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ABSTRACT. A Bloch function is exhibited which has radial limits of modulus one
almost everywhere but fails to belong to Hp, for each 0 < p < =,
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1. INTRODUCTION.

The purpose of this note is to give an example which seems to be useful in
settling several questions about Bloch functions.

Let E be the subset of the complex plane C consisting of the closed unit
disc together with the Gaussian integers Z?%. Let G be the complement of E in
in €. Let g : D ~ G be the analytic universal covering map of G given by the
uniformization theorem (D denotes the unit disc).

PROPOSITION. The function g is an unbounded Bloch function with the proper-
ties

(i) g has a radial limit g(ele) at almost every point eie of the unit circle.
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(ii) the function g(eie) is of modulus one almost everywhere on
the unit circle,

(iii) g 1is the reciprocal of a singular inner function, and so g
does not belong to any HP class.

Bloch functions on the unit disc may be defined as those analytic
functions f on D for which the radii of the schlicht discs in the
range of f are bounded above. The Bloch functions are somewhat anal-
agous to functions in the disc algebra--Bloch functions can be characterized
(see [1]) as those analytic functions which are uniformly continuous
when D 1is given the hyperbolic metric and € the Euclidean metric.
Since Bloch functions may be characterized (see [1]) as those analytic
functions f on D for which the quantity If'(z)l (1 - [zlz) is
bounded for z € D, it follows that the modulus of a Bloch function
grows rather slowly--at most as fast as log(l/(1 - |z|)) . Because
functions in the disc algebra and bounded functions have good boundary
behaviour, it is natural to ask about boundary values of Bloch functions--
in particular about radial boundary values. (It is shown in [4] that
a Bloch function has a radial limit at a point of the unit circle if and
only if it has a non-tangential limit there.)

In [5], Pommerenke gave an example of a Bloch function with radial
limits almost nowhere. The example given here is constructed in a similar
way, but it contrasts with Pommerenke's in that it shows that Bloch func-
tions which have radial limits almost everywhere need not be particularly
well-behaved.

The example answers a question posed by Joseph Cima (private commun-

ication). He asked whether a Bloch function which has radial limits
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almost everywhere and has the additional property that the boundary
function belongs to L? need be in HP . The function g provides a
negative answer to this question since g(eie) € LoQ while g ¢ Hp for
any 0< p< o . In fact g does not belong to the class Nt (see [2]
p. 25) which contains B for every p .

PROOF. It is evident that g is an unbounded Bloch function. Also,
to verify properties (i), (ii) and (iii), it is clearly sufficient to
verify (iii).

To establish (iii), consider the analytic function f = 1/g on D .
The function f is bounded (by 1) and is the universal covering map :

D->D-K, where K 1is the countable set
{0} U {1/(wt+in) | m,n € Z, |m+in| > 1} .

Being a bounded analytic function, f has radial limits almost
everywhere on the unit circle. It is easy to see from the properties of
covering maps that these radial limits are either of modulus 1 or else
belong to K . To complete the proof that f 1is a singular inner
function, it is only necessary to show that the radial limit f(eie)
belongs to K on a subset of the unit circle of measure zero.

But, for each k € K it is true that the set of eie for which
f(eie) = k has measure zero (see [2] p. 17). Since K 1is countable,
it follows that the set of eie for which f(eie) belongs to K also
has measure zero. The proof is now complete.

The example may also be viewed as elucidating the almost total lack

of relationships between the class B of Bloch functions on D and the

subclasses H’  and N+ of the Nevanlinna class N (see [2]). The onl
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containment which holds between B and the other classes is the relation

0

H € B . It is known that Hp_¢_3 for any 0 < p < ©» and that B¢N.
The example g given above belongs to B I N but not to N+ . The fact
B;é N is shown by the example of Pommerenke's [5] mentioned above.

Finally, the example given here can be modified to show that there

is no 8§ > 0 such that an analytic function f : D > @ satisfying
f(eie) = Lim f(reie) =1
r-+1
almost everywhere on the unit circle must have a disc of radius § in its
range. (Merely replace Zz by 522 in the construction of g). This
answers a question raised by J.S. Hwang. By contrast, he showed (see [3])
that a singular inner function (for example) must have a ( Schlicht) disc

of radius at least 2B/e 1in its range, where B denotes Bloch's constant.
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