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I. INTRODUCTION.

The impetus to this investigation was a still unproven conjecture of

Hamada’s concerning the modular rank of projective designs with classical

parameters [4, 5; see also MR 48, #10842]- We wanted a non-classical set

of parameters possessing several designs one of which had a doubly-

transitive automorphism group. The (16,6,2) designs served and indeed an

"Hamada Conjecture" is verified via elementary arguments in our Theorem I.

We were then led easily to the relationships among the three designs

and their relationship to the extended Hamming code.

Finally, in order to tie up some loose ends, we determined the auto-

morphism groups of the two lesser known designs and were able to rather

easily see that each could be represented as a difference set. One of them,

in fact, in two distinct ways as a non-abelian difference set.

Specifically, our results deal with the construction of the 6-dimen-

sional biplane with k 6,6, from the first-order (16,5) Reed-Muller

code and its dual, the extended (16,11) Hamming code, and the subsequent

constructions of the 7-dimensional biplane,7, and the 8-dimensional bi-

plane,8, from the mod 2 spans of the incidence matrices of two copies

of 9 6 and of 7’ respectively.

The three non-isomorphic designs with parameters (16,6,2) have been

investigated from several points of view [3, 6, II, 12]. The vantage point

of algebraic coding theory makes quite explicit certain heretofore unknown

relations among them.

Hussain [6] over thirty years ago established that there were precisely

three designs with parameters (16,6,2), and over twenty years ago Bruck [2]
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gave one of them (here designated 6) as a difference set in the elementary

abelian group of order 16. (A referee has pointed out to us that W. Burau in

1963 independently proved that there were precisely three (16,6,2) designs;

he also determined all three automorphism groups. For the details the

reader should consult volume26, pages 129 through 144, of the Hamburqer

Abhandlunqen.) This same design arises as a rather special difference

set, not only in Z2 x"2 x"2 x2, but in the abelian groups

x2 x4 and 4 x’4" In fact it is a difference set in twenty-four

distinct ways in twelve of the groups of order 1617]. By a theorem of

Turyn’s there cannot be a cyclic difference set with v 16; it has not

been generally recognized, however, that there are two distinct difference

sets in 2 xZ8 (both given by Turyn). One, namely,

{(0,0),(0,I),(0,2),(0,5),(I,0),(I,6)},

yields 6 again.

The other difference set in 2 x’8 given by Turyn, namely,

{(O,O),(O,l),(l,O),(l,2),(l,5),(l,6)},

yields 7" We have checked by a combination of hand an( computer calcula-

tion that 7 s automorphism group has only 2 x8 acting regularly

on its points; thus it arises as a difference set in no other group of

order 16. The automorphism group of 7 has order 48-16 and the subgroup

of order 48 fixing a block acts as the full group of sjnnmetries of the

cube when the six points of the block are properly identified with the six

faces of the cube. This subgroup is thus a central extension of Sym(4)

by a group of order 2.
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8 does not arise as an abelian difference set but it does arise

in two (and precisely two) distinct ways as a non-abelian difference set.

The details are as follows:

Let G Q x2 where Q is the quaternion group of order 8. Writing

multiplicatively with 2 <0>’ using the usual notation for Q, and

agreeing that qO means (q,O) whereas q means (q,e), {l ,i ,j ,k,o,-O} is

easily seen to be a difference set in Q x <0>. One can, with a slightly

more tedious computation, check that the rank of the incidence matrix of

the arising (16,6,2) design is 8 (over the two-element field).

With the same notation as above but now assuming that 0 is of order

4 generating the center of a group of order 16 containing Q, where

02 -I Q, we get still another difference set which is formally identical.

Hence the arising design is again 8"
Again by a combination of hand and computer calculation we have checked

that W8’s automorphism group has only the above two groups acting regularly

on its points. This automorphism group has order 24-16 and the subgroup

of order 24 fixing a block has one six point orbit (not a block but the

complement of the union of the two blocks which it fixes). With these six

points properly identified with the six faces of the cube, the group acts

as the inverse image of Alt(4) in the central extension of SyruP4) by a

cyclic group of order 2 described above.

The clutch of difference sets referred to and displayed above (a

dozen in number) leave but two non-abelian groups of order 16 without dif-

ference sets. Robert E. Kibler, [7], has enumerated all (16,6,2)

difference sets. Of the fourteen groups of order 16, all but the cyclic

and dihedral groups possess difference sets, and there are twenty-seven in
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all. Those that we have not referred to all involve the design 6"
2. DEFINITIONS.

A t-(Y,k,) .design on a v-set S (a finite set of cardinality v

whose elements are called points) is a collection, D, of k-subsets of S

(called blocks) such that every t-subset of S is contained in precisely

elements of D. A projective design is a 2-(v,k,) design in which the

number of blocks and points is the same. A biplane is a projective design

with , 2. We have therefore that each point of a biplane lies in k

blocks, that every pair of blocks meets in two points, and that

k(k-l) 2(v-l).

Throughout F will denote the field with two elements. A b.i.nary linear

(n,k) code A is a k-dimensional subspace of Fn For a A

= l{ila l} is the .weight of the code vector a, where

a (a l, an) and XI represents the cardinality of the set X.

FnA"L {b la.b 0 for all a A} is the orthogonal of A, where a-b

is the usual dot product of two vectors. The orthogonal of an (n,k) linear

code is an (n,n-k) linear code. A is self-orthogonal if A C. A- and

self-dual if A A-. The minimum weight of A is

d(A) Min{wgt(a)la A, a 0}. For a A, Supp(a) {jlaj l} is the

support of the vector a; since we will only consider binary codes the

vector and its support carry precisely the same information and we will

occasionally not distinguish the vector and its support.

If A is a binary self-orthogonal code, then the function a-1/2wgt(a)
(mod 2) is not only well-defined but a linear transformation from A to F.

Its kernel consists of those vectors in A whose weight is congruent to

zero modulo four. We denote this "subcode" of A by Ker A Clearly
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Ker A A or Ker A is of codimension in A according to whether or

not the functional, a /1/2wgt(a) is zero or not.

Throughout H will denote the extended binary (16,11) Hamming code.

Its "weight distribution" is

x + 140x4 + 448x6 + 870x8 + 448xlO + 140x12 + x16,
where nx denotes the presence of n code vectors of weight i. H " is the

(16,5) first order Reed-Muller code. It is self-orthogonal with weight

distribution

x + 30x8 + x16.
The automorphism group of H and H" is the subgroup of Sym(16) (acting

on the sixteen coordinate places} which leaves the subspace H (and hence

H’) fixed. It is the triply-tnsitive affine group of F4. It follows

that the thirty weight-B vectors of H form a 3-(16,8,3) design, a

result that one could also tain from the weight distributions and the

Assmus-Mattson Theorem.

The incidence matrix of a projective design is the v x v matrix

(aB,p), where aB, p is if the point P and block B are incident

and 0 otherwise. The p-rank (i.e., its rank over the field with p

elements) of the incidence matrix of a projective design is a function of

the parameters of the design, unless pl(k-,), in which case it may depend

on the block structure of the design [4]. Hence, the only prime of interest

in discussing biplanes with k 6 is p 2. This fact is what forced

our restriction to binary codes.

For an incidence matrix, M, of such a biplane, Sp(M) will denote its

row space over F. Thus Sp(M) (or Sp(&) if we are naming the biplane
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rather than its incidence matrix) will be a binary (16,) code where

will depend on . As we shall see, it carries a great deal of information

concerning the biplane.

There are, up to isomorphism, precisely three (16,6,2) designs, [6].

They will each appear in what follows and will be denoted by 6’7’ and

8’ the subscript denoting the dimension of Sp) over F. A quite

remarkable fact about these three biplanes is that tokens can be so chosen

that

SP(6) ( Sp(7) ( Sp(8)
We know of no other instance in which such a "nesting" of designs occurs.

As we shall see in ’s 4 and 5, Sp7) contains 8 copies of 7
and 8 copies of 6 while SP(8) contains 192 copies of 8’ 288

copies of 7’ and 96 copies of 6"
3. THE MOD 2 SPAN.

PROPOSITION I- Let M be the incidence matrix of a projective

(16,6,2)-design and R be the row-space over F of M. Then R C__ R
i.e. R is self-orthogonal, and d(Rz) >4.

PROOF- The fact that R is self-orthogonal is immediate from the

design parameters. Suppose v R j- and p Supp(v). Then each of the

six blocks through p meets Supp(v) evenly and hence at least 6nce more.

It follows that

2(ISupp vl-l) >6

and hence that ISupp v > 4; i.e., d(Rj-) >4.

RREMARK- Since the all one vector is in Rj-, no vector in can have

weight 14. As we shall soon see R contains the all-one vector also, and

hence the weights in R - must all be even. Moreover, the vectors of
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weight-4 in R "L are the "ovals" of the design in the sense of [I].

LEMMA I" Let S be a set of three points of a projective (16,6,2)-

design and suppose BI,B2 and B3 are three blocks meeting S in its

three 2-subsets. Then the mod 2 sum of BI, B2 and B 3 is a vector of

weight 6 or I0. Moreover, if S is contained in a block C and the

weight is I0, the weight-lO vector is the complement of C.

PROOF" Let xi, 0 <_ <_ 3 be the number of points not in S through

which there pass of the three blocks. Then

xo + x + x2 + x3 13

x + 2x2 + 3x3 3.4 12

x2 + 3x3 3.1 3

Since x3 can be at most I, the two solutions are

xo 3, x 9, x2 O, x3

and

xo 4, x 6, x2 3, x3 O.

Thus the weight of the mod 2 sum is either 6 or I0. Moreover, if S C

and the weight is I0, the three points through which none of the blocks pass

must be C-S and the weight-lO vector must consist of the ten points not

in C.

LEMMA 2- Let M be the incidence matrix of a projective (16,6,2)-

design and R the row space over F of M. Then the all-one vector is

in R.

PROOF- Suppose not. Let C, be any block. Then for each 3-subset,

S, of C the three blocks meeting S twice sum to a vector of weight

6, v(S) where the support of v(S) is disjoint from C. For such a
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3-subset S let S’ be the 3-subset of points not in C which the three

blocks meeting S twice cover exactly twice. (See the proof of Lemma l.)

Now no block covers S’ for then it could not be orthogonal to C and

v(S) unless the sum of it and C were a weight-8 vector disjoint from

supp(v(S)), an impossibility since this would produce a weight-14 vector

in R. Thus there are three other blocks Bl, B2 and B3 meeting S’

twice. Now suppose BiffS were non-empty. Then each of the three blocks

meeting S twice would meet B twice in SUS’. Hence B f Supp(v(S))

and we would have a weight-8 vector, C + B disjoint from

Supp(v(S)), again a contradiction. Thus B l, B2 and B3 are the three

vectors meeting C S twice and their mod 2 sum is necessarily v(S);

i.e., v(S) v(C-S). Now for any 3-subset S of C other than S or

C Sv(Sl) v(S) for otherwise one could find three blocks through two

points of S’. It follows that we have I0 1/2() weight-6 vectors whose

supports are on the complement of C. Moreover, since they are an

orthogonal set of vectors and no two of the supports can meet twice (since

as above we would produce a vector of weight 14), every two supports meet

four times; i.e. we have a (lO,6,4)-design on the complement of C. But

these are impossible parameters for a projective design.

LEMMA 3" Let M be the incidence matrix of a projective (16,6,2)-

design and R the row space over F of M. Then R contains at least

thirty weight-8 vectors.

PROOF- If C is a block then the mod 2 sum of C and any other

block is a weight-8 vector. This yields fifteen weight-8 vectors. Since

the all-one vector is in R one gets fifteen more by complementation.
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Thus there are at least thirty. (They are clearly distinct since the

intersections of their supports with C are.)

THEOREM I" Let M be the incidence matrix of a projective (16,6,2)-

design and R the row space over F of M. Then 6 < dim R <8 and,

moreover there is a unique such design with dim R 6. We denote this

biplane by 6.
PROOF" That dim R < 8 follows immediately from the fact (Proposi-

tion I) that R(Z R ’. That 6 < dim R is a consequence of Lemmas 2 and 3

since R has at least 16 weight-6 vectors, 30 weight-8 vectors and 16

weight-lO vectors and, of course, the zero vector and all-one vector.

Now if dim R 6, the weight distribution is determined and Ker R consists

of the zero vector, all-one vector, and the thirty weight-8 vectors. There

is a unique such code, the first order Reed-Muller code. It is the

orthogonal to the extended (16,11) Hamming code, H. Take any weight-6

vector of H, v say. Then Fv + H " is a (16,6) code. Since no vector of

weight eight in H" is disjoint from v (there are no weight-14 vectors

in H) each weight-8 vector meets Supp(v) in two or four points. Clearly,

15 meet in 2 and 15 in 4. Thus Fv + H "" has 16 weight-6 vectors and 16

weight-lO vectors. We have before us all the vectors in Fv + H "c’. Thus

two distinct weight-6 vectors must have their supports meeting exactly

twice because of the lack of weight-4 and weight-12 vectors. It follows

that we have a (16,6,2) design and that any such is obtained in this manner

from the (16,11) extended Hamming code. Since the extended Hamming code’s

automorphism group is transitive on the weight-6 vectors, the (16,6,2)-

design of dimension six is unique.
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REMARK I. There also are unique (16,6,2) designs of dimensions 7 and 8.

They will appear shortly as 7 and 8.
REMARK 2. The automorphism group of this (16,6,2)-design is doubly-

transitive, a fact one can establish from its description above. A purely

combinatorial description that also establishes this fact was communicated

to us by Richard M. Wilson. We sketch it here" Let the sixteen points of

the design be the entry positions of a 4 by 4 matrix. The sixteen blocks

are determined by these entry positions being the entry positions in its

row and column other than itself. (This description of the design appears

in Crelle’s Journal, 70(1869), page 182; Jordan there obtains the group

of the design by actually writing down generating permutations.) See

the figure"

x x

This clearly yields a (16,6,2) design with a transitive automorphism group.

On the other hand consider the point set given by the fifteen edges of K6
(the complete graph on six vertices) plus a point labelled . The blocks

are described as follows: Those not containing consist of the six edges

of two disjoint triangles of K6 of which there are clearly 1/2() lO.

Those containing consist of and the five edges emanating from a

fixed vertex of K6. One verifies easily that this yields a (16,6,2)-

design and the subgroup of its automorphism group leaving fixed is

Sym(6) acting naturally on K6 and hence transitively on the other fifteen
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points. It remains to show that these two designare isomorphic. The

isomorphism is explicitly given by the following table"

,5

-, 1,3 - 2,3

3,6 2,6 1,6

3,5 2,5 1,5

3,4 2,4 1,4

where we have labelled the vertices of K6 with through 6 and an

entry {a,b} means the edge {a,b} corresponds to the entry position in

which t appears.

COROLLARY l" The 448 weight-6 vectors of the extended (16,11) binary

Hamming code split naturally into 28 disjoint isomorphic (16,6,2) designs.

Thus we can explicitly construct 2-(16,6,) designs for 2i,

1,2,...,28.

COROLLARY 2" The weight distribution of (SP6)’L" is

x + 60x4 + 256x6 + 390x8 + 256x lO + 60x 12 + x 16

and hence 6 has 60 ovals.

PROOF- Knowing the weight distribution of Sp allows one to easily

calculate that of its dual via the MacWilliams equations. The 60 weight-4

vectors are the ovals of the biplane, cf. [l].
4. 7"

Setting A6 Sp6 we can arrange things as we’ve just seen so that

Ha-= Ker A6 A6..A-H
and we have the weight distribution of each of these four subspaces of F16

In particular there are 240 weight-6 vectors in A6"" which are not among
the 16 weight-6 vectors of A6.
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LEMMA 4" Let v be a weight-6 vector of A not in A6. The weight

distribution of A6 + Fv A7 is

x + 4x4 + 32x6 + 54x8 + 32x I0 + 4x12 + x16.

PROOF" A7 is clearly self-orthogonal and of dimension 7. Since

Supp v cannot intersect each of the 16 blocks of 6 exactly twice, there

is a w A6 of weight 6 with ISupp wr Supp v 0 or 4. Let b be the

weight-4 vector which is either v+w or its complement.

The choice of any three l’s of b will determine three weight-8

vectors of H, since the 30 weight-8 vectors form a 3-(16,8,3) design.

These three vectors must have precisely four l’s in common and, moreover,

they must be the four l’s of b, in order for b to be orthogonal to each

of the three vectors. Hence there exist four weight-4 vectors whose sum is

the al l-one vector.

Now Ker A7 is 6-dimensional and is clearly H’+ Fb. Thus the four

weight-4 vectors we found are all there are, and the weight distribution

of Ker A7 is

x + 4x4 + 54x8 + 4x 12 + x16.
Since A7 contains at least the 32 weight-6 vectors (the 16 from A6

and the 16 from H-+ Fv) and hence at least 32 weight-lO vectors the

result is established.

Retaining the notation above, let Q be the 4-dimensional subspace

generated by the four weight-4 vectors of A7; the weight distribution of Q

is clearly

x + 4x4 + 6x8 + 4x 12 + x16.
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Now suppose sixteen of A7 s weight-6 vectors form a biplane W isomorphic

to 6" Then Ker Sp,_Ker A7 and dim(Ker SpQ) 5 + 4 6 =3. Thus

P Ker SpQ has weight distribution

x + 6x8 + x 16.

Now Ker A7 is 6-dimensional and P is 3-dimensional. Thus there are

seven 5-dimensional and seven 4-dimensional subspaces between P and

Ker A7. Q is one of the 4-dimensional subspaces and it is contained in

precisely three of the 5-dimensional subspaces. It follows that the remaining

four 5-dimensional subspaces contain no weight-4 vectors and hence must be

equivalent to H. Each of these four subspaces will split the 32 weight-6

vectors of A7 into two biplanes isomorphic to 6" We record this as

PROPOSITION 2- The 32 weight-6 vectors of A7 can be split into the

disjoint union of two isomorphic copies of 6 in exactly four distinct ways.

There are, thus, precisely eight copies of 6 to be found among these

32 vectors.

We next analyze these eight 6 s in order to construct 7"
< < 6, denote the sixAgain with the notation as above let V4,

4-dimensional subspaces other than Q, and V5’ _.i _.3, the three 5-

dimensional subspaces other than the four equivalent to H; we denote these

four by K5 where _. _. 4. Since V5.. Q, it has weight distribution

has no weight-4 vectors it hasx + 4x4 + 22x8 + 4x12 + xl6 and since V4
weight distribution x + 14x8 + x 16. The following diagrams illustrate

the relationships between these subspaces"
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Ker A7 (2) Ker A7

v v
V4

(3) K5 (4) V5

kv v v v
"x /

P P

Now, (1), (3), and (4) are clearly true. To establish (2), it

note that V + F b V, where wgt(b) 4, and then (1)suffices to

implies the other two subspaces must be Ki’s’5 Thus K5i K /K P,

where < < j < k < 4.

i,Adjoining a common weight-6 vector, v, from A7 to each of the K5 s,

< <_ 4, will yield four isomorphic copies of 6’ say W+, _< _< 4,

having a common intersection of four weight-6 vectors, since their spans

intersect in a subspace of dimension 4, P + F v, having weight distribution

x + 4x6 + 6x8 + 4x lO + x16. In this way, P partitions the 32 weight-6

vectors of A7 into eight packets of four vectors each. Let the four
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i+ i-, < < 4,6’s complementary to the four 6 ’s be denoted by 6
where two ’6 s are said to be complementa.ry if they have no blocks in

common.

Any two noncomplementary 6 s have eight blocks in common (the

elements of two packets), since the kernels of their mod-2 spans intersect

in a V4 and the weight distribution of V4 + F v is necessarily

x + 8x6 + 14x8 + 8xlO + x16, where v is a weight-6 vector corresponding

to a common block of the noncomplementary pair of 6 s. Inasmuch as any

i,three K5 s intersect in P, any three pairwise noncomplementary 6 s

have one packet in common and their spans intersect in a subspace with

weight distribution x + 4x6 + 6x8 + 4x I0 + x 16.
The following diagram and equations summarize these relationships.

A "+" or "-" in the diagram symbolizes the presence of the packet

i+ i-represented by column j in 6 or d6 respectively, where represents

the row. In the equations, x e {+,-}, and the number of blocks in an

intersection of 6 s is given.

+ + + +

+ + + +

+ + + +

+ + + +

ii jxjx
i 8, where < < j < 4

6 6

Iixi/l]xJlxkl4’6 where <_i < j < k <4_

I/’ , { <:> xil { mod 4
i=l 6 i=l
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PROPOSITION 3" A7 SP(7). Moreover, the 32 weight-6 vectors of

A7 can be split into the disjoint union of two isomorphic copies of 7
in exactly iour ways, thereby yielding the eight 7 s which can be

found in the collection of 32 vectors.

PROOF: In the above diagram, two packets (columns) will be called

c.omplementar, if there does not exist a 6 containing both packets.

Using the notation given above, the complementary packets are precisely

those whose column indices sum to nine. Any two noncomplementary packets

are contained in precisely two 6’s. Thus if one permutes the columns

of any two complementary packets in the diagram one obtains a new diagram

which indicates the packet structure of eight new biplanes. Any odd

permutation of complementary packets will result in the same new packet

structure, while an even permutation produces the original packet

structure. Since there exist precisely eight 6’s in A7, of

dimension 7, the eight new biplanes must all be 7’s.
One can show that every w

7 in A7 is composed of the packets

determined by P and every 7 intersects four 6 s in three packets

and the other four in one packet [9]. Thus two packets occur together

in a 7 if and only if they occur together in a 6" Hence if one

replaces a packet of a 6 with a noncomplementary packet, one obtains a

collection of four packets, which includes two complementary packets, and

so cannot comprise a 7" Therefore, A7 contains precisely eight

isomorphic copies of 7"
COROLLARY" Aut(A7) has order 211.3.
PROOF" Since IAut(7) 48.16 and there are eight 7’s in A7
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the corollary follows from the fact that Sp(7) A7 for any a3 7 in A7.

5. 8"
We are now in a position to arrange the two biplanes, 6

so that Sp(6) A6 C_ A7 Sp(7) and we have the following nesting

H -(:: A6 (:: A7
C_ A-A6 H.

We know the weight distribution of all these subspaces. The only one we

have not yet recorded is that of A7. Again, it is easily calculated via

the MacWi iams equations and is

o 16
x + 28x4 + 128x6 + 198x8 + 128xlO + 28x12 + x

There are, thus, 28 ovals in a w7.

There are 96 weight-6 vectors in A7 that are not in A7. If v is

any one of these A7 + Fv is a self-dual (16,8) code containing weight-6

vectors but no weight-2 vectors, this last assertion since A7 + Fv A8 _C. H.

There is a unique such code [8] and its weight distribution is

x + 12x4 + 64x6 + 102x8 + 64xlO + 12x12 + x16.

Since Sp(W8) contains weight-6 vectors but no weight-2 vectors by

Prop. l, A8 Sp(,8). The nesting we now have is

H-C A6 C A7 A8= A-C A-c A-H.
Now the 64 weight-6 vectors of A8 can be split as the disjoint union of

four ’’6 s or (as we have seen in 4) as the disjoint union of four 7 s.

A computer calculation has shown that they can be split as a disjoint

union of four 8 s. Since A8 A8,d8 has 12 ovals.
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We next calculate the number of distinct copies of 6 and 7
to be found among the 64 weight-6 vectors of A8.

PROPOSITION 4" Ker A8 contains precisely 24 subspaces equivalent

to Ker A6 and 18 subspaces equivalent to Ker A7.
PROOF- Suppose a KerA6 is contained in Ker A8. Let b Ker A8

be of weight 4. Since KerA6
+ Fb is a KerA7, each KerA6 is contained

in three Ker A7 s contained in Ker A8, and the twelve weight-4 vectors

of Ker A8 are split into three classes of four disjoint weight-4 vectors

and form a I-(16,4,3) design. A weight-4 vector from a class will meet

precisely two weight-4 vectors from another class exactly twice and

thereby determine a I-(8,4,3) design on the eight points contained in

the supports of the two weight-4 vectors of the second class. These six

vectors, as well as the remaining six, can be split into three collections,

each containing two disjoint weight-4 vectors. Hence the twelve weight-4

vectors of Ker A8 can be decomposed into precisely nine distinct

collections, each containing four disjoint weight-4 vectors.

Let Q, as previously, be the subspace spanned by a collection of

four disjoint weight-4 vectors. We shall count

{(Q,Ker A7)IQ
_

Ker A7 (z Ker A8}. Since each Ker A7 determines a unique

Q, 9q x, where q is the number of Ker A7’s containing a given Q

and x is the number of Ker A7 s contained in Ker A8. Adjoining a new

weight-4 vector to a Q establishes a subspace of dimension 5 with eight

weight-4 vectors. Thus Q is contained in two such 5-dimensional sub-

spaces, each in turn being contained in two distinct 6-dimensional

subspaces and a third which contains both. Hence q 2 and so x 18.
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By counting {(Ker A6, Ker A7)IKer A6 C Ker A7 C. Ker A8}, one easily

sees that 24 subspaces equivalent to a Ker A6 are contained in Ker A8,

and so there exist 4-24 96 6’s in SP8).
Since a Ker A7 determines exactly 8-2 16 distinct 7’s in a

Sp(8) and each 7 is determined by a unique Ker A7, there exist

18.16 288 7’S in SP(8).
We note that 288 3-96 since each Ker A7 also determines 16 6 s

but a given 6 is determined by the three Ker A7 s containing Ker A6.
REMARKS" I. Such a nesting of designs is impossible for projective

planes of the same order, since in the rowspace of the incidence matrix

over Fp, where p divides the order of the plane, the supports of the

minimum weight code vectors are precisely the blocks (lines) of the plane

[I0]. Of the three biplanes discussed here, only 6 enjoys this property.

2. Since Aut A8 is known [8] and of order 213-32 and Aut8

is of order 27-3 there are 192 distinct 8’s contained in A8.

REFERENCES

I. Assmus, Jr., E. F. and J. H. vanLint, "Ovals in projective designs",
J. Combinatorial Th. (to appear).

2. Bruck, R. H. "Difference sets in a finite group", Trans. Amer.
Math. Soc. 78(1955), 464-481.

3 Hall Jr Marshall "Group properties of Hadamard matrices" J
Australian. Math. So__c. XX__!(1976), 247-256.

4. Hamada, N. "On the p-Rank of the Incidence Matrix of a Balanced or
Partially Balanced Incomplete Block Des.gnand its Applications to
Error Correctin.q Codes", Hiroshima Math. J_. 3__(1973), 154-226.

5. Hamada, N. and H. Ohmori, "On the BIB design having the minimum
p-rank," J. Combinatorial T__h. I8(1975), 131-140.

6. Hussain, Q. M. "On the Totality of the Solutions for the Symmetrical
Incomplete Block Designs 2, k 5 or 6", Sankhya, _7(1945),
204-208.



(16,6,2) DESIGNS 281

I0.

II.

12.

Kibler, Robert E. "A summary of noncyclic difference sets,
J_. Combinatorial T__h. 25(1978), 62-67.

k < 20",

Pless, V. "A Classification of Self-Orthogonal Codes over
Discrete Math. ,3(1972), 209-246.

GF(2)",

Salwach, C. J. "Biplanes and Projective Planes", Ph.D. Thesis, Lehigh
University, Bethlehem, Pa. 1976.

Sachar, H. E. "Error-Correcting Codes Associated with Finite
Projective Planes", Ph.D. Thesis, Lehigh University,
Bethlehem, Pa. 1973.

Turyn, Richard J. "Character sums and difference sets", Pacific
J_. Math. I__5(1965), 319-346.

Whitehead, Jr., E. G. "Difference sets and sum-free sets in groups
or order 16", Discrete Math. I3(1975), 399-407.


