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A COMBINATORIAL COMMUTATIVITY PROPERTY FOR RINGS
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We study commutativity in rings R with the property that for a fixed positive integer n,
xS§ = Sx for all x € R and all n-subsets S of R.
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1. Introduction. In [2], we discussed P.-rings R, which were defined by the prop-
erty that

XY =YX (1.1)

for all infinite subsets X, Y of R; and in an earlier paper [1], the first author discussed
P,,-rings, defined by the property that (1.1) holds for all n-subsets X, Y of R. For a
fixed positive integer n, we now define a Q,-ring to be a ring R with the property that

xS=Sx VxeR, Vn-subsets S of R. (1.2)

Clearly, every commutative ring is a Q,-ring for arbitrary n; moreover, there exist
badly noncommutative Q,,-rings, since every ring with fewer than n elements is a Q-
ring. Our purpose is to identify conditions which force Q,-rings to be commutative
or nearly commutative.

It is obvious that every Q,-ring is a P,-ring and every P,-ring is a P -ring. We make
no use of the results on P,-rings in [1], and most of our results are of a different sort
than those in [1]. However, a special case of the theorem on P.-rings in [2] plays a
crucial role in our study.

2. Preliminaries. We begin with some notation. Let R be an arbitrary ring, not nec-
essarily with 1. The symbols D, N, Z, and C(R) denote the set of zero divisors, the
set of nilpotent elements, the center, and the commutator ideal, respectively; and |R|
denotes the cardinal number of R. For Y being an element or subset of R, the symbols
Cr(Y),Ap(Y), A, (Y),and A(Y) denote the centralizer of Y and the left, right, and two-
sided annihilators of Y. For x,y € R, the set Ly, is defined tobe {w € R | xy = wx}.

We give three lemmas, the first of which is rather trivial and the other two of which
are not.

LEMMA 2.1. Let R be a Q,-ring with |R| = n. Then
(i) forallx e R, xR =Rx and |Ay(x)| =|A,(x)];
(ii) all idempotents of R are central;
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(iii) N is an ideal;
(iv) if R is not commutative and x ¢ Z, then R\(Ay(x) U Cr(x)) and R\ (A, (x) U
Cr(x)) are nonempty.

PROOF. (i) is obvious; and if e is idempotent, the fact that eR = Re yields ex =
exe = xe for all x € R, so e € Z. Moreover, (i) enables us to prove (iii) by adapting the
standard proof that N is an ideal in commutative rings. Finally, if x ¢ Z then Cg(x)
is a proper subgroup of (R, +); and (i) implies that Ag(x) and A, (x) are also proper
subgroups of (R, +). Since a group cannot be the union of two proper subgroups, (iv)
is immediate. O

LEMMA 2.2. IfR is an infinite Q,-ring, then R is commutative.

PROOF. Since every Q,-ring is a P,-ring, we could simply invoke the theorem of
[2], which states that every P -ring is either finite or commutative. However, the proof
in [2] is long and involved, so we prefer to give a more elementary proof.

Let R be a noncommutative Q,-ring. We may assume that R is not a Q,,-ring for
any m < n. Since all Q,-rings are commutative, n > 1, and there exist x € R and an
(n—1)-subset H of R such that xH # Hx; and we may assume that xH is not a subset
of Hx. We may also assume that R\H # @, since otherwise R is finite.

Foranya € R\H, x(Hu {a}) = (Hu{a})x, so if we take h € H for which xh ¢ Hx,
we have

xh=ax. (2.1)

Since (2.1) holds for all a € R\H, it follows that for fixed b € R\H, R\H < b + Ap(x).
Moreover, if ¢ € Ay(x), then xh = bx = (b +c¢)x, so b+ c¢ ¢ H. Therefore R\H =
b+ Ap(x), hence |[R\H| = |Ap(x)| and |R\Ap(x)| = |H|. But since Ay(x) is a proper
subgroup of R, |[R\Ay(x)| = |Ayp(x)|, that is, |[H| = |R\H]|; and the finiteness of H
yields the finiteness of R. O

LEMMA 2.3 (see [4]). IfR is a finite rving with N < Z, then R is commutative.

In view of Lemma 2.2, we assume henceforth that R is finite.

3. Commutativity of Q,-rings with 1
THEOREM 3.1. IfR is any Q-ring with 1 such that |R| > n, then R is commutative.

PROOF. By Lemma 2.3, we need only to show that N € Z; and since u € N implies
1+ u is invertible, it suffices to prove that invertible elements are central.

Suppose, then, that x is a noncentral invertible element and y ¢ Cr(x). If H is any
(n—1)-subset of R which excludes vy, the condition x({y}UH) = ({v} UH)x yields
z € H such that

Xy = zX. (3.1)

Since x is invertible, there is a unique z € R satisfying (3.1); and we have shown that
every (n—1)-subset contains either y or z. But |[R\{y,z}| = n—1; therefore noncentral
invertible elements cannot exist. O
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The bound on |R| in Theorem 3.1 is best possible, as the following example shows.
The rings of this example were introduced by Corbas in [3].

EXAMPLE 3.2. Let n = p2*, where p is prime and k > 1. Let ¢ be a nonidentity auto-
morphism of GF(p¥). Let R = GF(p*) x GF(p*), with addition being componentwise
and multiplication given by (a,b)(c,d) = (ac,ad + b (c)). It is easily shown that R
is aring with |R| =n and D = {(0,b) | b € GF(p*)}; hence if a = 0, (a, b) is invertible.
Thus, if a #0, (a,b)R =R(a,b) =R;and if b # 0, (0,b)R = {(0,bp(c)) | c € GF(p*)}
and R(0,b) = {(0,bc) | c € GF(p*)}, so that (0,h)R = R(0,b) = D. Thus, R is a Q-
ring. Obviously, R is noncommutative and (1,0) is a multiplicative identity element.

4. Commutativity of Q,-rings: the general case. We begin this section with a near-
commutativity theorem, which is reminiscent of [1, Theorem 6].

THEOREM 4.1. Ifn <16 andR is any Q-ring, then C(R) is nil.

PROOF. Since every Qy-ring is a Q. 1-ring, we may assume that n = 16. If |[R| > 16,
then N is an ideal by Lemma 2.1(iii); and R/N is a finite ring with no nonzero nilpotent
elements, hence is commutative. If |R| < 16, it follows easily from the Wedderburn-
Artin structure theory that C(R) is nil. |

We proceed to our major commutativity theorems.

THEOREM 4.2. Letn >4, and let R be a Q,-ring. If |[R| > 2n -2, or if n is even and
IR| > 2n—4, then R is commutative.

PROOF. Let R be a Q,-ring which is not commutative, and let x ¢ Z. Our aim is to
show that |[R| <2n—2 or |R| < 2n—4; and since n—1 < 2n —4, we may suppose that
|IR| = n. By Lemma 2.1(iv), there exists v € R\(A,(x) UCg(x)).If H is any (n—1)-
subset which does not contain y, we have x({y}UH) = ({y} UH)x; and since xy #
¥x, there exists z € H such that xy = zx—that is, Hn Ly, #= &. We have argued
that any (1 —1)-subset of R must either contain y or intersect Ly, ,—a condition that
cannot hold if |[R\Ly , | = n; thus,

IR| < |Lyy | +n—1. (4.1)

We now investigate |Ly y|. If w € Ly, then Ly, = w +Ay(x), hence [Ly | = [Ap(x)].
By Lemma 2.1(iv), Ay(x) # R, s0 |Lx,| = |R|/k for some k = 2. Substituting into (4.1)
gives

IRIskfkl(n—I)SZn—Z. (4.2)

Suppose now that n is even. If Ay(x) has index at least 3 in (R,+), (4.2) yields
IR| < [3(n—1)/2] < 2n—4. Thus, we may assume that |[Ay;(x)| = |R|/2 and show that
IR| +2n—-2.

Suppose, then, that |[Ay(x)| =n—1, so that |A,(x)| =n—1 by Lemma 2.1(i). Note
that Ap(x) is an (n—1)-subset not intersecting Ly, 0 v must be in Ay(x); and since
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Yy EA(x), Ap(x) = Ay (x), 80 Ay (x)x #+ {0}. Now x (Y UA,(x)) = (YUA,(x))x and
therefore A, (x)x < {xy,0}; hence A, (x)x = {0,xy} is an additive subgroup of order
2. Therefore the map ¢ : A, (x) - A, (x)x given by w — wx has kernel of index 2 in
A, (x).But |A,(x)]| is odd, so we have a contradiction; hence |R| < 2n —4. O

As we will see later, the bounds on |R| in Theorem 4.2 are best possible; however,
under various restrictions, a smaller bound holds.

THEOREM 4.3. Letn >4 and let R be a Q,-ring with |R| > (3/2)(n—1). ThenR is
commutative if one of the following is satisfied:
(i) |R]| is odd;
(ii) (R,+) is not the union of three proper subgroups;
(iii) N is commutative;
iv) R3 #{0}.

PROOF. Again we suppose that R is not commutative and x ¢ Z. Since |R| >
(3/2)(n—1) > n, the arguments in the proof of Theorem 4.2 show that |A;(x)| =
|A;(x)| = |R|/2—a fact which proves that (i) implies commutativity of R.

Applying the first isomorphism theorem for groups shows that |[xR| = |Rx| = 2;
hence for any u € R\A,(x) and v € R\Ay(x), xR = {0,xu} and Rx = {0,vx}. Since
XR = Rx by Lemma 2.1(i), it follows that if v € R\(Ap(x) U A,(x)), then {0,xy} =
XR = Rx = {0, yx} and therefore y € Cr(x). Thus R = Ap(x) UA,(x) U Cr(x), and
we have proved that (ii) implies commutativity of R.

We now show that x € N. Since R is not commutative, it follows from Theorem 3.1
that R does not have 1, hence R = D; and if x ¢ N, some power of x is an idempotent
zero divisor e + 0. Since Ap(x) < Ay(e) and Ay(e) = R, we must have Ay(x) = Ay(e)
and similarly A, (x) = A, (e). But e is central by Lemma 2.1(ii), hence Ay(x) = A, (x) =
A(x) € Cr(x).Thus,if y ¢ A(x), {0,xy} = xR =Rx = {0, yx} and y is also in Cg (x),
contrary to the assumption that x ¢ Z. But x was an arbitrary noncentral element;
hence, if there exist two noncommuting elements, both must be nilpotent. Thus (iii)
forces commutativity of R.

To complete our proof, we show that our assumption that R is not commutative
forces R3 = {0}. For x ¢ Z, the fact that x € N yields A, (x2) 2 A, (x), so A, (x2) =R;
hence x%2R = Rx? = {0}. If we choose y € R\(A,(x)UCr(x)) and w € R\(Ap(x) U
Cr(x)), then y°R = Ry? = {0}; moreover, {0,xy} = xR = Rx = {0,wx},s0xy = wx.
Thus, xR? = xR = wxR = {wxy,0} = {xy?,0} ={0}.If z€ Z, then x +z ¢ Z so
(x +2z)R? = {0}; therefore R® = {0} as required. O

We now give examples showing that the bounds on |R| in Theorems 4.2 and 4.3 are
best possible.

EXAMPLE 4.4. LetR be the algebra over GF (2) with basis x, y, x? and multiplication
defined by xy = x? = 2,0 = yx = x?y = yx% = xx? = x°x = x°x2. Then {0,x?} =
A(R). Tt is easily verified that for any u ¢ A(R), the sets Ap(u), A, (u), {w € R |
uw =x2%} and {w € R | wu = x2} all have 4 elements; hence for any 5-subset S of R,
uS = Su = {0,x?}. Therefore R is a Q5-ring, and hence a Qg-ring, with |R| = 8. Thus,
in general, neither bound in Theorem 4.2 can be improved.
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EXAMPLE 4.5. Let R be the algebra over GF(3) with basis x, v, x? and multiplication
defined as in the previous example. An argument similar to the one above shows that
R is a Q9-ring with |R| = 27, so the bound (3/2)(n — 1) in Theorem 4.3 cannot be
reduced.

5. Further results for small n. By definition all Q;-rings are commutative, and it
is easy to see that all Q»-rings are commutative; and since there exist rings of order
4 which are not commutative, not all Qs-rings are commutative. It is natural to ask:
what is the largest n such that all Q,,-rings are commutative? Our next theorem gives
the answer.

THEOREM 5.1. Ifn <4, all Q,-rings are commutative.

PROOF. Since every Qi-ring is a Q. 1-ring, we may assume n = 4. By Theorem 4.2
any counterexample R would have |R| < 4; and since all rings of order less than 4 are
commutative, we need only to consider rings of order 4.

Suppose, then, that R is a counterexample and x and y are noncommuting elements
with xy # 0. Then R = {0,x,v,x + v}. Since idempotents are central, any of x? = x,
x2 =1y, x? = x+7y would force x and v to commute; hence x2 = 0. It is now easily
checked that the condition xR = Rx cannot hold. O

Not surprisingly, a better result holds for rings with 1.
THEOREM 5.2. Ifn <8, then every Q,-ring with 1 is commutative.

PROOF. Wemay assume that n = 8. Suppose that R is a counterexample. By Theorem
3.1, |R| < 8; and since all rings with 1 having fewer than 8 elements are commutative,
IR| = 8 and R is indecomposable. Since idempotents are central, we therefore have
no idempotents except O and 1; hence every element is either nilpotent or invertible.
Since u € N implies 1 + u is invertible, it follows from Lemma 2.3 that there exists
a pair x,y of noncommuting invertible elements. The group of units is not commu-
tative and has at most 7 elements, hence is isomorphic to S3. Thus, there exists a
unique nonzero nilpotent element u, which by Lemma 2.3 is not central; and there is
therefore an invertible element w such that uw # wu. But in view of Lemma 2.1(iii),
wu and uw are nonzero nilpotents, so we have a contradiction. O

Theorem 5.2 is best possible; the ring of upper-triangular 2 x 2 matrices over GF(2)
is a Qg-ring with 1 which is not commutative.
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