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ABSTRACT. We investigate the conditions under which both a graph G and its

complement G possess a specified property. In particular, we characterize

all graphs G for which G and G both (a) have connectivity one, (b) have

line-connectivity one, (c) are 2-connected, (d) are forests, (e) are bipartite,

(f) are outerplanar and (g) are eulerlan. The proofs are elementary but amusing.
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1. CONNECTIVITY.

The connectivity (or line-connectivity) <(G) (or % %(G)) of a graph

G is the minimum number of points (or lines) whose removal results in a discon-

nected or a trivial graph. We write (or ) for <() (or %()) where is

the complement of G. We follow the graph theoretic terminology and notation

of the book [I]. Recall that A denotes the maximum degree among all points

of G.

LEMMA i. The complement G of a connected graph G is connected if and only

if G has no spanning complete bipartite subgraph.

PROOF. If G has a spanning complete bipartite subgraph, then G clearly

contains no line joining the two parts, hence must be disconnected. Conversely,

if G is disconnected, then any bipartition of V(G) in which one part consists

of the points of precisely one component of gives a spanning complete

bipartite subgraph of G.

The next statement is an easy consequence of the lemma.

THEOREM I. A graph G with p points satisfies the condition <

if and only if G is a graph with either

(i) < 1 and A p- 2, or

(2) < I, A < p 3 and G has a cutpoint v with endline e and endpoint u

such that G- u contains a spanning complete bipartite subgraph.

PROOF. We note that if i, then the degree of each point of

G is at most p 2, since otherwise would contain an isolated point which

would make < 0.

(i) Let G be a graph with A p 2 and K i, as in Figure la.

(a) Figure I. (b)
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The removal of any cutpoint v from G results in a disconnected graph, so that

G v is connected. Since A p 2 by hypothesis, v is adjacent in G to a

point of G v. Thus G is connected. Furthermore G has an endline since A

p 2, and hence G has a cutpoint (as illustrated in Figure ib), so that < i.

(2) Let G be a graph with K K i and 6 < p 3. By the definition of <,

G is connected and has a cutpoint v. We see that H G v has just two

components, since otherwise every two points of G would lie on a common cycle

of G and thus G would have no cutpoint, contradicting i. Denote by HI

and H2 the two components of H, with Pl and P2 points respectively. Assume

that both PI’ P2 > 2. Then G would have no cutpoint since every two points of

G would lie on a common cycle of G. Thus it is sufficient to consider only a

connected graph G which has a cutpoint with endline e and endpoint u. We now

show that G u contains a spanning complete bipartite subgraph. If G u

does not contain such a subgraph, then G u is connected by Lemma i. Moreover,

the endpoint u of e is adjacent in G to every point of G lie on a common cycle

and so G has no cutpoint, which again contradicts < i. Thus G u contains

a spanning complete bipartite subgraph.

(a)
Figure 2.

(b)

Conversely, let G satisfy the condition (2) as shown in Figure 2a. Then

is connected and the removal of the endpoint u from results in at least

two components by Lemma i. Hence we see that < K i.

A graph G is a block if G is connected and has no cutpoint. From Theorem

and Lemma i, we obtain two consequences whose proofs are ommitted or outlined.
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COROLLARY la. If G is a block, then G is also a block if and only if

(I) 2 < deg v < p 3 for every point v of G, and

(2) G has no spanning complete bipartite subgraph.

CORLLARY lb. A graph G with p points satisfies the condition %

if and only if G is a connected graph with a bridge and A p 2.

PROOF. Let G be a graph with % i. Then G satisfies the condition

K < by the relation < < . Hence the graph G satisfies either (i)

or (2) of Theorem I. It is clear that (2) cannot hold, since G can possess

an endline only if the spanning bipartite subgraph of G u is a star, in

which case A p 2, and so (i) must obtain.

Conversely, if G is a graph with % 1 and A p 2, then G is con-

nected and has an endline, that is, I.

2. BIPARTITE GRAPHS AND OUTERPLANAR GRAPHS.

A graph G is a forest if G has no cycles. An ou.terplanar graph is planar

and can be embedded in the plane so that all its points lie on the same face.

THOEREM 2. All the graphs G such that both G and G are bipartite are:

are shown in Figure 3.

KI K2

O

K2 KI U K
2 P3 P4 2K2 C4
Figure 3.

PROOF. The number k of components of G is at most two, since otherwise

G would contain a triangle.

CASE i: k 2. Let G have components GI and G2. Both GI and G
2
are

complete, since otherwise G would contain a triangle. Furthermore, the order

of each of the complete graphs GI and G
2 is at most two, since otherwise G

would contain a triangle. Hence we obtain G K2, K
1 U K2

and 2K2.
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eASE 2: k i. Since G is bipartite, the point set of G can be partitioned

into two subsets VI and V
2

such that every line of G joins VI with V2. The

cardinalities of V
I and V

2
are at most two, since otherwise G would contain

a triangle. Furthermore, each subgraph induced by any three points of G

contains one or two lines. Hence we get G KI, K2, P3’ P4’ and C4.

COROLLARY 2a. All the graphs G such that both G and G are forests are:

G KI, K2, K2, KI U K2’ P3 and P4

We have determined in Theorem 2 all eight graphs such that both G and G

are bipartite, and note that for none of these graphs G is both G and G have

even cycles. We now show that for just two graphs G, both G and G have an

odd cycle.

THEOREM 3. The two self-complementary graphs of order 5, A and C5, are

the only G such that both G and G have only odd cycles (Figure 4).

PROOF. If the number of points of G is at least 6, either G or G contains

C
4

since the ramsey number r(C4) 6. It is easily verified that the two

self-complementary graphs of order 5, A and C
5

shown in Figure 4, are the

only G such that both G and G have odd cycles.

THEOREM 4. All the graphs G such that neither G nor G are forests but

both are outerplanar are the following 32 graphs:

(i) the two self-complementary graphs A and C5
of order 5 (Figure 4), and

(2) the 15 graphs shown in Figure 5 and their complements.

THEOREM 5. Both G and G are eulerian if and only if both are connected,

p is odd, and G is eulerian.

Of course p must be odd so that the degree of each point in both G and

is even. Lemma already gives a simple condition for both G and G to be

connected. The result follows at once.
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Figure 4.

Figure 5.
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