn+1

)

Coim
(
dn
) . (3.6)

Let f• : C• →D• be a morphism of complexes. 	R
n(f•) : 	R

n(C•)→	R
n(D•) is the natural

transformation induced by f• on homology (see Remark 3.6 and Definition 2.3):

	R
n(f)(X)

(
[φ]

)= [f ◦φ], φ∈ Ker
(
dn
)
(X), X ∈Ob(�), (3.7)

where the brackets denote the class modulo Im(dn+1)(X). 	L
n(f•) : 	L

n(D•)→	L
n(C•)

is the natural transformation induced by a pull-back through f• on homology

	L
n(f )(X)

(
[φ]

)= [φ◦f], φ∈ Coker
(
dn+1

)
(X), X ∈Ob(�). (3.8)

We thus obtain the functors 	R
n : Ch(�)→Hom(�,�b) and 	L

n :Ch(�)→Hom(�op,�b)
with values �-modules. Explicitly, the values of the right �-module are equivalence

classes of morphisms:

	R
n
(
C•
)
(X)=

{
φ :X �→ Cn | dn ◦φ= 0

}

{
φ :X �→ Cn | Coker

(
dn−1

)◦φ= 0
} . (3.9)

The complex is exact if and only if all homology modules vanish.

Remark 3.6. It is immediate that Ker(dn)(X) = ker(Hom(X,dn)), but in general

Im(f )(X)≠ im(Hom(X,f )) (see Example 3.9). As an immediate consequence, a chain

map f• as above, restricts to a map between kernels.

Remark 3.7. Associate to a homological complex C• the right ideal I(C•) deter-

mined by the class of morphisms consisting of the morphisms of the complex to-

gether with the total sieves on the objects of the complex. Similarly, consider J(C•)
the left ideal obtained by adjoining the cosieves supported on the complex. Then, the

homology may be defined “globally” as Ker(J(C•))/ Im(J(C•)). The direct definition

is used for simplicity.

With this notion of exactness, Hom is not left exact in general. The usual sequences

stating that Hom is left exact reduce to the following sequences.

Proposition 3.8. If 0 → A f
��������������������������→ B g

�������������������������→ C → 0 is an exact sequence in the additive

category �, then for any object X ∈�, the following sequences are exact:

0 �→Hom(X,A)
f∗������������������������������������������������������������������→Hom(X,B), 0 �→Hom(C,X)

g∗
�����������������������������������������������������������������������→Hom(B,X), (3.10)

where f∗ =Hom(X,f ) and f∗ =Hom(g,X).

Proof. They are equivalent to f∗ and g∗ being monomorphisms (Ker(f∗)= 0 and

Ker(g∗)= 0). Indeed f∗(ψ)= 0, that is, f ◦ψ=0 is equivalent to ψ∈ Ker(f ), therefore

φ= 0. Similarly, g∗(φ)= 0, that is, φ◦g = 0 is equivalent to φ∈ Coker(g), therefore

φ= 0.
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Example 3.9. A typical example showing how Hom may fail to be left exact, is the

following.

Let � be the category of topological abelian groups and k a commutative ring, for

example, k = Z. Consider the category � = k� with the same objects as � and with

morphisms the free k-modules generated by the morphisms of the category �. Then

� is an additive category in an obvious way. The sequence 0→Q j
������������������→R→ 0→ 0 is exact

in �, since Coker(j)= 0R, so that Im(j)= Ker(0R)= 1R�. Applying Hom(Z,·) we get

essentially the same sequence but in �b, where it is not exact.

The relation to homology groups when the category is abelian is investigated next.

Theorem 3.10. Let C• be a complex in the abelian category �. Then the right ho-

mology modules 	R
n(C•) are represented by the corresponding homology groups on the

class of projective objects of �.

Proof. The category being abelian, the kernel ideal of dn and the image ideal of

dn+1 are principal and generated by the morphisms shown in the following commu-

tative diagram:

···Cn+1
dn+1 Cn

dn Cn−1 ···

Bn

in

hn Zn

jn

0

A
ψ φ

(3.11)

If A is an arbitrary object, then Ker(dn)(A) consists of the morphisms jn ◦φ with φ
arbitrary in Hom(A,Zn), where jn = ker(f ). Similarly Im(dn+1)(A) is parametrized by

ψ∈Hom(A,Bn), where in = im(dn+1). Applying Hom(P,·) to the short exact sequence

0 → Bn → Zn → Hn(C•) → 0, with P projective, we obtain the following short exact

sequences:

0 �→Hom
(
P,Bn

)
�→Hom

(
P,Zn

)
�→Hom

(
P,Hn

(
C•
))
�→ 0. (3.12)

Note that 	R
n(C•)(P)= is isomorphic to Hom(P,Zn)/Hom(P,Bn). In this way, 	R

n(C•)
is isomorphic to Hom(·,Hn(C•)) and Hn(C•) represents the right homology module

	R
n(C•), on the class of projective objects of �.

In particular, when the category has a projective generator U , then the category is

canonically embedded in the category of abelian groups, and the two definitions of

homology functors canonically correspond.

In the following diagram, Y denotes the Yoneda embedding and hU is the canonical

representable functor which embeds the additive category � into the abelian cate-

gory of abelian groups. Recall that a projective generator can be characterized by the
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additive functor hU being exact and faithful

Ch(�)

Hn
HRn

η←���������������������������������������
�

hU

Y
Hom(�,�b)

〈·,U〉

�b

(3.13)

As an example, consider �= R-mod (R commutative ring).

Corollary 3.11. IfU = R is the canonical projective generator ofR-mod then there

are canonical isomorphisms

	R
n(·)(U)� hU ◦Hn �Hn. (3.14)

This is essentially due to the identification of the elements of an R-module M with

the morphisms Hom(R,M).

4. Applications. Important examples are derived categories of abelian categories,

which are not necessarily abelian. We would still want to have the notions of kernel

and cokernel, and so forth, in a generalized sense, and to study these categories using

“abelian techniques,” for example, the machinery of derived functors.

4.1. Derived categories. Recall that, given an abelian category �, we can consider

the category of complexes and chain maps Ch(�), which is also abelian.

Define the category K(�) = Ch(�)/� with the same objects as Ch(�) (complexes)

and with morphisms homotopy classes of chain maps, that is, classes of morphisms

modulo the ideal �⊂HomCh(�) of null chain homotopic chain maps

�
C0

1�

Ch(�)

H0

K(�)

Ĥ0

�

(4.1)

In the above diagram C0 embeds the objects and morphisms as complexes and chain

maps concentrated in degree 0.

We do not need the actual derived category 
(�) = K(�)[Σ−1], which is obtained

as a localization with respect to quasi-isomorphisms.

In the general case, the categoryK(�), obtained by considering homotopy classes of

morphisms, is no longer abelian. It may fail even to be exact, as shown by this example

[3, page 45]: if � is a category with nontrivial extensions (e.g., abelian groups), and

if u ∈ Hom�(X,Y) is a morphism with its image Im(u) being not a direct summand

in Y , then the corresponding morphisms in Ch(�) (concentrated in degree 0) has no
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“classical” cokernel:

X•
u• Y•

q

?

coker(u•) Z•

∃ ↑u′

Cone(u)

(4.2)

The key is that q◦u is chain homotopic to zero, and if u would have a cokernel, then

the short exact sequence corresponding to its image (in �) must be split.

Note that the ideal Coker(u) always exists.

4.2. Derived functors. Since the key lemmas “lift” from generators to ideals (see

[16, page 176]), homology theories can be defined for additive categories.

To illustrate that statement, we prove the homotopical lemma, leading to the ma-

chinery of derived functors.

Lemma 4.1. Chain homotopic morphisms induce canonical isomorphims in homol-

ogy

f• ∼ g• �⇒	R
n
(
f•
)=	R

n
(
g•
)
. (4.3)

Proof. If f• and g• are chain homotopic morphisms with a chain homotopy s•,
then

	R
n
(
fn−gn

)(
[φ]

)= [(d′n+1sn+sn−1dn
)◦φ]= 0, (4.4)

since φ∈Ker(dn) and d′n+1 ◦h∈ Im(d′n+1) for any composable morphims h in �.

There is an analog of the connecting morphism [8, page 99]. From the start we point

out that additional requirements on the category are necessary to enable the familiar

long exact sequence theorem from homology. The relation with the requirement for

distinguished triangles [3], will be investigated elsewhere. The additional requirement

is the analog of the usual axiom for abelian categories, that is, “monomorphisms are

kernels” (see Section 5).

Definition 4.2. An additive category, such that principal right ideals generated

by monomorphisms and principal left ideals generated by epimorphisms are closed

ideals (see Lemma 3.3)

µ�= Im(µ), µ mono, �η= Coim(η), η epi, (4.5)

will be called regular.

In such categories, due to the mechanism of long exact sequences (see [8, page 121]),

derived functors form a connected sequence of functors [4, 12].

Theorem 4.3. In a regular additive category, restricting to projective objects and

morphisms, there are natural transformations δRn, such that (	R
n,δRn) is a connected

sequence of functors.
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Proof. Given a short exact sequence of complexes in �

0 �→A• f
������������������������������������������→ B• g

�����������������������������������������→ C• �→ 0, (4.6)

we prove the existence of the connecting transformation ω : Ker(dCn+1) → 	R
n(A•),

defined on projectives of �. The rest of the proof follows the standard one, where

“elements,” for example, c ∈ C , are replaced by generalized elements c : P → C .

Let P be a projective object in �, and let c : P → C be a morphism belonging to

Ker(dCn+1)(P)

P
c

b

a
An+1

dAn+1

fn+1 Bn+1

dBn+1

gn+1 Cn+1

dCn+1

0

An

dAn

fn
Bn

dBn

gn
Cn

0 An−1
fn−1 Bn−1

(4.7)

Adapting the proof from [8, page 99], there is a lift of c to B, denoted b. Then dBn+1◦b ∈
Ker(gn) = Im(fn). The additional assumption ensures that this morphism factors

through fn, yielding a map a ∈ Ker(dAn)(P). Indeed, fn−1 ◦dAn ◦a = 0 since B• is a

complex, and Ker(fn−1)= Im(0)= 0, implies dAn ◦a= 0.

We may check as usual that the map ω(c) = a+ Im(dAn), valued in 	R
n(A•)(P),

is independent of the choice of b, and it vanishes on Im(dCn+2). It thus defines the

required morphism δRn(P).

Remark 4.4. There is no analog of [8, Lemma 5.1, page 99], since Ker and Coker

have different “chirality.” However there is a pairing

δ̃ : Ker
(
dCn
)�Coker

(
dAn+1

)
�→Hom�, (4.8)

defined with the above notations by δ̃(P,Q)(c,d)= d◦a, where d∈Hom�(An,Q).

This approach allows us to generalize the construction of derived functors to the

case of nonabelian functors.

More precisely, for any category we may consider the category with the same ob-

jects, and with Hom(X,Y) the free module generated by the corresponding morphisms

of the original category. Enriching the category in this way (“linearization”) may be

viewed as the categorification of the group ring construction. In this way, we may

apply the machinery of derived functors in the general case of an arbitrary category.

5. Additive categories and abelian category axioms. We briefly consider the

abelian category axioms [16, page 83] in terms of ideals.
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The goal is to find the additional axioms on an additive category, providing the

same flexibility as abelian categories. The author did not find an ideal-theoretic refor-

mulation of the axioms of an abelian category, although Definition 4.2 points in this

direction.

Recall that we use the term kernel as an abbreviation for the kernel ideal. The analog

of the axioms (K) and (K◦) of an abelian category [16, page 83], hold by definition.

Lemma 5.1. Let � be an additive category. Then

(′K) Every morphism f has a kernel Ker(f );
(′K◦) Every morphism f has a cokernel Coker(f );

(1) f is a monomorphism if and only if Ker(f )= 0;

(2) f is an epimorphism if and only if Coker(f )= 0.

Proof. The statements are immediate consequences of the definitions.

The analog of the axioms (N) and (N◦) [16, page 83] are

(′N) For every monomorphism f , the right ideal |f 〉 is a kernel ideal (|f 〉 = Ker(I)
for some left ideal I).
(′N◦) For every epimorphism f , the left ideal 〈f | is a cokernel ideal (〈f | = Coker(I)

for some right ideal I).
Note that in an abelian category the above statements reduce to the usual axioms.

Lemma 5.2. If � is an abelian category then (N) and (′N) are equivalent. Dually,

(N◦) and (′N◦) are equivalent.

Proof. If f� is a kernel ideal Ker(I), and therefore closed, f�= Ker(J) with J =
Coker(Ker(I)) the closure of I. Then J = Coker(f�) is a principal left ideal generated

by h = coker(f ) and f� = Ker(�h) = Ker(h) = ker(h)�. Now it is easy to see that

two monomorphisms, f and g = ker(h), generate the same right ideal if and only if

they have isomorphic domains f = g◦s (s isomorphism). Therefore f is the kernel (in

the usual sense) of a morphism.

Remark 5.3. From [10, page 2], the axiom (′N) (dually (′N◦)) can be rephrased

as “any right regular element f (no right zero-divisors/monomorphism) generates an

annihilator right ideal f�.” It further demonstrates the similarity between the ring

theory and the additive category theory, as the “ring with several objects” case.

Proposition 5.4. The axiom (′N) holds if and only if any monomorphism f gen-

erates its image ideal: |f 〉 = Im(f ).
(′N◦) holds if and only if any epimorphism g generates its coimage ideal: 〈g| =

Coim(g).

Proof. We only prove the first statement, since the second statement follows

by duality. If |f 〉 = f� is a kernel ideal Ker(I), then it is closed and Im(f ) =
Ker(Coker(f�)) equals f�.

For the converse, let f be a monomorphism, and assume f� = Im(f ). Then f� =
Ker(I) with I = Coker(f ).

Corollary 5.5. A regular additive category satisfies the ideal-theoretic axioms

(′K), (′K◦), (′N), and (′N◦).
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It is not clear what the analog for the epi-mono factorization axiom (AB2) [15,

page 84] should be, and allowing the usual epi-mono based type of arguments. We

only note that the rows in the next diagram are exact, that is, the kernel of the left

ideal based at A equals the image of the right ideal based at A

Ker(f )
A

f

Coim(f )
Ker

(
Coim(f )

)= Im
(
Ker(f )

)

Coker(f )
B

Im(f )
Ker

(
Coker(f )

)= Im
(
Im(f )

)

(5.1)

and that in general f is common to both Im(f ) and Coim(f ).

6. Conclusions and further developments. The aim of “categorifying ideal theory”

is manifold. First, to avoid the familiar “unique-up-to-a-unit” of arithmetic in princi-

pal ideal rings and to define an “intrinsic” homology in additive categories. Second,

with ideals replacing generators, a greater degree of generality is achieved. In additive

categories, the analog of two basic axioms in abelian categories are consequences of

the definitions.

In this way, it is possible to develop the usual formalism of homological algebra

in derived categories, based on short exact sequences. Then, a natural problem is to

determine the relationship between this approach and the established formalism of

distinguished triangles.

Acknowledgments. I thank the referees for recommendations, especially for

helping the author to avoid a false claim (Theorem 4.3).
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