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We study commutativity in rings R with the property that for a fixed positive integer n,
xS = Sx for all x ∈ R and all n-subsets S of R.
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1. Introduction. In [2], we discussed P∞-rings R, which were defined by the prop-

erty that

XY = YX (1.1)

for all infinite subsets X, Y of R; and in an earlier paper [1], the first author discussed

Pn-rings, defined by the property that (1.1) holds for all n-subsets X, Y of R. For a

fixed positive integer n, we now define aQn-ring to be a ring R with the property that

xS = Sx ∀x ∈ R, ∀n-subsets S of R. (1.2)

Clearly, every commutative ring is a Qn-ring for arbitrary n; moreover, there exist

badly noncommutativeQn-rings, since every ring with fewer than n elements is aQn-

ring. Our purpose is to identify conditions which force Qn-rings to be commutative

or nearly commutative.

It is obvious that everyQn-ring is a Pn-ring and every Pn-ring is a P∞-ring. We make

no use of the results on Pn-rings in [1], and most of our results are of a different sort

than those in [1]. However, a special case of the theorem on P∞-rings in [2] plays a

crucial role in our study.

2. Preliminaries. We begin with some notation. Let R be an arbitrary ring, not nec-

essarily with 1. The symbols D, N, Z , and C(R) denote the set of zero divisors, the

set of nilpotent elements, the center, and the commutator ideal, respectively; and |R|
denotes the cardinal number of R. For Y being an element or subset of R, the symbols

CR(Y),A�(Y),Ar(Y), andA(Y) denote the centralizer of Y and the left, right, and two-

sided annihilators of Y . For x,y ∈ R, the set Lx,y is defined to be {w ∈ R | xy =wx}.
We give three lemmas, the first of which is rather trivial and the other two of which

are not.

Lemma 2.1. Let R be a Qn-ring with |R| ≥n. Then

(i) for all x ∈ R, xR = Rx and |A�(x)| = |Ar(x)|;
(ii) all idempotents of R are central;
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(iii) N is an ideal;

(iv) if R is not commutative and x �∈ Z , then R\(A�(x)∪CR(x)) and R\(Ar (x)∪
CR(x)) are nonempty.

Proof. (i) is obvious; and if e is idempotent, the fact that eR = Re yields ex =
exe= xe for all x ∈ R, so e∈ Z . Moreover, (i) enables us to prove (iii) by adapting the

standard proof that N is an ideal in commutative rings. Finally, if x �∈ Z then CR(x)
is a proper subgroup of (R,+); and (i) implies that A�(x) and Ar(x) are also proper

subgroups of (R,+). Since a group cannot be the union of two proper subgroups, (iv)

is immediate.

Lemma 2.2. If R is an infinite Qn-ring, then R is commutative.

Proof. Since every Qn-ring is a P∞-ring, we could simply invoke the theorem of

[2], which states that every P∞-ring is either finite or commutative. However, the proof

in [2] is long and involved, so we prefer to give a more elementary proof.

Let R be a noncommutative Qn-ring. We may assume that R is not a Qm-ring for

any m< n. Since all Q1-rings are commutative, n > 1, and there exist x ∈ R and an

(n−1)-subsetH of R such that xH �=Hx; and we may assume that xH is not a subset

of Hx. We may also assume that R\H �= ∅, since otherwise R is finite.

For any a∈ R\H, x(H∪{a})= (H∪{a})x, so if we take h∈H for which xh �∈Hx,

we have

xh= ax. (2.1)

Since (2.1) holds for all a ∈ R\H, it follows that for fixed b ∈ R\H, R\H ⊆ b+A�(x).
Moreover, if c ∈ A�(x), then xh = bx = (b+ c)x, so b+ c �∈ H. Therefore R\H =
b+A�(x), hence |R\H| = |A�(x)| and |R\A�(x)| = |H|. But since A�(x) is a proper

subgroup of R, |R\A�(x)| ≥ |A�(x)|, that is, |H| ≥ |R\H|; and the finiteness of H
yields the finiteness of R.

Lemma 2.3 (see [4]). If R is a finite ring with N ⊆ Z , then R is commutative.

In view of Lemma 2.2, we assume henceforth that R is finite.

3. Commutativity of Qn-rings with 1

Theorem 3.1. If R is any Qn-ring with 1 such that |R|>n, then R is commutative.

Proof. By Lemma 2.3, we need only to show that N ⊆ Z ; and since u∈N implies

1+u is invertible, it suffices to prove that invertible elements are central.

Suppose, then, that x is a noncentral invertible element and y �∈ CR(x). If H is any

(n−1)-subset of R which excludes y , the condition x({y}∪H) = ({y}∪H)x yields

z ∈H such that

xy = zx. (3.1)

Since x is invertible, there is a unique z ∈ R satisfying (3.1); and we have shown that

every (n−1)-subset contains eithery or z. But |R\{y,z}| ≥n−1; therefore noncentral

invertible elements cannot exist.
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The bound on |R| in Theorem 3.1 is best possible, as the following example shows.

The rings of this example were introduced by Corbas in [3].

Example 3.2. Let n= p2k, where p is prime and k > 1. Letφ be a nonidentity auto-

morphism of GF(pk). Let R = GF(pk)×GF(pk), with addition being componentwise

and multiplication given by (a,b)(c,d) = (ac,ad+bφ(c)). It is easily shown that R
is a ring with |R| =n and D = {(0,b) | b ∈GF(pk)}; hence if a≠ 0, (a,b) is invertible.

Thus, if a≠ 0, (a,b)R = R(a,b)= R; and if b ≠ 0, (0,b)R = {(0,bφ(c)) | c ∈GF(pk)}
and R(0,b) = {(0,bc) | c ∈ GF(pk)}, so that (0,b)R = R(0,b) = D. Thus, R is a Qn-

ring. Obviously, R is noncommutative and (1,0) is a multiplicative identity element.

4. Commutativity ofQn-rings: the general case. We begin this section with a near-

commutativity theorem, which is reminiscent of [1, Theorem 6].

Theorem 4.1. If n≤ 16 and R is any Qn-ring, then C(R) is nil.

Proof. Since everyQk-ring is aQk+1-ring, we may assume that n= 16. If |R| ≥ 16,

thenN is an ideal by Lemma 2.1(iii); and R/N is a finite ring with no nonzero nilpotent

elements, hence is commutative. If |R| < 16, it follows easily from the Wedderburn-

Artin structure theory that C(R) is nil.

We proceed to our major commutativity theorems.

Theorem 4.2. Let n≥ 4, and let R be a Qn-ring. If |R|> 2n−2, or if n is even and

|R|> 2n−4, then R is commutative.

Proof. Let R be a Qn-ring which is not commutative, and let x �∈ Z . Our aim is to

show that |R| ≤ 2n−2 or |R| ≤ 2n−4; and since n−1< 2n−4, we may suppose that

|R| ≥ n. By Lemma 2.1(iv), there exists y ∈ R\(Ar (x)∪CR(x)). If H is any (n−1)-
subset which does not contain y , we have x({y}∪H)= ({y}∪H)x; and since xy ≠
yx, there exists z ∈ H such that xy = zx—that is, H ∩Lx,y ≠ ∅. We have argued

that any (n−1)-subset of R must either contain y or intersect Lx,y—a condition that

cannot hold if |R\Lx,y | ≥n; thus,

|R| ≤ ∣∣Lx,y
∣
∣+n−1. (4.1)

We now investigate |Lx,y |. If w ∈ Lx,y , then Lx,y =w+A�(x), hence |Lx,y | = |A�(x)|.
By Lemma 2.1(iv), A�(x)≠ R, so |Lx,y | = |R|/k for some k≥ 2. Substituting into (4.1)

gives

|R| ≤ k
k−1

(n−1)≤ 2n−2. (4.2)

Suppose now that n is even. If A�(x) has index at least 3 in (R,+), (4.2) yields

|R| ≤ �3(n−1)/2� ≤ 2n−4. Thus, we may assume that |A�(x)| = |R|/2 and show that

|R|≠ 2n−2.

Suppose, then, that |A�(x)| = n−1, so that |Ar(x)| = n−1 by Lemma 2.1(i). Note

that A�(x) is an (n−1)-subset not intersecting Lx,y , so y must be in A�(x); and since
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y �∈ Ar(x), A�(x)≠ Ar(x), so Ar(x)x ≠ {0}. Now x(y∪Ar(x))= (y∪Ar(x))x and

thereforeAr(x)x ⊆ {xy,0}; henceAr(x)x = {0,xy} is an additive subgroup of order

2. Therefore the map φ : Ar(x)→ Ar(x)x given by w �wx has kernel of index 2 in

Ar(x). But |Ar(x)| is odd, so we have a contradiction; hence |R| ≤ 2n−4.

As we will see later, the bounds on |R| in Theorem 4.2 are best possible; however,

under various restrictions, a smaller bound holds.

Theorem 4.3. Let n ≥ 4 and let R be a Qn-ring with |R| > (3/2)(n−1). Then R is

commutative if one of the following is satisfied:

(i) |R| is odd;

(ii) (R,+) is not the union of three proper subgroups;

(iii) N is commutative;

(iv) R3 ≠ {0}.

Proof. Again we suppose that R is not commutative and x �∈ Z . Since |R| >
(3/2)(n− 1) > n, the arguments in the proof of Theorem 4.2 show that |A�(x)| =
|Ar(x)| = |R|/2—a fact which proves that (i) implies commutativity of R.

Applying the first isomorphism theorem for groups shows that |xR| = |Rx| = 2;

hence for any u ∈ R\Ar(x) and v ∈ R\A�(x), xR = {0,xu} and Rx = {0,vx}. Since

xR = Rx by Lemma 2.1(i), it follows that if y ∈ R\(A�(x)∪Ar(x)), then {0,xy} =
xR = Rx = {0,yx} and therefore y ∈ CR(x). Thus R = A�(x)∪Ar(x)∪CR(x), and

we have proved that (ii) implies commutativity of R.

We now show that x ∈N. Since R is not commutative, it follows from Theorem 3.1

that R does not have 1, hence R =D; and if x �∈N, some power of x is an idempotent

zero divisor e ≠ 0. Since A�(x) ⊆ A�(e) and A�(e) ≠ R, we must have A�(x) = A�(e)
and similarly Ar(x)=Ar(e). But e is central by Lemma 2.1(ii), hence A�(x)=Ar(x)=
A(x)⊆ CR(x). Thus, if y �∈A(x), {0,xy} = xR = Rx = {0,yx} and y is also in CR(x),
contrary to the assumption that x �∈ Z . But x was an arbitrary noncentral element;

hence, if there exist two noncommuting elements, both must be nilpotent. Thus (iii)

forces commutativity of R.

To complete our proof, we show that our assumption that R is not commutative

forces R3 = {0}. For x �∈ Z , the fact that x ∈N yields Ar(x2)⊋Ar(x), so Ar(x2)= R;

hence x2R = Rx2 = {0}. If we choose y ∈ R\(Ar (x)∪CR(x)) and w ∈ R\(A�(x)∪
CR(x)), theny2R = Ry2 = {0}; moreover, {0,xy} = xR = Rx = {0,wx}, so xy =wx.

Thus, xR2 = xyR = wxR = {wxy,0} = {xy2,0} = {0}. If z ∈ Z , then x+z �∈ Z so

(x+z)R2 = {0}; therefore R3 = {0} as required.

We now give examples showing that the bounds on |R| in Theorems 4.2 and 4.3 are

best possible.

Example 4.4. LetR be the algebra overGF(2)with basisx,y ,x2 and multiplication

defined by xy = x2 = y2, 0 = yx = x2y = yx2 = xx2 = x2x = x2x2. Then {0,x2} =
A(R). It is easily verified that for any u �∈ A(R), the sets A�(u), Ar(u), {w ∈ R |
uw = x2} and {w ∈ R |wu= x2} all have 4 elements; hence for any 5-subset S of R,

uS = Su= {0,x2}. Therefore R is a Q5-ring, and hence a Q6-ring, with |R| = 8. Thus,

in general, neither bound in Theorem 4.2 can be improved.
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Example 4.5. LetR be the algebra overGF(3)with basisx,y ,x2 and multiplication

defined as in the previous example. An argument similar to the one above shows that

R is a Q19-ring with |R| = 27, so the bound (3/2)(n−1) in Theorem 4.3 cannot be

reduced.

5. Further results for small n. By definition all Q1-rings are commutative, and it

is easy to see that all Q2-rings are commutative; and since there exist rings of order

4 which are not commutative, not all Q5-rings are commutative. It is natural to ask:

what is the largest n such that all Qn-rings are commutative? Our next theorem gives

the answer.

Theorem 5.1. If n≤ 4, all Qn-rings are commutative.

Proof. Since every Qk-ring is a Qk+1-ring, we may assume n= 4. By Theorem 4.2

any counterexample R would have |R| ≤ 4; and since all rings of order less than 4 are

commutative, we need only to consider rings of order 4.

Suppose, then, thatR is a counterexample andx andy are noncommuting elements

with xy �= 0. Then R = {0,x,y,x+y}. Since idempotents are central, any of x2 = x,

x2 = y , x2 = x+y would force x and y to commute; hence x2 = 0. It is now easily

checked that the condition xR = Rx cannot hold.

Not surprisingly, a better result holds for rings with 1.

Theorem 5.2. If n≤ 8, then every Qn-ring with 1 is commutative.

Proof. We may assume thatn=8. Suppose thatR is a counterexample. By Theorem

3.1, |R| ≤ 8; and since all rings with 1 having fewer than 8 elements are commutative,

|R| = 8 and R is indecomposable. Since idempotents are central, we therefore have

no idempotents except 0 and 1; hence every element is either nilpotent or invertible.

Since u ∈ N implies 1+u is invertible, it follows from Lemma 2.3 that there exists

a pair x,y of noncommuting invertible elements. The group of units is not commu-

tative and has at most 7 elements, hence is isomorphic to S3. Thus, there exists a

unique nonzero nilpotent element u, which by Lemma 2.3 is not central; and there is

therefore an invertible element w such that uw �=wu. But in view of Lemma 2.1(iii),

wu and uw are nonzero nilpotents, so we have a contradiction.

Theorem 5.2 is best possible; the ring of upper-triangular 2×2 matrices over GF(2)
is a Q9-ring with 1 which is not commutative.
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