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ABSTRACT. The problem of determining the behavior of the solutions of a per-

turbed differential equation with respect to the solutions of the original

unperturbed differential equation is studied. The general differential equation

considered is

X’ f (t,X)

and the associated perturbed differential equation is

Y’ f(t,Y) + g(t,Y).

The approach used is to examine the difference between the respective solutions

F(t,to,Xo) and G(t,to,Yo of these two differential equations. Definitions

paralleling the usual concepts of stability, asymptotic stability, eventual

stability, exponential stability and instability are introduced for the differ-

ence G(t,to,Yo F(t,to,Xo) in the case where the initial values Yo and Xo are

sufficiently close. The principal mathematical technique employed is a new

modification of Liapunov’s Direct Method which is applied to the difference of
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the two solutions. Each of the various stabillty-type properties considered

is then shown to be guaranteed by the existence of a Liapunov-type function

with appropriate properties.

KEY WORDS AND PHRASES. Liapunov functions, asymptotic behavior of solutions,

asymptotic equivalence.
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I. INTRODUCTION.

One of the paramount uses of stability theory is to determine which stability

properties of a particular syst of differential equations are preserved under

small perturbations. This problem has been studie in nnerous ways. The method

introduced in the present paper, however, is felt to be an essentially new ap-

proach for dealing with this situation. It is similar to some work done by Lak-

shmikantham 3 in a different context. Instead of considering explicitly which

stability properties are preserved under perturbations, a theory based on the

actual behavior of the solutions of the perturbed differential equation with res-

pect to those of the original differential equation is developed. The results

so obtained are given in terms of the existence of an extended form of Liapunov

function.

We note that a similar concept, that of aeymptotic equivalence, was introduced

by Brauer I though the general approach oth he and his successors used is

different from the one employed here. oreover, the notion of asymptotic

equivalence is merely one of the nmerous possibilities which can be considered

in terms of the present approach.

Some analogous results for the discrete case involving the behavior of solu-

tions of difference equations have previously been done by the author 2
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2. DEFINITIONS AND BASIS ONGEFTS.

We will consider the differential equation

X’(t) f(t,X(t)). (2.1)

f(t,X) here represents a function with values in Em, an arbitrary m-dimensional

vector space, and defined on some region D in I x Em which contains the axis

{ X O, t I }, where I is the set of non-negative real numbers. For simplicity,

we may take for D the semi-infinlte cylinder

D DtoR { (t,X) I x Em t% to O, IIX; R

Here, XI denotes any m-dimensional norm of the vector X. We note that in

most cases, the upper bound R will be taken to be finite. The sole exception

to this convention would occur when we are dealing with the case of instability

for the solutions of the differential equations when the solutions become un-

bounded and hence the region must accomodate them.

In addition, the differential equation (2.1) will be subject to the initial

condition X(to) xo Moreover, we will consider only those equations for

which the solution is uniquely determined by the initial point and this unique

solution to the differential equation (2.1) satisfying the initial condition

will be denoted by F(t,to, xo)
In addition to the differential equation (2.1), we also consider the asso-

ciated perturbed differential equation

Y’(t) f(t,Y(t)) + g(t,Y(t)) (2.2)

where g(t,Y) is also a function from DtoR into Em. If the additional term

g(t,Y) is small in some sense, it is reasonable to expect that the behavior of

the solutions of the perturbed equation will be similar to that for the solutions

of the original equation, provided that the initial values for the two equations

are sufficiently close. In this regard, the assumed unique solution to the per-

turbed differential equation (2.2) satisfying the initial condition Y(to) Yo
will be denoted by G(t,to,Yo).
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The present investigation will be carried out by using a certain class of

continuous real scalar functions V(t,X) also defined on DtoR and satisdng

the requirement V(t,0) 0 for all t to The following additional pro-

perties will all be required. Let Mo represent the class of all real-valued

monatone increasing functions, a(r), defined and positive for r 0 and such

that a(0) O. In terms of this, a real scalar function V(t,X) is said to be

positive definite if there exists a function a(r) of class Mo such that

V(t,X) >a( X II )

for all t > to A real scalar function V(t,X) is said to be positive semi-

definite if V(t,X)> 0 for all t >/to Entirely similar defimtions hold

for such functions being either negative definite or negative semi-deflnite.

Moreover, @orresponding to a function V(t,X), we define its total deriva-

tive with respect to the differential equation (2.1) as

V(t,X) + X) X’(t)V’(t) -B’ VV(t,

t V(t,X) + V(t,X).f(t,X),

where

vv(t,x) B)v(t,x).
Here, xI ,..., xm denote the ccmponents of X. V’ (t,X) is obviously a measure

of the growth or decay of the function V(t,X) with regard to increasinE t along

the trajectories represented by the solutions of the differential equation (2.1).

It should be noted that, in general, this can be calculated without direct

knowledge of the actual solutions.

We now introduce the types of possible behavior for the solutions of the

perturbed differential equation (2.2) which will be of interest to us in the

sequel.

DEFINITION I: The solutions of the perturbed differential equation (2.2)

are said to be _q,bl wth r_!t to th n_r,,bd dlffernial tion
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(2.1) if, for all E > 0 and for all to I, there exists a ( e,to) > 0

such that Yo Xoll < implies that

G(t,to,Yo) -F(t,to,Xo)l < e

for all t > to for every solution G(t,to,Yo) of the perturbed equation (2.2).

DEFINITION 2: The solutions of the perturbed differential equation (2.2)

are said to be aavmpttical!y stable with respct to the unperturbed dif-

ferential euati0n (2.1) if they are stable with respect to the equation

(2.1) and if, for all to I, there exists a o(to) > 0 such that

ly Xoll 6 o implies that

G(t,to,Yo) F(t,to,Xo) / 0

as t / (R) for every solution G (t,to,Yo) of the perturbed equation (2.2).

The above two definitions are equivalent to the statement that all solutions

of the perturbed differential equation which start sufficiently close to the

initial value of the unperturbed solution respectively remain close to it or

eventually approach it. The latter case is essentially the same concept as

Brauer’s asymptotic equivalence.

The next definition expresses an intermediate type of behavior whereby the

perturbed solutions initially may diverge fr the unperturbed solution, but

eventually becne arbitrarily close to the latter. The concept is somewhat

similar to that introduced by LaSalle and Rath [4 ]

DEFINITION 3. The solutions of the perturbed differential equation (2.2)

are said to be e__tuallv stable with respect to the unperturbed differential

euuation (2.1) if, for every e > O, there exists a g e ,to > 0 such

that, for any Xo, Yo- Xoll <6 implies that

G(t,to,Yo) F(t,to,Xo) < e

for all t T, for some T > to for every solution G(t,to,Yo) of the
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perturbed equation (2.2).

Finally, we give two further definitions of modes of behavior which will be

considered.

DEFINITION 4: The soluticms of the perturbed differential equation (2.2)

are said to be exoonentiallv stable with respect to the unDerturbed dif-

ferential euation (2.1) if there exist positive numbers a and B and a

such that to e I, Yo- Xo| <8oImply that

-a (t-toI G(t,to,Yo) F(t,to,Xo)l B II Yo XoI e

for all t Z to for every solution G(t,to,Yo) of equation (2.2).

EEFINITION 5: The solutions of the perturbed differential equation (2.2)

are said to be un_stable with re_sect to the unperturbed differential eaua-

tion (2.1) if, for every e > 0 and every to e I, there exists some Yo
with I Yo- Xol < e and such that

IG(tl,to,Yo) F(tl,to,Xo)l >.

for some > t
o

The above definition requires that for each solution of the unperturbed equa-

tion (2.1), a solution of the perturbed equation (2.2) can be found which starts

arbitrarily close to the unperturbed solutic and which eventually diverges from

it.

We note that all of these definitions are independent of the behavior of the

solutions of the unperturbed equation. In fact, we specifically indicate that

the equilibria of the original differential equations may be stable, asymptotic-

ally stable or even unstable. This is illustrated by the following:

EXAMPLE I: Consider the unperturbed differential equation

X’ aX,

with a > O, whose asymptotically stable solution is given by
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Further, consider the associated perturbed equation

Y’

whose solution is given by

(a+) (t-toG(t’to’Yo) Yo e

As a consequence,

G(t,to,Yo) F(t,to,Xo) e-a(t-to) [Yoe-b(t-to) xo ]

If b > O, this difference approaches 0 as t +(R) and thus the perturbed solu-

tions are asymptotically, and in fact emponentially, stable with respect to

the unperturbed equation. On the other hand, if b < O, then the perturbed

solutions are unstable with respect to the unperturbed equation.

EXAMPLE 2: Consider the equation

X’ f(t),

where f(t) is any function which is defined and non-integrable on [to (R) ).

The unstable solution to this equation is given by

F(t,to,Xo) xo +
to f(s) ds

Further, consider the associated perturbed equation

Y’ f(t) + g(t,Y),

where

II g(t,Y)l 4 a llh(t)

for some sufficiently small positive constant a and for some function h(t)

which is integrable on [to (R) ). The solution is given by

G(t’to’Yo) Yo + to f(s) ds + to g(s,Y(s)) ds,

and hence

t
a(t,to,yo) F(t,to,Xo)#l .< I#Yo Xol# + a to h(s) ds,
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which can be made arbitrarily small. Therefore, the perturbed solutions

are stable with respect to the unperturbed differential equation.

3. PRINCIPAL LTS.

We now present several theorems which supply sufficient conditions for

the above types of behavior to hold in terms of the existence of continuous

real scalar, Liapunov-type, functions V(t,X).

THEOREM I. If there exists a function V(t,X) on DtoR such that

a) V(t,X) is positive definite

b) V(t,X) is continuous for X 0

c) V’(t,Y(t) X(t)) is negative semi-definite,

then the solutions of the perturbed differential equation (2.2) are stable

with respect to the unperturbed differential equation (2.1), provided that

for all t >-to,

IiG(t,to,Yo) F(t,to,xo)l# % R.

PROOF: Since V(t,X) is positive definite, there is a function a(r) of

class Mo such that

v(t,x) a(l x i ).

Now, given any a choose Yo sufficiently close to xo so that

lyo-Xo < and V(to,yo-xo) < a().

It then follows that

for all t to;

G(t,to,Yo) F(t,to,Xo)#/ < e

for, if not, there would be some tI >to such that

liG(tl,to,Yo) F(tl,to,Xo)## > e

This, however, would imply that
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V(tl,G(tl,to,Yo) F(tl,to,Xo)) > a( G(tl,to,Yo) F(tl,to,Xo) )

> V(to,o Xo)
V(tl,G(tl,to,yo) F(tl,to,Xo))

which is a contradiction.

It should be noted that the above theorem, as well as the ones which

follow, depends strongly on the condition that, for all t ?. to,

I G(t,to,Yo) F(t,to,Xo) II <. R. (3.1)

This condition ,aranees that both the function V’(t,Y-X) remains well-

defined and that the difference of the two solutions remains on DtoR. The

following result gives one fairly simple set of criteria for the functions

f(t,X) and g(t,Y) which insures that this holds.

THEOR 2: If f(t,X) satisfies a generalized Lipschitz condition

If(t,XI) f(t,X2)II < L(t) fiXI X2##
where L(t) is integrale on [to, (R) ) and if g(t,Y) satisfies

I g(t,Y)ll .< a h(t)II

for some sufficiently small positive constant a and for some function h(t)

which is integrable on to, (R) ), then if Yo is chosen sufficiently close

to xo, condition (3.1) holds for all t Z to.

and

PROOF: We have
t

F(t,to,Xo) xo +
to f(s,x(s ds

t
G(t,to,yo) Yo * to

f(s,Y(s)) ds + J to
g(s,Y(s)) ds.
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As a consequence

I{ O(t,to,Yo) F(t,to,Xo) II

JiYo- Xoli + to jlf(s Y) f(s X)li ds + Ii g(s,Y)i# ds
tO

< II Yo Xoll + L(s) G(S,to,Yo) F(s,to,Xo)ll ds + a lh(s)II ds
to

II Yo Xoll + a to II h(s)ll ds + L(s) ii (S,to,Yo) F(s,to,Xo)lldsto

A + tto L(s) IIG(S,to,Yo) F(S,to,Xo)I{ ds,

where, we observe, the quantity A can be made arbitrarily small. We now

apply the following form of Gronwall’s Inequality to the aove relation"

If Z(t) > 0 and P(t) < Q(t) + to Z(s) P(s) ds,

then
t

P(t) < Q(t) +
to Q(s) Z(s)exp Z(U)du2 ds.

We therefore obtain

K(t) K(to)
Ae

t
L(s) ds ].< A exp [ to

AC,
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which can be made smaller than any given R by choosing the constant a sufficiently

small and by choosing Yo sufficiently close to x We note that in the above,o

K(t) represents an indefinite integral of L(t).

We now turn to a result giving sufficient conditions for asymptotic behavior

for the two solutions.

THEOR 3. If there exists a function V(t,X) on DtoR such that

a) V(t,X) is bounded below

b) V’(t,Y(t) X(t)) is negative definite,

then the solutions of the perturbed differential equation (2.2) are asymptotically

stable with respect to the unperturbed differential equation (2.1) provided that

condition (3.1) holds for all t >. to

PROOF. Since V’(t,Y-X) is negative definite, there exists a function a(r)

of class Mo such that

V’(t,Y-X) % a(lY- XI).

Noreover, we have that

V(t,G(t,to,Yo) F(t,to,Xo))

V(to,Yo xo) +
to

4 V(to,Yo xo) to

V’(s,G(s,to,Yo) F(s,to,Xo)) ds

a( O(S,to,yo) (S,to,Xo) s.

Taking the limit as t /(R) and using the fact that V(t,X) is bounded below by

sce B, we find that

lirat + (R) to
a(i G(s,to,Yo) F(s,to,Xo)ll ds .< V(to,Yo xo) B,

which implies that, as t / (R),

a( G(t,to,Yo) F(t,to,Xo)I ) / O.

Therefore, since a(r) is monotonically increasing, it follows that

II G(t,to,Yo) F(t,to,Xo)II / 0
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as t / @, thus proving the theorem.

THEOP 4. If there exists a function V(t,X) on DtoR such that

a) V(t,X) is positive definite

b) V(t,X) is continuous as X 0

e) v,(t,- x)<- b(t), where to b(s) ds O,

then the solutions of the perturbed differential equation (2.2) are eventually

stable with respect to the unperturbed differential equation (2.1), provided

that condition (3.1) holds for all t >. to

PROOF: Since V(t,X) is positive definite, there exists a function a(r) of

class o such that

V(t,X) > a(IXlI).

Now, suppose that the solutions of (2.2) are not eventually stable with respect

to (2.1). Then, for any e > 0 and any Xo, there exist sequences { zk )/ xo

and {tk} / (R) as k / @ such that

II G(tk,to,Zk) F(tk,to,Xo) I >. e.

Consequently,

V(tk,G(,to,Zk) F(t,to,xo)) >. a( li S(t,to,zk) F(tk,to,Xo)
>.() > o.

Furthermore,

V(tk,G(tk,to,Zk) F(tk,to,Xo))
tk

v(t,.- ) / v’(,c,(,t,) ’(,,x)) as

However, since by assumption,

to b(s) ds 0,

we are led to a contradiction.
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THEOPd. " it" there exists s eunction V(t,X) on DtoR such that

a) liX;I
p <V(t,X) < a21x p

for some positi constants aI
and a

2
and for se p > O,

b) V,(t,Y- X) < -a;Y- X p

for some positive constant a,
then the solutions of the peurd differential equation (2.2) are eonentially

stable with respect to the unperturbed differential equation (2.1) provided that

condition (3.1) holds for all t > to

PROOF" From the conditions on V(t,X) and V’(t,Y- X), we find

V’(t,Y- X) -< -a3 It Y- XII p <. -(a3/a2) V(t,Y- X)

Therefore, upon integrating, we obtain

V(t,G(t,to,Yo) F(t,to,Xo)) < V(to,Yo xo) e-a4 (t to)

where we have written a4 a3/a2 Moreover, it follows that

V(t,G(t,to,Yo) F(t,to,Xo)) > aI Ii G(t,to,Yo) F(t,to,Xo) #
p

and hence

As a result,

I G(t,to,Yo) F(t,to,Xo)ll p
< (I/aI) V(to,Yo xo) e-a4(t to)

II G(t,to,Yo) F(t,to,Xo)il < B flyo Xol e-(a4/p)(t to)

which completes the proof.

Finally, we conclude this section with a criterion for the solutions of (2.2)

to be unstable with respect to equation (2.1).

THEORI 6: Suppose there exists a real scalar ftmction V(t,X) such that

a) for each e >0 and each t > to and each solution F(t,to,Xo) of

(2.1), there exists a solution G(t,to,Yo) of (2.2) such that

G(t,to,Yo) F(t,to,Xo)I < e

and
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V(t,G(t,to,Yo F(t,to,Xo)) < O;

Corresponding. to each solution F(t,to,Xo), the set off all points flor

which V(t,Y- X) < 0 is bounded by the hypersurfaces IY- X II R

and V 0 and may consist off several component domains;

b) In at least one of the component domains D* in which V(t,Y- X) < 0

corresponding to each solution F(t,to,Xo) V(t,X) is bounded below;

c) In the domain D*,

v,(t,- x) .< -( v(t,- x) ),

Cot some function a(r) of class Mo,
then the solutions of the perturbed differential equation (2.2) are unstable

with espect to the differential equation (2.1).

PROOF: Let F(t,to,Xo) be any solution off (2.1) and choose any point

(tl’Yl Xl in D* such that

V(tl,Y1 Xl) -b < O
where xI F(tl,to,Xo). Consider the solution G(t,tl,YI) of (2.2). We thus have

V(t,G(t,tl,Yl) F(t,tl,Xl)

V(tl,YI xI) + V’(s,G(S,tl,YI) F(S,tl,Xl)) ds
t1

I t
< b

tl a(IV(s,C,(S,tl,Yl) (s,tl,Xl))l as

< b
tl

a(b) ds

b a(b) (t- tl)
which approaches o as t o. However, by assumption, V(t,Y- X) is bounded

below in D* and hence, the points (t,G(t,,yI) F(t,tl,Xl)) must leave D*

as t +. This can only happen across the boundary I Y- X II R, for any

arbitrarily large R. Moreover, since Yl can be chosen arbitrarily close to Xl,

the solutions of (2.2) are unstable with respect to (2.1).
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4. CONCLUDING REMARKS.

Subject to the usual difficulty in finding a Liapunov function for a differ-

ential euation, the approach presented in this paper should prove to be one of

the most usefl techniques in studying the behavior of the solutions of’ a per-

turbed dlfferential equation.

Moreover, it is apparent that the concepts introduced here can be extended

to encompass in addition all of the various refinements of the stability pro-

perties, such as uniform stability, equlasymptotic stability, uniform-asymp-

totic stability and so forth.
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