A COMBINATORIAL COMMUTATIVITY PROPERTY FOR RINGS

HOWARD E. BELL and ABRAHAM A. KLEIN

Received 24 August 2001

We study commutativity in rings *R* with the property that for a fixed positive integer *n*, xS = Sx for all $x \in R$ and all *n*-subsets *S* of *R*.

2000 Mathematics Subject Classification: 16U80.

1. Introduction. In [2], we discussed P_{∞} -rings *R*, which were defined by the property that

$$XY = YX \tag{1.1}$$

for all infinite subsets X, Y of R; and in an earlier paper [1], the first author discussed P_n -rings, defined by the property that (1.1) holds for all n-subsets X, Y of R. For a fixed positive integer n, we now define a Q_n -ring to be a ring R with the property that

$$xS = Sx \quad \forall x \in R, \ \forall n$$
-subsets S of R . (1.2)

Clearly, every commutative ring is a Q_n -ring for arbitrary n; moreover, there exist badly noncommutative Q_n -rings, since every ring with fewer than n elements is a Q_n -ring. Our purpose is to identify conditions which force Q_n -rings to be commutative or nearly commutative.

It is obvious that every Q_n -ring is a P_n -ring and every P_n -ring is a P_∞ -ring. We make no use of the results on P_n -rings in [1], and most of our results are of a different sort than those in [1]. However, a special case of the theorem on P_∞ -rings in [2] plays a crucial role in our study.

2. Preliminaries. We begin with some notation. Let *R* be an arbitrary ring, not necessarily with 1. The symbols *D*, *N*, *Z*, and *C*(*R*) denote the set of zero divisors, the set of nilpotent elements, the center, and the commutator ideal, respectively; and |R| denotes the cardinal number of *R*. For *Y* being an element or subset of *R*, the symbols $C_R(Y)$, $A_\ell(Y)$, $A_r(Y)$, and A(Y) denote the centralizer of *Y* and the left, right, and two-sided annihilators of *Y*. For $x, y \in R$, the set $L_{x,Y}$ is defined to be $\{w \in R \mid xy = wx\}$.

We give three lemmas, the first of which is rather trivial and the other two of which are not.

LEMMA 2.1. Let *R* be a Q_n -ring with $|R| \ge n$. Then

- (i) for all $x \in R$, xR = Rx and $|A_{\ell}(x)| = |A_r(x)|$;
- (ii) all idempotents of R are central;

- (iii) N is an ideal;
- (iv) if *R* is not commutative and $x \notin Z$, then $R \setminus (A_{\ell}(x) \cup C_R(x))$ and $R \setminus (A_r(x) \cup C_R(x))$ are nonempty.

PROOF. (i) is obvious; and if *e* is idempotent, the fact that eR = Re yields ex = exe = xe for all $x \in R$, so $e \in Z$. Moreover, (i) enables us to prove (iii) by adapting the standard proof that *N* is an ideal in commutative rings. Finally, if $x \notin Z$ then $C_R(x)$ is a proper subgroup of (R, +); and (i) implies that $A_\ell(x)$ and $A_r(x)$ are also proper subgroups of (R, +). Since a group cannot be the union of two proper subgroups, (iv) is immediate.

LEMMA 2.2. If R is an infinite Q_n -ring, then R is commutative.

PROOF. Since every Q_n -ring is a P_{∞} -ring, we could simply invoke the theorem of [2], which states that every P_{∞} -ring is either finite or commutative. However, the proof in [2] is long and involved, so we prefer to give a more elementary proof.

Let *R* be a noncommutative Q_n -ring. We may assume that *R* is not a Q_m -ring for any m < n. Since all Q_1 -rings are commutative, n > 1, and there exist $x \in R$ and an (n-1)-subset *H* of *R* such that $xH \neq Hx$; and we may assume that xH is not a subset of Hx. We may also assume that $R \setminus H \neq \emptyset$, since otherwise *R* is finite.

For any $a \in R \setminus H$, $x(H \cup \{a\}) = (H \cup \{a\})x$, so if we take $h \in H$ for which $xh \notin Hx$, we have

$$xh = ax. (2.1)$$

Since (2.1) holds for all $a \in R \setminus H$, it follows that for fixed $b \in R \setminus H$, $R \setminus H \subseteq b + A_{\ell}(x)$. Moreover, if $c \in A_{\ell}(x)$, then xh = bx = (b + c)x, so $b + c \notin H$. Therefore $R \setminus H = b + A_{\ell}(x)$, hence $|R \setminus H| = |A_{\ell}(x)|$ and $|R \setminus A_{\ell}(x)| = |H|$. But since $A_{\ell}(x)$ is a proper subgroup of R, $|R \setminus A_{\ell}(x)| \ge |A_{\ell}(x)|$, that is, $|H| \ge |R \setminus H|$; and the finiteness of H yields the finiteness of R.

LEMMA 2.3 (see [4]). If *R* is a finite ring with $N \subseteq Z$, then *R* is commutative.

In view of Lemma 2.2, we assume henceforth that *R* is finite.

3. Commutativity of Q_n -rings with 1

THEOREM 3.1. If *R* is any Q_n -ring with 1 such that |R| > n, then *R* is commutative.

PROOF. By Lemma 2.3, we need only to show that $N \subseteq Z$; and since $u \in N$ implies 1 + u is invertible, it suffices to prove that invertible elements are central.

Suppose, then, that *x* is a noncentral invertible element and $y \notin C_R(x)$. If *H* is any (n-1)-subset of *R* which excludes *y*, the condition $x(\{y\} \cup H) = (\{y\} \cup H)x$ yields $z \in H$ such that

$$xy = zx. (3.1)$$

Since *x* is invertible, there is a unique $z \in R$ satisfying (3.1); and we have shown that every (n-1)-subset contains either *y* or *z*. But $|R \setminus \{y, z\}| \ge n-1$; therefore noncentral invertible elements cannot exist.

526

The bound on |R| in Theorem 3.1 is best possible, as the following example shows. The rings of this example were introduced by Corbas in [3].

EXAMPLE 3.2. Let $n = p^{2k}$, where p is prime and k > 1. Let ϕ be a nonidentity automorphism of $GF(p^k)$. Let $R = GF(p^k) \times GF(p^k)$, with addition being componentwise and multiplication given by $(a,b)(c,d) = (ac,ad + b\phi(c))$. It is easily shown that R is a ring with |R| = n and $D = \{(0,b) | b \in GF(p^k)\}$; hence if $a \neq 0$, (a,b) is invertible. Thus, if $a \neq 0$, (a,b)R = R(a,b) = R; and if $b \neq 0$, $(0,b)R = \{(0,b\phi(c)) | c \in GF(p^k)\}$ and $R(0,b) = \{(0,bc) | c \in GF(p^k)\}$, so that (0,b)R = R(0,b) = D. Thus, R is a Q_n -ring. Obviously, R is noncommutative and (1,0) is a multiplicative identity element.

4. Commutativity of Q_n -rings: the general case. We begin this section with a nearcommutativity theorem, which is reminiscent of [1, Theorem 6].

THEOREM 4.1. If $n \le 16$ and R is any Q_n -ring, then C(R) is nil.

PROOF. Since every Q_k -ring is a Q_{k+1} -ring, we may assume that n = 16. If $|R| \ge 16$, then N is an ideal by Lemma 2.1(iii); and R/N is a finite ring with no nonzero nilpotent elements, hence is commutative. If |R| < 16, it follows easily from the Wedderburn-Artin structure theory that C(R) is nil.

We proceed to our major commutativity theorems.

THEOREM 4.2. Let $n \ge 4$, and let R be a Q_n -ring. If |R| > 2n - 2, or if n is even and |R| > 2n - 4, then R is commutative.

PROOF. Let *R* be a Q_n -ring which is not commutative, and let $x \notin Z$. Our aim is to show that $|R| \le 2n - 2$ or $|R| \le 2n - 4$; and since n - 1 < 2n - 4, we may suppose that $|R| \ge n$. By Lemma 2.1(iv), there exists $y \in R \setminus (A_r(x) \cup C_R(x))$. If *H* is any (n - 1)-subset which does not contain *y*, we have $x(\{y\} \cup H) = (\{y\} \cup H)x$; and since $xy \neq yx$, there exists $z \in H$ such that xy = zx—that is, $H \cap L_{x,y} \neq \emptyset$. We have argued that any (n - 1)-subset of *R* must either contain *y* or intersect $L_{x,y}$ —a condition that cannot hold if $|R \setminus L_{x,y}| \ge n$; thus,

$$|R| \le |L_{x,y}| + n - 1. \tag{4.1}$$

We now investigate $|L_{x,y}|$. If $w \in L_{x,y}$, then $L_{x,y} = w + A_{\ell}(x)$, hence $|L_{x,y}| = |A_{\ell}(x)|$. By Lemma 2.1(iv), $A_{\ell}(x) \neq R$, so $|L_{x,y}| = |R|/k$ for some $k \ge 2$. Substituting into (4.1) gives

$$|R| \le \frac{k}{k-1}(n-1) \le 2n-2.$$
(4.2)

Suppose now that *n* is even. If $A_{\ell}(x)$ has index at least 3 in (R, +), (4.2) yields $|R| \le \lfloor 3(n-1)/2 \rfloor \le 2n-4$. Thus, we may assume that $|A_{\ell}(x)| = |R|/2$ and show that $|R| \ne 2n-2$.

Suppose, then, that $|A_{\ell}(x)| = n - 1$, so that $|A_r(x)| = n - 1$ by Lemma 2.1(i). Note that $A_{\ell}(x)$ is an (n-1)-subset not intersecting $L_{x,\gamma}$, so γ must be in $A_{\ell}(x)$; and since

 $y \notin A_r(x), A_\ell(x) \neq A_r(x)$, so $A_r(x)x \neq \{0\}$. Now $x(y \cup A_r(x)) = (y \cup A_r(x))x$ and therefore $A_r(x)x \subseteq \{xy,0\}$; hence $A_r(x)x = \{0,xy\}$ is an additive subgroup of order 2. Therefore the map $\phi : A_r(x) \to A_r(x)x$ given by $w \mapsto wx$ has kernel of index 2 in $A_r(x)$. But $|A_r(x)|$ is odd, so we have a contradiction; hence $|R| \le 2n-4$.

As we will see later, the bounds on |R| in Theorem 4.2 are best possible; however, under various restrictions, a smaller bound holds.

THEOREM 4.3. Let $n \ge 4$ and let R be a Q_n -ring with |R| > (3/2)(n-1). Then R is commutative if one of the following is satisfied:

- (i) |R| is odd;
- (ii) (R, +) is not the union of three proper subgroups;
- (iii) N is commutative;
- (iv) $R^3 \neq \{0\}$.

PROOF. Again we suppose that *R* is not commutative and $x \notin Z$. Since |R| > (3/2)(n-1) > n, the arguments in the proof of Theorem 4.2 show that $|A_{\ell}(x)| = |A_r(x)| = |R|/2$ —a fact which proves that (i) implies commutativity of *R*.

Applying the first isomorphism theorem for groups shows that |xR| = |Rx| = 2; hence for any $u \in R \setminus A_r(x)$ and $v \in R \setminus A_\ell(x)$, $xR = \{0, xu\}$ and $Rx = \{0, vx\}$. Since xR = Rx by Lemma 2.1(i), it follows that if $y \in R \setminus (A_\ell(x) \cup A_r(x))$, then $\{0, xy\} = xR = Rx = \{0, yx\}$ and therefore $y \in C_R(x)$. Thus $R = A_\ell(x) \cup A_r(x) \cup C_R(x)$, and we have proved that (ii) implies commutativity of R.

We now show that $x \in N$. Since R is not commutative, it follows from Theorem 3.1 that R does not have 1, hence R = D; and if $x \notin N$, some power of x is an idempotent zero divisor $e \neq 0$. Since $A_{\ell}(x) \subseteq A_{\ell}(e)$ and $A_{\ell}(e) \neq R$, we must have $A_{\ell}(x) = A_{\ell}(e)$ and similarly $A_r(x) = A_r(e)$. But e is central by Lemma 2.1(ii), hence $A_{\ell}(x) = A_r(x) = A(x) \subseteq C_R(x)$. Thus, if $y \notin A(x)$, $\{0, xy\} = xR = Rx = \{0, yx\}$ and y is also in $C_R(x)$, contrary to the assumption that $x \notin Z$. But x was an arbitrary noncentral element; hence, if there exist two noncommuting elements, both must be nilpotent. Thus (iii) forces commutativity of R.

To complete our proof, we show that our assumption that *R* is not commutative forces $R^3 = \{0\}$. For $x \notin Z$, the fact that $x \in N$ yields $A_r(x^2) \supseteq A_r(x)$, so $A_r(x^2) = R$; hence $x^2R = Rx^2 = \{0\}$. If we choose $y \in R \setminus (A_r(x) \cup C_R(x))$ and $w \in R \setminus (A_\ell(x) \cup C_R(x))$, then $y^2R = Ry^2 = \{0\}$; moreover, $\{0, xy\} = xR = Rx = \{0, wx\}$, so xy = wx. Thus, $xR^2 = xyR = wxR = \{wxy, 0\} = \{xy^2, 0\} = \{0\}$. If $z \in Z$, then $x + z \notin Z$ so $(x + z)R^2 = \{0\}$; therefore $R^3 = \{0\}$ as required.

We now give examples showing that the bounds on |R| in Theorems 4.2 and 4.3 are best possible.

EXAMPLE 4.4. Let *R* be the algebra over *GF*(2) with basis *x*, *y*, *x*² and multiplication defined by $xy = x^2 = y^2$, $0 = yx = x^2y = yx^2 = xx^2 = x^2x = x^2x^2$. Then $\{0, x^2\} = A(R)$. It is easily verified that for any $u \notin A(R)$, the sets $A_{\ell}(u)$, $A_r(u)$, $\{w \in R \mid uw = x^2\}$ and $\{w \in R \mid wu = x^2\}$ all have 4 elements; hence for any 5-subset *S* of *R*, $uS = Su = \{0, x^2\}$. Therefore *R* is a Q_5 -ring, and hence a Q_6 -ring, with |R| = 8. Thus, in general, neither bound in Theorem 4.2 can be improved.

EXAMPLE 4.5. Let *R* be the algebra over GF(3) with basis x, y, x^2 and multiplication defined as in the previous example. An argument similar to the one above shows that *R* is a Q_{19} -ring with |R| = 27, so the bound (3/2)(n-1) in Theorem 4.3 cannot be reduced.

5. Further results for small n. By definition all Q_1 -rings are commutative, and it is easy to see that all Q_2 -rings are commutative; and since there exist rings of order 4 which are not commutative, not all Q_5 -rings are commutative. It is natural to ask: what is the largest n such that all Q_n -rings are commutative? Our next theorem gives the answer.

THEOREM 5.1. If $n \le 4$, all Q_n -rings are commutative.

PROOF. Since every Q_k -ring is a Q_{k+1} -ring, we may assume n = 4. By Theorem 4.2 any counterexample R would have $|R| \le 4$; and since all rings of order less than 4 are commutative, we need only to consider rings of order 4.

Suppose, then, that *R* is a counterexample and *x* and *y* are noncommuting elements with $xy \neq 0$. Then $R = \{0, x, y, x + y\}$. Since idempotents are central, any of $x^2 = x$, $x^2 = y$, $x^2 = x + y$ would force *x* and *y* to commute; hence $x^2 = 0$. It is now easily checked that the condition xR = Rx cannot hold.

Not surprisingly, a better result holds for rings with 1.

THEOREM 5.2. If $n \le 8$, then every Q_n -ring with 1 is commutative.

PROOF. We may assume that n = 8. Suppose that *R* is a counterexample. By Theorem 3.1, $|R| \le 8$; and since all rings with 1 having fewer than 8 elements are commutative, |R| = 8 and *R* is indecomposable. Since idempotents are central, we therefore have no idempotents except 0 and 1; hence every element is either nilpotent or invertible. Since $u \in N$ implies 1 + u is invertible, it follows from Lemma 2.3 that there exists a pair x, y of noncommuting invertible elements. The group of units is not commutative and has at most 7 elements, hence is isomorphic to S_3 . Thus, there exists a unique nonzero nilpotent element u, which by Lemma 2.3 is not central; and there is therefore an invertible element w such that $uw \neq wu$. But in view of Lemma 2.1(iii), wu and uw are nonzero nilpotents, so we have a contradiction.

Theorem 5.2 is best possible; the ring of upper-triangular 2×2 matrices over GF(2) is a Q_9 -ring with 1 which is not commutative.

ACKNOWLEDGMENTS. The authors are grateful to Professor B. H. Neumann for suggesting that we study Q_n -rings. The first author was supported by the Natural Sciences and Engineering Research Council of Canada, Grant No. 3961.

REFERENCES

- [1] H. E. Bell, A setwise commutativity property for rings, Comm. Algebra 25 (1997), no. 3, 989–998.
- [2] H. E. Bell and A. A. Klein, A commutativity and finiteness condition for rings, in preparation.
- [3] B. Corbas, *Rings with few zero divisors*, Math. Ann. 181 (1969), 1-7.

[4] I. N. Herstein, A note on rings with central nilpotent elements, Proc. Amer. Math. Soc. 5 (1954), 620.

Howard E. Bell: Department of Mathematics, Brock University, St. Catharines, Ontario, Canada L2S3A1

E-mail address: hbell@spartan.ac.brocku.ca

Abraham A. Klein: Sackler Faculty of Exact Sciences, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

E-mail address: aaklein@post.tau.ac.il