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ABSTRACT. In this work, we consider certain class of exponential series

with polynomial coefficients and study the properties of convergence of such

series. Then we consider a subclass of this class and prove ce[tain theorems

n the overconvergence of such a series, which allow us to determine the

conditions under which the boundary of the region of convergence of this

series is a natural boundary for the function f defined by this series.
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1. INTRODUCTION.

Le us consider the following LC-dirichletian element

If] " Pn(x) exp-knS (i.I)
1

mn
where Pn(s) anjS an..j are complex constants with an,mnO s=g+ir,

j=O



46 M. BLAMBERT & R. PARVATHAM

((,I) E I and (kn) is a sequence of complex numbers such that (l nl)
a D-sequence. That is to say (Iknl) is a sequence of positive real numbers

satisfying

Let

0 < Ixxl < I21 < lim I%1n-

L lim sup n /n6]N-[0}

(1.2)

and

(1.3)

An Max Ilanl/6 (0, mn) (1.4)

mn
lim sup n /n6 IN-J0} (1.5)

Let gn be the set of points of ( which are zeros of P (s) and
n

gdLJ n Let us denote by the derived set of and
n

g =Is6 Pn (s) 01 where (nj) is an infinite subsequence of IN-[0]
(ni)

depea4/ng on s let dug is a closed set. Let us suppose

that - is non empty. We put

Iog l(s)exp(-s)
6(n,s) for sufficiently large n

In his paper, using a technique similar to that used by M. Blamber[

and J. Simeon [2], we prove two lemmas for a LC-dichleian elemen which

enable us o discuss Zhe proies of absolute convergence and uniform conver-

gence for (I. I) in - exclusively. Then we prove Jentzsch’s heorem for

a L-dichletian elemen tha is for element of he type (I. I) where kn are

positive real numbers satisfying (1.2) [(k n) is a D-sequence) and a heorem

on he overconvergence for a L-dichletian element.

2. MAIN RESULTS.

DEFINITION. It is said that a function is sub-lipschitzian on an open

set, if it is lipschitzian on each compact subset of that open set.
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LEMMA 1. Let be any compact subset of Then the following

assertions are true.

(1) 3 the function 9 s 6 (n, s) is lipschitztan.
c- n’ n>n’

(2) If <(R) and If there exists a so 6 _w such that [6w(So) <

then the function 6 is sub-llpschitzlan on (-

PROOF. Let w e dist (],) Then it is easy to see that

v 3 V {J (l’2""’mn) = nj ds,
s ]0,[ n’ nn’

where ds, is the open disc centred at s and of radius and (Cnj)
[1,2,..., mn] is the sequence of zeros of Pn(S) (with its order of mul-

plicity is taken into account). More precisely let us show that,

v B v [j6(1,2,...,mn) =Znj’ds,e
e]0,eX[ n’ nn’ s

Let Ge ds, e It is evident that G the closure of Ge is a compact
s6

subset of - Let e’9 ]0,e-e[ where e]0,e[ The set of discs

d indexed by s on is an open covering of Hence we have
S,’

a finite subcoverlng

3 U d DG
o(s1, sk) J=l sj,’

k
Let s and s’ d hence s’G Then s’ t d whichs, j=l sj,
implies that 3 s’ d Now

J*(1 ,...,k) sJ

J(1,...,k) n’(=nj) nn’ sd
Sj,’

and hence

Pn(S) 0

nMax[/j(1 k)] j(1,2,...,k) sd

which gives
n Maxtl/j6(1 k)}

we haves is arbitrary on

P (s)# 0
n

P (s’) 0 As s is arbitrary on ]i and
n
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3 v y [jE(1 k) = mnj ds,e]
E]0,}[ n’(=n) nan’ sg

From which we have
mn [s-s’[ mn

V V log i(s)l-log (s’) B log 1+ g log
nn’(=n (s,s)xx i ,s’-%],, j=l

Under the above conditions elated to n s and s’ with s s’

I(n,s)-(n,s’) Is-s’l + o 1+
j=l

Is-s,+’ ]m1 lo(l+lS-S’) s-s’l

mn Is-s’ log(1)ls-s’[ + sup /x>0eknl x

as su,1(1 O 1 I(n -(n,s’i I-’l 1. Puttin

mn
1+

S-S.’
i+

V 3 V V 16(n,s)-6(n,s’)i
6]0,K n’ n>n’ (s,s’)E}x ,n

which proves the first pact of the lemma.

lim sup p 1+/ with E]O,)f[ asNow let las n-*m ,n

and

where

Hence

cE]0,X[ (s

Inf[p/E]0,eX[] 1+--

.(So) <(R)

SoEG-g

which completes the proof of the lemma.

Under the condition (2) of Lemma 1 6 is continuous on (13-g
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which implies that cz is an open subset of -ge but /wz can have

several connected components.

LEMMA 2. When 8"< then

/ = v v 3 n(S)exp(-knS)l < exp(-nl(a-8’))
Kc-uc 8’>8 n’ n>n’ s6K

PROOF. Let a 6 R such that /*c @ # (otherwise the lemma is trivial)

and let be a compact subset of /.a. We can easily see that

v v 3 v P (s’) 0
n

s6([;- e6]0,dist(s,)[ n’(=n n>n’ s’6d
s,c s,c

where d is the closed disc centred at s and of radius e Hence
s,

v v P (s’) 0
n

nan’ s’6ds6-* e6]0 K[ n’(=,
Let us consider the compact subset of -e As

s6E
dist(E ,g) > 0 we have from lemma i,

3 6(n,s)-6(n,s’) p,nS-S’
’6]0,dist( ,)[ n’(=n ,) nan’ (s,s’)6

mn
I + In particular,where Pc’, n e’ kn

v v 6(n,s)-6(n,s’) Pe’,nS-S’
s6 s’ 6ds,n,

and hence

(n,s’) , (n,s) ’,n s-s’
mn

Fuher V 3 < ’ and
8’>8

(n,s’l (n,sl-s-s’(+ ,I
nmax[

Since is a compact subset of a ? v 6(n,s’) > a finally

we have
s6E n’=, nan’

3 V 5(n,s’) > 0-Is-s’l(l+ ,)
sh ’>8 e’] 0,dist(e, )[ n’ n>n’ s’6d

e S,e

(2.1)
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where is arbitrary in ]0,[ The set of discs ds, indexed by s on

k
is an open covering for and hence 3 [3 d D ] Further

D(Sl...sk 1= 1 sj,e

we have 3 s 6 d
s ’(...) s,,

we have

Using (2.1) for the particular pair (sj,,s)

B 6(n,s) > =- Is-s,,l(l+r,)
’>8" ] 0 ,diet(g*,[ n’(=i,,8,,, nan’

Let n Max[nsj,8,, j6(l...k)] and as [s-5 < e we have

3 6(n s) > -s(l+),
8’>8 e’] 0,dist(ee, )[ n" nan"

dist(,e)
Choosing e’ < we have ---2 < dist(e’e and

w B 6(n,s) > a- 8’
n"BB e]O, hen"

where s is any arbitrary point of g and n" does not deend

B 6(n,s) > --8’
8’>8e cE]0,h[-- n" nan" sE]

As 8’ is arbitrary and strictly greater than 8e we have

v v B v v 6(n,s) > - 8’
hc_. 8’>8" n’ nn’ s6

and hence

v v B v v (s) exp-knS < expe kn(-8’))
Nc 8’>8 n’ nn’ sN

THEOREM 1. When 8e < L < the LC-dirichletian element If]

converges absolutely on 2,L+Se and uniformly on any compact subset of

,L+8

PROOF Let us suppose that 2),L+8 is non empty Let o be a

compact subset of 2) ,L+8
We know that B Ko c 2) Let
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8’ 6 ]Se, c-L[ From Lemma 2 we have,

3 v IPn(s)exp(-knS)l < exp[-Iknl(e-’)
n’ nan’ s6}

where -8’ > L Hence

IPn(s)exp(-knS)] <
n=n’ n=n’

and the series on the right hand side is convergent which proves that

converges absolutely and uniformly on Since }o is any arbitrary compacto
subset of / If] converges uniformly on any compact subset of

e, L+8e

/)e,L+e and absolutely on /)e,L+8e

REMARK 1. By the following method, we obtain a bigger set of absolute

convergence for If] Let /)eL be supposed to be non-empty and L <

Then V 3 6e(s) > L+ 3 6(n,s) > L+s and

s6/)eL s>0
s

n’ nan’
s s

-Log IPn(s)exp(-knS) > (L+s) Iknl Hence
n>n’s

IPn(s)exp-k sl < Z exp[-(L+e s) ll 11
n=n, n n

n=ns s
and as the series on the right hand side converges, the series (I.I) converges

absolutely on eL In this resu|t, we have no restriction on 8e

If s 6 -ge-Ao thenREMARK 2. if] diverges on (-ge-/)eo
6e(s) < 0 and 3 6 (s) < - Hence 3 3 6(nj s) <-0

06R+
e

(njo
where (nj) is an infinite subsequence of IN-[0] Therefore

[Pnj(S)exp(-ln.S)l] > exp([knj[) >

and which shows that [f] diverges on -ge-eo When L 0 we have

convergence of the series (1 .I) in /)eo c (B-ge and divergence in

We do not discuss the property of convergence of the series in e

From here onwards we consider a L-dirichletian element,
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If] , P (s) exp(-k s) (2.2)
1 n n

where (k) is a D-sequence (here k are positive real numbers).n n

DEFINITION. It is said that a D-sequence (n) is of the type (A)

if the following conditions are satisfied

i) the Ditichlet series exp(-k s) converges on P [s6 Ig>O
j=l n o

(this gives that exp(-s(kj-kn)) converges on Po Let
n6IN-[0] j=n

8 (s) be its sum at the point s);n

ii) v > 0 the sequence of functions (8) where 8 "P 9 s e (s)
n n o n

is bounded on P [s6(/>q]

iii) ]>0 the sequence of functions (8) where
n

n

8n pO 9 s =I exp(-S(kn-k)) is bounded on ]
EXAMPLE.- If (kn) is a D-sequence and 3 Inf(k-’l-k,n-,, =P then it

p>0
is easy to see that (kn) is of the type (h)

If the D-sequence (kn) is of the type (A) then we can easily show

that L 0

Now let us prove Jentzsch’s theorem for L-dirichletian element. This

theorem for Dirichlet series with complex exponents was proved by

T.M. Gallie [3]. First let us consider the associated Dirichlet series of If]

IrA An expt-k s)
1 n

where An is defined by (1.4). Let

Op
be the abscisse of pseudo convergence of ifA] Then we know that

fA log Ang lim sup knP n-

fA
is the same as fA the abscisse of convergence of IfA].when L 0 ap c
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Let n and n’ be two natural numbers such that n’ > n Let En,n’
denote the set, indexed by (n,n’) of points of which are zeros of the

LC-dirichletian polynomial

n’
S n’(S) JP-’(s) exp(-sk)n, =n

let E denote the union of all sets En, n, corresponding to all pairs (n,n’)

and E be the set formed by the points which are zeros for an infinity of

polynomials S (s) Let us put E EduE where Ed is the derived
n,n

set of E E is a closed subset of ( It is evident that E g and

E D g and hence Ew D g vVe suppose in what follows that -E @

(which implies -g @) Then we have

THEOREM 2. Vhen the D-sequence (k) is of the type (79 o <
n c

and w < then we have (Fr(2>o) N (-g) c E

PROOF. Let us suppose that the theorem is not true. Then there exists

point b 6 (Fr(.o)N -g) and a disc d(b,p) centred at b of radius

> 0 included in ([;-g such that

3 v S ,(s) 0
no n’>n>no s6d(b,p) n,n

mn
Ve have IPn(s)exp(-kns) An(l+Is I) lexp(-knS) and

V 3 V (mn/kn) < 8’ Let us take a certain ’ > 8 and put

8’>* n(=ns,) n>n’
o

m 8’ Log[l+sup[ Isl/s6d(b,p)]] -Inf[o/s6d(b,p)] and hence
fA

IPn(s)exp(-k s) < A exp(k ). From the definition of o we

n>n’ s6d(b,p) n n n c

o
3 v An < exp(o’kn) Hence putting n Max(no,n’o,n")ohave

fA n’(=n n>n
0" >0" 0 O’ 0

C

we get V V IPn(s)exp(-knS)l < exp((m+o’)kn)
nan I sd(b,p)

n I/kn
Let S (s) P(s)exp(-k.s) and v T n(S) (S (s))

n n nn I ,n =nl s6d(b,p) i’ I’
I/kn[Sn n(S)] is defined to be equal to exp((I/kn) iOg Sn (s)) where

i’ l’n
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Im Log S n(S) 6 ]-T,r] For each integer n >n the function
n I

T d(b,p) 9 s T (s) is holomorphic on d(b,p) We have
n I ,n n ,n

n i/kn i/k
{exp(k (w+o’) +Iogn)] nv ITn n(S)l I( Pj(s)exp(-ls)) ns6d(b,p) I’ j=n I

log nexp(w+o’) exp()
n

Since (k n) is of the type (A) which implies L 0 we have limexp(-lIn) i.
n-== n

n nnl is bounded and hence nor-Hence the sequence of functions (Tnl
mal on d(b,p)

Let be a compact subset of d(b,p) such that Int D2) #wo
From any extract’ed subsequence of (T,,** n

we can extract a subsequence
i,

which converges uniformly on E and the limit function is holomorphlc on the

Int

Let E
1

be a compact subset of d(b,p) N.,o such that InthNIntE1 .
Then we have v lim T 1 Now [J is a compact subset of

S6K n- n I ,n

d(b,p) Then the subsequence extracted from the arbitrarily extracted sub-

sequence of (T,, ’n
converges uniformly on UE to a limit function holo-

morphic in Int(EiLJl) and continuous on the boundary of EUE1
and takes

the value one at each point of El
Hence the limit function takes the value

one at each point of K UE1
This results that the sequence (Tnl,n) conver-

ges to the same limit function on
1

As is any arbitrary compact subset of d(b,p) and E1 is any ar-

bitrary compact subset of d(b,p) N ,o such that Int K [ Int E
1

we have

lim T (s) 1
n nsd(b,p) n- I’

Let s 6 d(b Q) f] (([;-ge-eo) Then
O

n knv v L pj(s) exp(-xjs) < (l+e)
e>0 n’l(=ns ,e)>nl n>n’l J=nl

o
and hence
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kn(So) < z(i+4V IPn(So)exp(-%so)l ,n(So) -Sn>n Snl nl ,n-I

which gives

Log IPn(So)exp(-knSo) Lo9 2
> Log(l+)

kn kn

6.(s m 0 as is arbitrary. Hence we arrive at a contradiction thato
so 6 /).oI-* which establishes the result.

Finally, let us prove a theorem on the overconvergence of If] defined

by (7). Before proving the theorem let us note that

REMARK ’3. Let A be any compact subset of -6 and (kn) be a

D-sequence of the type (A) We have IPn(s)exp(-k s) An(l+Is l)mnexp(-ok ).
n n

If s 6 then IPn(s)exp(-knS) An(l+mA)mnexp(mAkn) where

mh sup[ sl/sE] As A is a compact set mh
ciently large n we have

s) Log An mLg IPn(S) exp(-kn
+ __n Log(l+mA)+mk k kn n n

6.(s) -; -8*Log(l+mA)-mAc

with -c 8*Log(l+mA) mHence A c . o- o c A>0

-gc mA8" < I+Loi.I+A
we have A c -8"

is finite for suffi-

If

THEOREM 3. -When (kn) is a D-sequence of the type (h) 8" <

and 8" # if there exist an infinite subsequence (n) ;6 IN, of IN-J0]
and a sequence of strictly positive numbers (8) such that

and

lim e +=

V kn +i > (1+{9)kn (2.3)
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n
then the sequence [Snv(S)} vEIN, where Snv(S) j=l

P.(s)exp(-kjs),j conver-

ges at each point s of any open simply connected subset (whose intersection

with )*,8* in non empty) of an open set included in (I;-g* in which the

function f defined by If] is holomo[phic.

PROOF. Let us choose 3 bounded domains ,i2
and A

3
in the following

manner- A1 A2 A2 A3 A3 ([;-g* I * and A3 is included

in an open subset of -g* in which the function f defined by If] is

holomorphic. Furthe let Fr(A I) Fr(A2) and Fr(A3) satisfy a condition of

Hadamard’s type, namely

3 Log.M
2

g b Log M
1
+ (1-b) Log M3

bE] 0,1[

where V M Max[ If(s) I/sEFr(Ai)]
E( ,2,3)

It is easy to see that 3 A c Let us conside the set

A is non empty and is an interval. Let CZA1 sup Then

D A We can easily show that,a
A

> 8 and v / aA -e 1e>0 1
aA Inf[5(s)IS6l) which implies that ai is a finite number. Hence

1 1

from lemma 2,

8’E]B*’aAI nl n>n sEFr(AI
IPn(s)exp(-k s) < exp(-kn(aA -8))n

hence for n > n
1

IPj(s) exp(- kjs) < exp[-k (aA 8*)]
j=n+l j=n+l

exp[-Xn+l(CA -’)] exp[-(A -’)(kj-k )}
1 j=n+l

n+l

Since (k n) is a D-sequence of the type (A) and aA -8’ > 0 there exists
1

a finite number strictly positive B(8’) such that

V lexp[-(k -k )s[ B(’) where es ZA-8’
nEIN j=n+l

n+l

thus we have for each nn 1
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IPj(s) exp(-kjs) < B(8’)exp{-kn+l(CAl-
j=n+l

Now let 12 [66R I/0D a We have

Let

s’)}

v 3

S63 n’(=ns) nan’

sup[ Isl/s63 ThenmA
3

6(n,s) >

nan’
fA

(s) -c

Log An m
._._n Log (1+IS I) +05(n,s) >

in k

LogAn mn-- Log (l+mA3) mA3kn n

(2.4)

Log(l+mA3) mA3
with c < -o -8*Log(l+m53) mA3 and hencewhich shows that i

3
c /a c

12 and is an interval in R Let a53 supI2 Then e>0 /’ah3-e 53
We can easily show that cA3 Inf[5,(s)Is 3 which implies that a53 is

a finite number. Once again, from lemma 2, we get

3
B’>* n2 n>n2 sFr(A3)

IPn(S) exp(-knS) < exp[

which gives

n(n2) n2-1 n
V IPj(s)exp(-kjs)l IP(s)exp(-kjs)l+

s6Fr(A3) j=l j=l J=n2
n2-1 n

=n2

Let us choose ’ > such that A3- ’ # 0 Now we examine the two

cases.

Case 1. If CA3-8’ > 0 then

n n

exp(-kj(A3-’))= eXPn(aAf’)) exp[-(aA -’)(k?kn)} < B"(’)exp(kn(CA3-’))

where B"(8’) is the sum of the series exp(-2(A--8’)k j)
j=O 3
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Case 2. If A3-B’ <0 then

n n n

l=n2 i=n2 l-n2
Since the D-sequence (kn) is of the type (^) there exists a finite number

strictly positive B’(8’) such that

n
V exp-(kn-k j) laA3-8’}] B’(8’)

n61N-[0] j=l

which implies that

n

exp(-kj(A3-8’)) B’(8’)exp(knl%3-8’l)j=n
2

On putting B’"(8’) Max[B’(8’),B"(’)] we have

n

exp(-kj(t3-8’)) B’" (8’)exp(k
n ICA;8’ I) (2.5)

=n2
Using the generalized form of Hadamard three circle theorem [4] we have

where

with

3 LogM2, bLogM
1,

+ (1-b)LogM
3,

(2.6)
b610, I[

M. Max[ IRn (s) I/s6Fr(hi) 1,2,3

Rn (s) f(s)- Pj(s)exp(-kjs)
Xa j=l

From (2.4) we have for n > n
%;

( -’)]MI, B(8 )exp[-(kn+l)(l-8 )] < B(8 )exp[-(l+)kn--l
because of (2.3) On putting

B Max[ lf(s)l/s6Fr(h3) + M) j=l
5(s)exp(-kJs)l/s6Fr(h3)

we have from (2.5) for n a n
2

M3, Bo+B’’(’)exp(kn’ )

Let B’ (8’) Max(Bo B"(8’) Then for n a n2o
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M
3, B’o (’) exp(knlaA3- 8’l)

Then using (2.7) and (2.8) in (2.6)we get, for n max[nl,n2}

(2.8)

Log,bLog B(’)+Cl-b)Log B’ ()+I-b(l+%)(cA -’)+l-b)o 1

Since )-lim
and hence lim Log M2 which proves the theorem.

When the polynomial P (s) reduces to a complex number a we
n n,o

get the famous Ostrowaski’s theorem [I] for Dirichlet series. Our theorem
mn

contains G.L. Lunt’z theorem [5] as a particular case when P (s) anSn

COROLLARY. In theorem 3 if we replace (2.3) by the condition that

there exists a sequence (8 n) of strictly positive numbers such that

lim en and 3 v kn+1 > (l+en)kn then each point of (Fr/o)-g
n-- n’ nan’
is a singular point for f defined by (2.2). In particular if (Fr 2o)c_ (-g

then Fr /o is a natural boundary for f

PROOF. Let us suppose that the corollary is false. Then there exists

a point b 6 (Fr 9 )[ (E-g and a disc d(b,p) centred at b and of radius
wo

p > 0 on which f is holomorphic. As a result of theorem 3 the sequence

(Sn) converges on d(b,p) From remark 2 [f] diverges on ;-g-o
There exists necessarily points common to (E-e-/eo and d(b,p) For these

points there is a contradiction which establishes the corollary.
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