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ABSTRACT. In this work, we consider certain class of exponential series
with polynomial coefficients and study the properties of convergence of such
series. Then we consider a subclass of this class and prove certain theorems
an the overconvergence of such a series, which allow us to determine the
conditions under which the boundary of the region of convergence of this

series is a natural boundary for the function f defined by this series.
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1. INTRODUCTION.

Let us consider the following LC-dirichletian element

(£} :i: P (x) exp-As | (1.1)

= j i = i
where Pn(s) j§0 ays’ . ay; are complex constants with anm #0 , s=g+iT,
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(o,1) € R2 and (Xn) is a sequence of complex numbers such that (I)‘nl) is

a D-sequence. That is to say (|xn|) is a sequence of positive real numbers

satisfying
0 < Ml < (Al <oy Ll_'n; Pl == (1.2)
Let 1
L = lim sup —OS—n/nelN-{O}t (1.3)
]
A, = Max {la ;| /i€ (0,1,...,m)} (1.4)
and
My
8% = lim sup ’ m /n€]N-{0}$ . (1.5)
n

Let 6n be the set of points of € which are zeros of Pn(s) and
g =u E:n . Let us denote by ed the derived set of € and
n
e =3s€¢ |(3) P, (s) = 0; where (nj) is an infinite subsequence of IN-{0}
i

depending on s ; let e* = (:‘,dU e, - e* is a closed set. Let us suppose
that C-e&* is non empty. We put
log [P (s) exp (- s)|

v &5(n,s) = - , for sufficiently large n ,

sec-e* LN
64(s) = lim inf gén(s)/ne lN-{O}f

¥ D = {seC-e*/6,(s) >a} .

a€R

In this paper, using a technique similar to that used by M. Blambert
and J. Simeon [2], we prove two lemmas for a LC-dirichletian element which
enable us to discuss the properties of absolute convergence and uniform conver-
gence for (1.1) in C-€& exclusively. Then we prove Jentzsch's theorem for
a L-dirichletian element that is for element of the type (1.1) where Ap are
positive real numbers satisfying (1.2) ((xn) is a D-sequence) and a theorem

on the overconvergence for a L-dirichletian element.

2. MAIN RESULTS.
DEFINITION. - It is said that a function is sub-lipschitzian on an open

set, if it is lipschitzian on each compact subset of that open set.
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LEMMA 1. - Let X be any compact subset of € . Then the following
assertions are true.

(1) v 3 v the function X3>s —6(n,s) is lipschitzian.
K<C-E* n' nan'

2) I B*<w , and if there exists a s_ € C-&° such that |[b,(s )| <=
then the function &, is sub-lipschitzian on €-€* .

PROOF. Let v e. = dist (%,&*) . Then it is easy to see that
xcc-e*

v v 3 v {j € (l:zl-oumn) = °'nj { dS,G} ’
SEX eé]O,e“[ n' n2n'
where ds c is the open disc centred at s and of radius ¢ and (c'nj) R
j€ {1,2,...,mn} , is the sequence of zeros of Pn(s) (with its order of mul-
plicity is taken into account). More precisely let us show that,
v 3 v v {je(1,2,...,my)) = a.njn{d
ee]O,ex[ n' nz2n' s€x

Let G, = U ds'e
SEX
subset of €-e* . Let e'9]0,ex-e[ where ee]O,ex[ . The set of discs

s,e} ‘

. It is evident that @e the closure of G, is a compact

ds e indexed by s on Ge is an open covering of ée . Hence we have
’
a finite subcovering ;
k —
3 U d , DG
— S.,€ €
ée:)(sl,...,sk) =1 7

let s€ X and s'edse

l

k
; hence s'€eG . Then s'€ U d , which
€ j=1 Sj,€
implies that 3 s' € ds ¢ " Now
j*e(1,...,k) j*

v 3 v v Pn(s) #0
jE(lv N-lk) n'(=n) nz=n' s€d '
j Sj,e
and hence

v v v Pn(S) #0 ,
nzMax{r’/jE(l....,k)} je(1,2,...,k) sed,
i

Pn(s')# 0 . As s 1is arbitrary on ¥ and

, €'

which gives v
nz Max{nj/jé(l,...,k)}

L
s' is arbitrary on ds,e we have



48 M. BLAMBERT & R. PARVATHAM

v 3 v v {je(1,....,k) = Ly 'S ds e}
66]0,6}‘[ n'(=n€) nzn' se€x ‘

From which we have

=2t

my,
v v log|P (s)|-log |P (s")]| = Z} log%1+ lg > log%l+
nzn' (=n€) (s,8')a@ix¥ “%j

Under the above conditions related to n , s and s' with s #s' ,

|6(n,s)-8(n,s')| s [s-s'| + m z; 10931.,.]%5"12

ls-s'| + l-—s| 310g(1+|—5;i'|)/|_s_;i'|€

. nIS s | j log(1+x) ,
|s-s'| + e sup( /x>0 ;
m
as  sup glog( +x) Of . |o6(n,s)-s(n,s")| < |s-s'| J1+ $ . Putting
el
LJheln - I)‘nl
¥ 3 L A4 |6(D,S)‘6(n:5')‘ < ue nls-s||

ee]O,ex[ n' nzn' (s,s')exxy

which proves the first part of the lemma.

Now let = lim sup hoo= 1+8*/e with c€]0,e [ ; as 3 8. (s )<
“ ,n X *

—0 ¥* o
n So€¢-6
v v |6,(s)-8,(s)] = u:ls-s'l
ee]O,eK[ (s,s')exxy
and
v |6,(s)-08,(s')| = u: |s-s'|
(s,s')exxx X
where
* _ * _ g*
W=t feelose () = 142
X %
Hence
v v [6,(s)-8,(s")| = p.: |s-s'|
KoC-e* (s,s')EKX¥ X

which completes the proof of the lemma.

Under the condition (2) of Lemma 1 , 6, 1is continuous on c-e*
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which implies that 5 is an open subset of C-&* ; but 5 can have
#*Q, *Q

several connected components.

LEMMA 2. - When B*<°° , then

¥ b Fe= v ¥ 3 ¥ v P (s)lexp(A s)| < expl Ixnl(a-B'))
a€R }cC,B*a B'>B* n' nzn' s€x

PROOF. Let a € R such that ﬁ*a# ¢ (otherwise the lemma is trivial)

and let X be a compact subset of ﬁ*a . We can easily see that

v v 3 v v Pn(s') #0
seC-e* ¢¢]0,dist(s,e¥*)[ n'(=ns e) n=n' s'edse

where dse is the closed disc centred at s and of radius ¢ . Hence

1

v v 3 L] v Pn(s') # 0 .
—£% V(= ' '
seC-¢€ eG]O,eM[ n'( ns,e) n=n' s Eds,e
Let us consider the compact subset ¥ = U dse , of @-&* . As
sex '
dist(}te,e*) >0 , we have from lemma 1,
v 3 v v |6(n,s)-8(n,s')| <, nls—s'l
¢'€]0,dist(¥ ,e*)[ n'(=n,) nz=n' (s,s')€X XK €
€ € e €
My
where py, =1+ . In particular,
e'in e Ih
v v v |8(n,s)-6(n,s')| < Her n|s—s'| ,

nzne. SEX seds'€
and hence

6(n,s') = &(n,s) - pe,'n|s-s | .

m
Further ™ 3 v m< 8' and
B'>B* n'(=n8.) n>n' n
v v v 8(n,s') = d(n,s)- |s-s'|(1+%) .

nzmax{ne,,ns,}=n1 SEX sedS

’

Since & is a compact subset of 5 v 3 v 6(n,s') >a ; finally

G: ’
SEX n' (=ns) n>n'

we have
v v o(ns') >a- |s-s'|(1+-§-:) (2.1)

v v A4 3
SEX B'>B* e'€]0,dist(8*,}c€)[ n' nzn' s'eds .
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50
where ¢ is arbitrary in ]0'6}6[ . The set of discs dse indexed by s on
K
X is an open covering for ¥ and hence 3 Ud > X . Further
S,,€
x:(sl...sk) =1
we have v 3 s € dS . Using (2.1) for the particular pair (sj,,s) .
s€x §'e(l..k) jee €
we have
v v 3 v 8(n,s) > a- ls-s.|(1+%.) .

(=L J (= !
8'>B* '€]0,dist(e*x X n'( nsj.,B',e') nzn

Let n" = Max{n_ ., ,|J€(l..k)} and as |s-s|<e , we have
s,B' ¢ ]
j
¥ ¥ 3 v b(n,s) > a-e(l+%) .
B'>p* e'€]0,dist(e*,xe)[ n" nzn"
+*
gligtéﬁ&_) < dist(&',xe) and

€
Choosing ¢ = ¢' < -2l we have
v v 6(n,s) > a - ¢ - B

v . 3
B>B €€]0,§"[ n n2n

where s is any arbitrary point of ¥ and n" does not depend on s . Hence

v v 3 v v 8(n,s) > a-e-B'
] * € n "
B'>8 e€]0,—2£[ n" n2n" se¥
As B' is arbitrary and strictly greater than B* , we have

v ER 4 v o(n,s)>a-B'

v
KoB,o B'>B* n' na2n' s€x
and hence
v v 3 v v [P (s)exp —xnsl < exp(- |xn|(a—8')) .

XCB, B'>B* n' n=zn' s€x

THEOREM 1. - When B* <o , L <w , the LC-dirichletian element {f}

converges absolutely on b, L+g* and uniformly on any compact subset of

ﬁ*,L+B* .

PROOF. Let us suppose that ’D*:L"’B* is non empty. Let }(o be a

We know that 3 Ko © Dpy - Let

compact subset of 5 L+g*
* B* 0,>L+B*
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B' € 18*,a-L[ . From Lemma 2 we have,

3 v v | (s)exp(-a s)| < exp{-|\ |(a-8')} ,

n' nzn' 56}60
where a-B' > L . Hence

Lo @

2 |P(s)exp(-A s)| < Z exp{~|x_|(a-8")}

—a n n n=n' n

n=n
and the series on the right hand side is convergent which proves that {f3
converges absolutely and uniformly on xo . Since }co is any arbitrary compact
subset of .b* Lig* {f} converges uniformly on any compact subset of

b

v, L+a* and absolutely on 'B*'L"'B* .

REMARK 1. By the following method, we obtain a bigger set of absolute

convergence for {f} . Let ‘B*L be supposed to be non-empty and L<w ,

Then v 3 6,(s) > L+es ;3 v &(n,s) > L+e, and
sEﬁ*L es>0 ns nzn
n:n' ~Log |P (s)exp(-A_s)| > L+ed|r | . Hence
s

% IPn(s)exp-kns| < i. exp{-(L+e ) |A |}

n=n' n=n
s s

and as the series on the right hand side converges, the series (1.1) converges

absolutely on & L - In this result, we have no restriction on B8* .
¥*

REMARK 2. {f} diverges on 03—8*-3*0 . If se (13-6*-3*0 , then
6,(s)<0 and 3  &,(s)< -a . Hence v o_ i 3 btys)<-a
aeRg sea:-e*-ﬁ*o a>0 (nj)

where (nj) is an infinite subsequence of IN-{0} . Therefore

|pnj(s)exp(-xnjs)| > exp(alxnjl) > 1

and which shows that {f} diverges on (13-6*—3*0 . When L =0, we have
convergence of the series (1.1) in ‘D*o c C-&* and divergence in G:-S*-.B:o .

We do not discuss the property of convergence of the series in ¢&* .

From here onwards we consider a L-dirichletian element,
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() >°15 P (s)exp(-1_s) (2.2)

where (xn) is a D-sequence (here )‘n are positive real numbers).

DEFINITION. It is said that a D-sequence (xn) is of the type (n)

if the following conditions are satisfied :

i) the Dirichlet series i exp(-—)\ns) converges on PO = {seC |0> 0} .
i=1

@©
(this gives that v > exp(-s()\j—)\n)) converges on Po . Let
nelN-{0} j=n
en(s) be its sum at the point s);
ii) vn >0 the sequence of functions (en) where 8 :P 3s — Bn(s)
is bounded on F"’l = {seC/c2n}:
iii) wn>0 the sequence of functions (6;) where
' n
* . - - - i P
en : Po 3s 2 exp( S()“n xj)) is bounded on P'r]

j=1

EXAMPLE. - If (xn) is a D-sequence and uio Inf()\m_l—)\‘) =y , then it
is easy to see that (xn) is of the type (p) .

If the D-sequence (xn) is of the type (p) , then we can easily show
that L=20 .

Now let us prove Jentzsch's theorem for L-dirichletian element. This
theorem for Dirichlet series with complex exponents was proved by
T.M. Gallie [3]. First let us consider the associated Dirichlet series of {f} .
{fA} : 21 A exp(-xns)
where A, is defined by (1.4). Let

fa .
op = Inf%oeR/hmIAnexp(—)\nsH =0, n— cog

be the abscisse of pseudo convergence of {fA} . Then we know that

oA = lim sup 3
p N-e An

f log An%

f f
when L=0 , oA is the same as ocA , the abscisse of convergence of {fA}.
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Let n and n' be two natural numbers such that n'=2n . Let En,n'
denote the set, indexed by (n,n') , of points of @€ which are zeros of the
LC-dirichletian polynomial
n'

Snln.(S) = j§n Pj(S)exp(—skj) ;
let E denote the union of all sets En,n' corresponding to all pairs (n,n')
and E_ be the set formed by the points which are zeros for an infinity of
polynomials Sn,n'(s) . Let us put E¥* = EduE& where Ed is the derived
set of E . E¥* 1is a closed subset of € . It is evident that E >¢& and
E o¢e_ and hence E* >¢&¥* . We suppose in what follows that C-E¥* # ¢
(which implies @-eg* # ¢) . Then we have

f
THEOREM 2. - When the D-sequence (>h) is of the type (N , ocA < ®

and B* <« , then we have (Fr(ﬁ*o) N C-e%*) < E¥*

PROOF. Let us suppose that the theorem is not true. Then there exists
a point b€ (Fr(p,,) N C- €¥*) and a disc d(b,p) centred at b of radius

p>0 , included in C-&* such that

3 (s) # 0 .

v v S ,

no n’ZnZno SEd(b,p) n.n
m

We have [P (s)exp(-A s)| < A (1+]s) n |exp(-A s)| and

v 3 v (mn/)‘n) < B' . Let us take a certain B > g* and put
1 ¥* 1 (—. '

B'>B no(—ns,) nzno

w = B' Log[1+sup{|s|/s€d(b,p)}] -Inf{c /sed(b,p)} and hence

f
v v |P (s)exp(-xns)l < Anexp(w)\n) . From the definition of oCA we
nzné) SEd(b:p)
have v ) 3 v A, < exp(o'r,) . Hence putting n = Max(no,no,no),
,. A n"(=n,) n2n
o] >0C [e] fo] [}
we get v v |P_(s)exp(-A,s)| < exp(lw+a')r )
n n
nzn, sed(b, p)
S () = 2 P(s)exp(-is) and T o@-6 )
Let s) = s) exp(-A.s an v s) = s ;
nl N j=n1 j ) Sed(b,p) nlln nlln

1/\
[Snlrn(s)] " is defined to be equal to exp((1/i)Log Snlln(s)) where
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Im Log Sn n(s) € 1-m,n] . For each integer n 2n, the function
ll

T :db,p)>s = T (s) is holomorphic on d(b,p) . We have

ny,n n;.n

n 1/, 1/x
v T, 0= Z Bs)exp(-xs)) = | < {exp( (w+a') +logn)]
sed(b,p) 1’ j=n,
= exp(w+o‘)exp(L%Jll .
n
Since (xn) is of the type (A) which implies L =0 , we have limexp(-l%g-ﬂ)=l.
n—o n

Hence the sequence of functions (Tn n) » nzn, is bounded and hence nor-
ll

mal on d(b,p) .

Let ¥ be a compact subset of d(b,p) such that Int }mﬁ*o £ 0 .
From any extracted subsequence of ('];11 n) we can extract a subsequence
which converges uniformly on X and the limit function is holomorphic on the

Int ¥ .

Let X be a compact subset of d(b,p)N & o such that Int:}mInt]-c1 # 9.
+*

Then we have v lim T =1 . Now XU xl is a compact subset of
s€x, o= ny.

d(b,p) . Then the subsequence extracted from the arbitrarily extracted sub-

sequence of (Tn n) converges uniformly on }cU}cl to a limit function holo-

?

morphic in Int(x le) and continuous on the boundary of xuul and takes

the value one at each point of }cl . Hence the limit function takes the value

one at each point of )(U}cl . This results that the sequence (Tnlln) conver-
ges to the same limit function on xuxl .

As K is any arbitrary compact subset of d(b,p) and }{,1

bitrary compact subset of d(b,p N .D*o such that Int ¥ N Int }(1 # ¢ , we have

is any ar-

v lim Tn n(s) =1
s€d(b,p) n—e 1’

- *—_
Let s ¢ d(b,p) N (C-g*-5,,) . Then

n An
v 3 v | Z Pj(s) exp(-xjs)l < (1+€)
e>0 n'1(=ns 'e)znl nzn) )7

o
and hence
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A
v R (sexp(-ns )| = IS, (s)-S (s,)] < 2(1+9 "

n>n1 1’0o nl,n-l
which gives
_Log|Pn(so)exp(-xnso)|  -log2

A An

- Log(1+€) ;

6*(50) > 0 as ¢ is arbitrary. Hence we arrive at a contradiction that

sg € 3*00(17—8* which establishes the result.

Finally, let us prove a theorem on the overconvergence of {f} defined

by (7). Before proving the theorem let us note that

REMARK 3. Let A be any compact subset of C€-&* and ()\n) be a
m
D-sequence of the type (A) . We have an(s)exp(-)\ns)l <A (1+]s]) nexp(--c:kn).

- mp
If s€p , then |Pn(s)exp(—)\ns)| sAn(1+mA) exp(mA)\n) where

m, = sup{|s|/s€B} . As A is a compact set, m, s finite ; for suffi-
ciently large n we have
Log |P_(s)exp(-\_s) LogA m
n n n n
+ — +m )+ :
\ =X y_ Log(l+m,)+m,
n n n

f
g A_g# -
5*(5) > Oc B Log(l-l-mA) m, .

f
- . A .
t = —g '- B*Log(l+m ) -m . If
Hence e;‘OACﬁ*'%'e with a o - B og( mA) m,
fa

» c A <
g¥ < T+Tog 1+mA) , we have A cC ‘B*B* .

THEOREM 3. - When ()‘n) is a D-sequence of the type (A) , B* <=

and 'D*B* # ¢ if there exist an infinite subsequence (nv) . VE N, of IN-{0]}

and a sequence of strictly positive numbers (ev) such that

lim 6§ = +o
v VY
and
v Ay +1 > (1+ev)>\n (2.3)
veN Vv v
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ny
(s) = ¥ P/(s)exp(-\s)., conver-
A" j:l j J
ges at each point s of any open simply connected subset (whose intersection

then the sequence ({S, (s)} , ve€IN, where S
v

with § in non empty) of an open set included in C-€¥* in which the
*,p¥*

function f defined by {f} is holomorphic.

PROOF. Let us choose 3 bounded domains AI'AZ and A, in the following

3
- Cow _ _ _
2 ! AZ 3 A3 c C-e* , Al c ‘B*B* and A3 is included
in an open subset of C-&* in which the function f defined by {f} is

manner : El c A c A

holomorphic. Further let Fr(Al) , Fr(Az) and Fr(As) satisfy a condition of
Hadamard's type, namely

3 Log'M2 < b Log M1 + (1-b) Log M3
be] 0, 1{
where v M; = Max{ |f(s) | /sEFr(Ai)} .
ie(1,2,3)

It is easy to see that 3 A
a>B*
11 = {a/ﬁ*aDAl] . l1 is non empty and is an interval. Let aAl = sule . Then

c b . Let us consider the set
1 *Q,

* -
a, >B and v 4 _. DA
Al e>0 *,G.Al €

ap = Inf{é*(s)lseﬂl) which implies that ap is a finite number. Hence
1 1

1 We can easily show that,

from lemma 2,

v 3 v v |P (s)exp(-A s)| < exp(-r (a, ~8") ;
B'elg¥*,ap [ n, nan seFr(Al) 1
1

hence for n > n,

2 |p(s) exp(-Ays)| < 9 exp{-\ (a, -8*)}
j=n+1 ) j=n+1 i

=exp{-xn+1(aAl-B')] > exp{-(aAl-B')(xj-xnﬂ)]

j=n+1
Since ()‘n) is a D-sequence of the type (A) and a, -B' > 0 , there exists
1

a finite number strictly positive B(B') such that

@
v Z  |exp{-(\;-A__ )s| < B(p') where Res=z a, -B';
nelN j=n+1 ] "ol 1

thus we have for each nzn,



OVERCONVERGENCE OF SERIES 57

j=§+1 le(S)eXP(-XjS)I < B(B')exp{—xnﬂ(aAl-B')} . (2.4)

Now let I, = {a€R |ﬁ*a3 b} . We have
—LogAn mn
v 3 v d8n,s) 2 T - Log (1+]|s|) +0o .
s€by 1’ (=n_) n=n' n n
s
Let mA3 = sup{\s\/s€A3} . Then
-LogA m
v 6(n,s) = D _ B 1og (1+m

— - ) - m
nzn' )‘n >‘n A3 A3

fa
- _ ¥ -
Su(s) = "% B Log(1+mA3) mA3 ,
f

. L= . A
which shows that A3 c ’B*cx with o < cc -8 Log(l+mA3) - mA3 , and hen_ce
I2 # ¢ and is an interval in R . Let QAS = supI2 . Then v 'B*,OL e DA3 .
e>0 Bg

We can easily show that a, = Inf{3,(s) lseE3] which implies that a, is
3 3
a finite number. Once again, from lemma 2, we get
.v . 3 v ¥ [Pn(s) exp(—xns)| < exp{-)\n(%s_s )}
B'>g* n, nzny sEFr(A3)

which gives

n(znyp) np-1 n
v T |P(s)exp(-rs)| = I |P(s)exp(-As)|+ T |P,(s)exp(-xjs)|
seFr(n) =1 ) =1 ) S
3 ny-1 n
< max | T |P(s)exp(-rs)|/seFr(a)t + 2 expl-Ala, -8')) .
j=1 ) ] 3 j=n2 j A3
let us choose B' > pg¥* such that op -B' # 0 . Now we examine the two
cases. 3
Case 1. - If ap -g' > 0 , then
3
n n
z exp(-xj(aAB-B ) = expO\n(aA:;-B'))Z exp{-(aA3-B )(xj+>»n)} < B"(B )exp&n(aA3-B )

J‘=n2 j=n,

where B"(8') is the sum of the series 2 exp(-2(a, —B')kj) .
j=0 3
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Case 2. - If N -g' <0 , then
3
n n n
7_3 exp(-xj(aAs—B )) = ? exp(kj |a, -B']) = exp(xn|aA3-B 1) ZD exp(—(>h-xj) oy -8'1)
J"nz j_nz 3 j—nz 3
Since the D-sequence ()‘n) is of the type (A7) there exists a finite number
strictly positive B'(g') such that

n
v 2~ exp{-(\ -)x.)|a, -B'|} < B'(g")
neIN-{0} j=1 n | E

which implies that
n
2 exp(-rja, -B')) < B'(8') exp(r la, -8']) .
. n'"A
j=n, 3 3
On putting B™(g') = Max{B'(g'),B"(8')} we have

n
? exp(-)\j(cx.A -g') =< B'"(B')exp(xn|aA3-B' D . (2.5)
J—nz 3

Using the generalized form of Hadamard three circle theorem [4] we have

3 Log M s blogM + (1-b)Log M (2.6)

bel0, 1 2y v 3o
where

Mi,v = Max({ Ian(s)l/seFr(Ai)} ,1=1,2,3
with

ny
R, (s) = f(s) - Z P.(s)exp(-As) .
v j=1 !

1

M, S B(B')exp{-(knv+1)(aAl—B')} < B(B')exp[-(1+6v)>\nv(aA1-B')} (2.7)

From (2.4) we have for nv >2n

because of (2.3) . On putting
nz-l
B = Max{ |f(s)|/s€Fr(a,)} + Max j§1 le(S)exp(-st)l/se Fr(ag)

we have from (2.5) for nv zn, ,

Malv < B°+B|-(B')exp(XnIG,A3—B' |) .

Let BO(B') = Max(B,,B" (') . Then for n,zn, ,
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M, |, = BL(BY) exp(xnlonAa-B'l) . (2.8)

Then using (2.7) and (2.8) in (2.6) we get, for n, =z max[nl,nz}

LogM,  <bLog B(8') +(1-b)Log B, (8)+}-b(1+8,) (e, -B')+(1-b) |oy -8'| s

Since tl-*ri 8, = = , we have lim —b(1+9v)(o.Al-B')+(l-b)IG.A3'B'| =-® ,Vtle
and hence lim Log M2 v = -o» which proves the theorem.
Vo ’

When the polynomial Pn(s) reduces to a complex number 3, o ¢ We

,
get the famous Ostrowaski's theorem [1] for Dirichlet series. Our theorem

m
contains G.L. Lunt'z theorem [5] as a particular case when Pn(s) = ags n

COROLLARY. - In theorem 3 if we replace (2.3) by the condition that
there exists a sequence (en) of strictly positive numbers such that

lim 6, =« and 3 ¥ xn > (1+en)>h , then each point of (Frﬁ*o)ﬂd'i—&*

n=e n' nzn'
is a singular point for f defined by (2.2). In particular if (Fr .D*o) c ¢c-e*

+1

then Fr Dro is a natural boundary for f .

PROOF. Let us suppose that the corollary is false. Then there exists
a point b ¢ (Fr .&*o) N C-e* and a disc d(b,p) centred at b and of radius
p>0 on which f is holomorphic. As a result of theorem 3 the sequence
(S,) converges on d(b,p) . From remark 2 {f} diverges on CD-&*-B*O .
There exists necessarily points common to (13-6*—3*0 and d(b,p) . For these

points there is a contradiction which establishes the corollary.
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