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C n + iCABSTRACT. Certain classes of analytic functions in tube domains T

in n-dimensional complex space, where C is an open connected cone in n,
are studied. We show that the functions have a boundedness property in the

strong topology of the space of tempered distributions Ig. We further give

a direct proof that each analytic function attains the Fourier transform of its

spectral function as distributional boundary value in the strong (and weak)

topology of 8’.
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i. INTRODUCTION.

Vladimirov [i, p. 230] has defined the spectral function V
t

of a function

f(z) which is analytic in a tubular domain T
B n + iB to be the distribution
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V the space of distributions of L. Schwartz [2], which possesses the
t

following properties

e-yt V g 8’ for all y B; (i.i)
t

f(z) <V eiZt> for all z TB. (1.2)
t, iz

Here is the space of tempered distributions of Schwartz [2] and <Vt e

is the Fourier-Laplace transform of the spectral function Vt.

In [3] Vladimirov defined certain classes of analytic functions in tubular

T
C

1R
n + iC, where C is an open cone, and analyzed the spectralcones

functions of these analytic functions corresponding to C being an open connected

cone The results of [3] have been incorporated into the book [i] of Vladlmirov

[i, section 26.4].

In this paper we add information to the main results of [3] and [i, section

26.4] which are [i, pp. 238-239, Theorems i and 2]. We show that the analytic

functions considered by Vladimirov in these results have boundedness properties

in the strong topology of the space of tempered distributions Further

we give a direct proof by elementary means that each analytic function attains

the Fourier transform of its spectral function as distributional boundary value

in the strong (and weak) topology of ’, a fact which has been recognized by

Vladlmirov [i, p. 238] and which is obtained by him as a special case of a more

general result.

2. NOTATION AND DEFINITIONS.

Our n-dimensional notation is that of Vladlmirov [i, p. i]. x, y, and t will

be points in n in this paper and z n, n-dimensional complex space. Note

the inner products zt Zlt I +...+ Zntn and yt Yltl +...+ Yntn for t and y

in In and z n. Note also the differential operator D in [I, p. i], and

we shall write D D
(

or to indicate that the differentiation is with respect
z t

to z or t, respectively. Here c is an n-tuple of nonnegative integers. The
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definitions of cone C in n, compact subcone of a cone, indlcatrlx Uc(t)
of a cone, and of the number 0C which characterizes the nonconvexlty of a cone

C, can all be found in [i, section 25.1]. Note that 0C > 1 [i, p. 220] for
,

any cone C. The cone C {t e An :Yt > 0, y e C} is the dual cone of C

and C, will denote C, n \ C 0(C) will denote the convex envelope (hull)

of the cone C, and we define the tubes TC and T0(C) by TC An + iC and

T0(C) n + i0(C) respectively.

Let C be a cone in A
n

We make the convention throughout this paper

TC T0(C T
C

that by z e (e and y e C(E 0(C)) we mean that z and

y e C’ for an arbitrary compact subcone C ’C C (C’c 0(C)).

The space of functions of rapid decrease g g(An) and the space of

tempered distributions ’ ’ (An) are defined and discussed in Schwartz

L
1

[2 Chapter 7] The Fourier (inverse Fourier) transform of an (An) function

(t), denoted [(t);x] (-l[(t);x]), will be as defined in Vladlmlrov

[i, p. 21]. The Fourier transform of a tempered distribution Vt, denoted

[V], is defined in Schwartz [2, p. 250, (VII 6; 6)]. All terminology and

definitions concerning distributions in this paper, such as support of a dlstrl-

bution, will be that of Schwartz [2].

TCLet C be an open connected cone. The analytic function f(z) z e

obtains U e as boundary value in the weak topology of if

lim
y+0 <f(x + iy), (x)> <U, > (2.i)
yeC

for each e . U e is the boundary value of f(z) in the strong

topology of ’ if the convergence (2.1) holds uniformly for varying over

’arbitrary bounded sets in The set {U e ’ y e C} where U e in
Y Y

some sense depends on y e C, is said to be a bounded set in the strong topology

of g if for any bounded set in , {<Uy > y e C} is a

bounded set in the complex plane.
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3. THE THEOREMS OF VLADIMIROV.

Let C be an open cone. A function f(z) belongs to the class H (a;C),
P

where p > I and a > 0, if f(z) is analytic in the tubular cone TC and,

for an arbitrary compact subcone C in C, the inequality

If(z) <M(C’) (i + Izl)N (i + lyl -K) e
alylp rC’z x+ly c (3.1)

is satisfied where M(C’) is a constant which depends at most on the compact

subcone C C and N and K are nonnegatlve real numbers which do not

depend on C C. We define

H (a + E;C) Hp(a ;C), Ho(C) HI(O;C).P a >a

For the convenience of the reader we now state the theorems of Vladlmlrov

with which we are concerned in this paper.

THEOREM I. [I, p. 238] Let f(z) H (a + E;C), where C is an open
P

connected cone, p > i, and a > 0. The spectral function V of f(z) can
t

be represented in the form of a finite sum of distributional derivatives of

continuous functions g(t) of power increase,

V Da(g_ (t)) (3.2)
t t

which, for all t C, where C, is an arbitrary compact subcone of

C, n \ C and for all E > O, satisfy

Ig(t) < ME(C,) exp[-(a -E)(Uc(t))P (3.3)

.,ere the numbers p nd a are connected with p and a by the relations

i +--i,_- i (p’ Pa )P(pa) I. (3.4)
P P

Conversely, if V satisfies these conditions for certain numbers a > 0,
t

p > i and the cone C,, then all derivatives DB(f(z)) of its Fourier-
Z

Laplace transform f(z) belong to the class H (a0 + E;0(C)).
P

Notice that the C as printed in [1, p. 239, line 8] should be C, instead

as we have written in Theorem I.
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THEOREM 2. [i, p. 239] Let f(z) e HI(a + E..’C) where C is an open

connected cone and a > 0. Then its spectral function V e 8 and V has
t t

support in {t Uc(t) < a}. Conversely, if V
t e ’ and has support in

{t Uc(t) _< a} for some a _> 0 and some open connected cone C, then all

the derivatives DS(f(z)) of the Fourier-Laplace transform f(z) of V
tz

belong to the class HI(aOc;0(C)).
4. LEMMAS.

As noted in the introduction, we shall add information to Theorems i and 2.

We shall show that the analytic functions in these theorems have a strong

boundedness property in 8 In addition we give a direct proof that the

analytic functions attain the Fourier transform of their spectral functions as

distributional boundary values in the strong (and weak) topology of 8

The following lemma is the basis of the boundary value result, and its

proof in turn is useful in obtaining our strong boundedness properties. Through-

out this section C is an open connected cone.

LEMMA i. Let f(z) e Hp(a + 6;C), p > i and a > 0. The spectral

function V of f(z) is in 8’ as is (e-yt V ), y e 0(C) and
t t

lim
y-0 [e-yt V [V] (4.1)

ty0 (C)

in the strong (and weak) topology of 8

PROOF. Let C be an arbitrary compact subcone of 0(C). By the

sufficiency of Theorem 1, the spectral function V of f(z) has the repre-

sentation (3.2). Since each ga(t) in (3.2) is continuous and of power

increase over n we immediately have V
t e ’ The fact that (e-yt V e 8’

t

y e C c 0(C), follows by the proof of Theorem i given in [i, section 26.5].

Let # be an arbitrary element of 8. Using the notion of distributional

differentiation and the generalized Leibnitz rule, we have for y e C c 0(C) that
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<V (e-yt -l)(t)>t’

a! DB(e-yt i) Y((t)) dtI (-i) II f g(t) I !y! t Dt
a mn B+Y=t

(4.2)

where , 8, and y are n-tuples of nonnegative integers and

I (,B,Y) f g(t) ((-i) IBI yB e-Yt- DB(1)) DY(@(t)) dr. (4.3)
y t t

For the arbitrary C c 0(C) we apply [i, p. 223, Lemma 2] to obtain a number

(C > 0 and an open cone (C) both depending on C such that (C

contains the cone C {t n:yt > 0, y C}, the dual cone of C, and

yt > lyl ItI y g c t (c*)
c*) c’ *Put C Rn\ is a compact subcone of C IRn\ C and we

have C, N (C*) = and C, U (C*) n. We now write the integral

ly(a,B,y) in (4.3) as

I (,S,Y) Ii(a,B,Y) + I2(,B,Y)
Y Y y

where

(4.4)

(4.5)

II(’B’Y)y (C*)’ ga(t) ((-i) [BI yB e-Yt- DE(1))t DY((t))t dt

12(,B,y) f,g(t) ((_I)IBI yB e-Yt DB(1)) DY((t)) dt.
Y C, t t

(4.6)

For any n-tuple B of nonnegative integers we have

e
-yt

1 B (i,...,0),B(1) (4.7)(_I)IBI yB e-Yt_ Dt
U_I) IBI yB e-Yt B # (0,...,0),

lnfor all y C c 0(C) and in fact for all y E hence for any a in the

last sum in (4.2) and any subsequent B and Y, B + Y a, (4.7) yields
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lim 8 -yt 8(1)) {((t)) 0y-H3 g(t) ((-i) 181 y e D
t

D
t

y0(c)

nfor all t n (The limit (4.8) actually holds as y 0 y

]R
n

because (4.7) holds for all y .)

(4.8)

Recall that we desire a convergence result in this lemma as y + 0,

y e 0(C). Hence to obtain (4.1) it suffices to consider y e 0(C) such that

IYl < Q for Q > 0 fixed. Now consider the integrand of the integral

ll(,8,y) in (4.6) for t e (C*)’. Since each g(t) in (3.2) is of power
Y

increase over n we have the existence of a polynomial P (t) corresponding

to each g(t) such that

Ig(t) < P(Itl) t n.
Using (4.9) and (4.4) we get

ig(t) ((_i) 181 y8 e-Yt. DE(l)) D((t))I <
t t

(4.9)

< P (Itl) (i + IY1181 exp(_ly
t

(4.10)

< Pa(Itl)(i + QI81)IDYt((t))l
for t g (C) and y g C c 0(C) such that IYl < Q" Since g , the

right side of the last inequality in (4.10) is an L
I
function over n which

is independent of y g C 0(C) such that IYl < Q" Using this fact, (4.8),

and the Lebesgue dominated convergence theorem we obtain

lim
yO I1(,8,) 0

yO(C) Y
(4.11)

for any in (4.2) and any subsequent 8 and y, 8 + .
We now consider the integrand of the integral 12(,8,y) in (4.6) for

Y

t C,. For such t each g(t) in (3.2) satisfies (3.3). Using (3.3), the

relations (3.4), the facts

-yt < IYl U0(c)(t) U0(c)(t) < PC Uc(t) t g C, y E 0(C) (4.12)



22 R. D. CARMICHAEL

contained in [i, section 25.1], and analysis as in [I, p. 244], we have for

t g Ca Ca and y g C 0(C) such that Yl < Q that

< Me(Ca exp[-(a-E)(Uc(t))P (i + IYl II e-Yt) ID ((t))

< ME(C, exp[-(a-E)(Uc(t))P (i + IYl III exp[ly 0C Uc(t) ]) IDJ((t))l (4.13)

< ME(C, (i + IYl IBI) exp[-(a -E) (Uc(t) )P / lyl c Uc(C)] ID:((t))l
II i p/p’_< ME(Ca (i + Q exp[ (p,(a,_2)) P ly[ pPC t

(3.3) holds for all E > 0. In particular (3.3), and hence (4.13), holds for

E >0 fixed such that (a 2E) > 0 for the fixed a in (3.4). For E > 0

fixed in this way in obtaining (4.13), we now conclude from (4.13) that

B B(1)) Y((t)) <g(t)((-l)ISl Y e-Yt Dt Ot
(4.14)

< ME(C, (i + Q exp[ (p,(a_2E) PC ID ((t))]

for all t E Ca Ca and y C c 0(C) such that yl _< Q. Since $ g

L
I

the right side of (4.14) is an function over ]R
n

and is independent of

y C c 0(C) such that IYl < Q. Thus by (4.14), (4.8), and the Lebesgue

dominated convergence theorem we have

lira
y-O 12(a,B,Y) 0

yg0(c) Y
(4.15)

for each relevant , B, and Y. Combining (4.5), (4.11), and (4.15) we get

lim
y+O I (,B,y) o

y0(c) Y
(4.16)

for each in (4.2) and each B and Y, B + Y a. Since $ is an

arbitrary element of , we combine (4.2) and (4.16) to yield
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lira
y-0 e-yt V V

t ty0(c)
(4.17)

in the weak topology of But is a Montel space ([i, p. 21] and [4,

p. 510].) Hence by Edwards [4, p. 510, Corollary 8.4.9] the convergence (4.17)

is in the strong topology of also. Since the Fourier transform on

[2, Chapter 7] is a strongly continuous mapping of onto ’, the desired

8’.convergence (4 i) now follows in the strong (and weak) topology of The

proof is complete.

The next lemma is the basis of our strong boundedness results concerning

the analytic functions H (a + E; C), p > I and a > 0.
P

LEMMA 2. Let p > i and a > 0. Let C be an open connected cone. Let

V
t be any generalized function of the form (3.2) where the g(t) satisfy the

8conditions stated in Theorem i Then V
t ’ (e-yt Vt) E for all

y e 0(C), and {[e-yt Vt] ’ y E 0(C) IYl < Q} is a strongly bounded set

in ’ for Q > 0 being arbitrary but fixed.

PROOF. Let C be an arbitrary compact subcone of 0(C). The facts that, -yt ’V
t and (e Vt) for all y e C c 0(C) follow as at the beginning

of the proof of Lemma i. The locally convex topology of 8 is defined by the

norms

sup
lal<_k ( + Itl) k ID<,(t))l k 1 2 3 (4 18)

tern

Let be an arbitrary bounded set in 8. For the arbitrary C c 0(C) we

apply [i, p. 223, Lemma 2] as in the proof of Lemma i and obtain a number

(C’) > 0 and an open cone (C*)’ (C*)’both depending on C such that

* Rn *contains the cone C and (4.4) holds. We then put C, \ (C) and

An *C, is a compact subcone of C, \ C as in the proof of Lemma i. Using

the form of V
t in (3.2) and the generalized Leibnitz rule we obtain for any

$ $ and y C c 0(C) that
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<e-yt V
t

(t)> . (-i) II I (_1) 161 yB (ll(,y) + 12(s,y))
Y Y

(4.19)

where

-yt Dy((t)) dtI
I (o,y)

,), ty g(t) e

2(O,y) , go(t) e
-yt DYt((t)) dt.ly

C,

(4.20)

Using (4.4), (4.18), and the fact that each go(t) satisfies (4.9) for some

polynomial P (t), we have

IIl(s,y) < f,y -(c
Y((t)) dtPo(Itl) exp[-lYl Itl] IDt

Po(Itl) (i + Itl)n+l IDt
-n-1

dt (4.21)

< R ]lll
k ’ (1 + It l) -n-1

O
dt

where Ro is a constant and ks is a positive integer with both depending

on o; and (4.21) holds for each o and y, e 8 + Y, in (4.19). Also

recall that each go(t) satisfies (3.3). Using (3.3), (4.12), and analysis

as in (4.21), (4.13), and (4.14) we have for y e C 0(C) that

M’II2(s,)l < (c’,) f, exp[-(a-6)(Uc(t))P exp[lyl oc Uc(t)] IDY((t))l dt
Y 6 t

C,

< ME(C,) If*Ilk’ /, exp[-(a’-S)(Uc(t))P + lyl Pc Uc(t)] (i + Itl) -n-I dt (4.22)
S C,

i i )p/p’ p<_ M e(C,) llllk exp[(p, (a’-26) PC fn (i + Itl) -n-1 dt

where ME(C, is a constant and ks is a positive integer depending on .
Because of (3.3), we can assume that E > 0 in (4.22) is fixed such that

(a 26) > 0o Since (4.22) holds for each o and y, 8 + s, in (4.19)
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and since is a bounded set in g, it follows from the combination of

(4.19), (4.20), (4.21), and (4.22) that

-yt{<e Vt, (t)> e y e 0(C) IYl < Q} is a bounded set in the complex

plane for Q > 0 arbitrary but fixed. Since was assumed to be an arbitrary

-yt
bounded set in g, this proves that {e Vt y 0(C) IYl < Q} is a

-yt
y g O(C) IYl < Q} isstrongly bounded set in ’ hence {5[e V

t

a strongly bounded set in since the Fourier transform in [2, Chapter 7]

g’ g’is a strongly continuous mapping from onto The proof is complete

5. ADDITIONS TO THEOREMS I AND 2.

Let us now consider Theorem i. Let C be an open connected cone. Let

f(z) E H (a + E;C), p > i and a > 0. By the sufficiency of Theorem i we have
P

that the spectral function V of f(z) has the form (3.2) and
t

izt
T
C

f(z) <V e z e (5.1)
t

(Recall (1.2).) Further note that V e and (e-Yt V e for all
t t

y O(C) as obtained in the proofs of Lemmas i and 2. For any fixed y e C,

f(x + iy) e g’ as a function of x g n because of the growth (3.1) defining

the H (a + E;C) spaces. Let e and let e be that unique element
P

of g such that (t) [(x);t] [2, Chapter 7]. Using (5.1), (3.2),

distributional differentiation, a change of order of integration, and differentia-

tion under the integral sign we get

/n ze (x) n ge(t) e
izt

dt dx

(5.2)

But if (t) [(x);t] then

e (t) (x) e
izt

dx. (5.3)
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Putting (5.3) into (5.2) and using the Fourier transform on ’ [2, Chapter 7]

we have

{f(z) (x)> [ (-1) g(t) (D(e-yt (t))) dt

-yt<e-yt V
t (t)> <[e Vt],

(s.4)

for all y Im(z) e C which proves that

T
C

f(z) [e-yt Vt] z x + iye (5.5)

with this equality holding in 8’. Thus by combining (5.5) and Lemma 2 we

can also conclude in the sufficiency of Theorem i that

{f(z) y Ira(z) e C, lYl < Q} is a strongly bounded set in ’ for Q > 0

being arbitrary but fixed. Further, by combining (5.5) and Lemma i we have

obtained a direct proof of the fact that

lim
y-H} f(x + iy) [V]
yC

in the strong (and weak) topology of ’.

(5.6)

In the converse of Theorem i Vladimirov proves that if V has the form
t

(3.2) then all derivatives DS(f(z)) of the Fourler-Laplace transform
z

izt>f(z) <Vt e of V
t

belong to the class Hp(a 0cP + E;0(C)), C being

an open connected cone. By the analysis in (5.2), (5.3), and (5.4) we conclude

that (5.5) holds in this converse also for z x + ly e T0(C). Then combining

this fact with Lemmas i and 2 we add the conclusions to the converse of Theorem

i that {f(x) y Ira(z) e 0(C) IYl < Q} is a strongly bounded set in 8’,

where Q > 0 is arbitrary but fixed, and (5.6), with C replaced by 0(C),

holds in the strong (and weak) topology of .
We now consider Theorem 2. For the element f(z) e Hl(a + 6;C)

( Hl(a 0C;0(C)) in the converse), a > 0, and its corresponding spectral

function V e 8’ in both the sufficiency and necessity of this theorem, we can
t
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prove lemmas llke Lemmas i and 2. Then using techniques as in our preceding

additions to Theorem I we have the conclusions in both the sufficiency and

necessity of Theorem 2 that

-yt
T
C T0(C)f(z) [e Vt] z x + lye (e in the converse),

with this equality holding in

_
{f(z) y Ira(z) C (e 0(C) in the converse),

IYl < Q} is a strongly bounded set in for Q > 0 being arbitrary but

fixed; and (5.6) holds in the strong (and weak) topology of 8’ with 0(C)

replacing C in the converse. The now evident details are left to the

interested reader.

Let us also note the generalization of Theorems i and 2 given by Vladlmlrov

in [i, section 26.7] concerning functions f(z) e Hp(a + 6;C) which are

T
C

analytic in tubular cones where C is an open cone that is the union

of a finite number of open connected component cones C
k

k=l,2,...,r. By our

analysis in this paper one can also conclude our strong boundedness property

in ’ for the analytic function f(z) e H (a + E;C) in [i, p. 247, Theorem]
C
k

P

in each of the connected components T k=l,2,...,r of T
C

and for the

analytic extension function f(z) in the conclusion of this result of

Vladlmirov for z 6 T0(C)

The Theorems i and 2 of Vladlmirov have recently motivated this author

to define more general spaces of analytic functions in tubes than the H (a;C)
P

and Hp(a + E;C) spaces. The associated spectral functions are distributions

of exponential growth, a class of distributions which contains the tempered

distributions ’. Our analysis will appear in [5].
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