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Since the works of E.Cartan and H.Weyl around 1930, it has been recognized

that many of the "special functions" introduced in Analysis since the eighteenth

century are closely related to the theory of linear representations of Lie groups

which "explains" many of their properties. Among the most interesting are the

spherical functions; their theory generalizes both the classical Laplace "spherical

harmonics" and commutative harmonic analysis, and they play an important part in the

modern theory of infinite dimensional linear representations of Lie groups
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(the so-called "noncommutative harmonic analysis").

Recall that a locally compact group G is called .u.nimodul.ar if its left Haar

measure is also invariant under right translations; it is then also invariant

-I
under the symmetry x+ x Examples of noncommutative unimodular groups are

compact groups and semi-simple Lie groups.

For a unimodular group G with Haar measure m
G

the convolution f,g of two

functions f,g in LI(G,mG is defined by

(i) (f,g)(x) /Gf(xt-l)g(t)dmG(t)
and belongs to LI(G) for that operation,.Ll(G) becomes a Banach algebra for

the usual norm, but if G is not commutative, LI(G) is not commutative. There

is, however, a remarkable situation involving a compact subgroup K of G and leading

to a commutative Banach algebra. One considers in LI(G) functions which are

invariant under both left and right translations by elements of K, in other words

(2) f(tx)=f(xt)=f(x) for all teK

(equality being understood for almost all xeG) the subspace of LI(G) consisting

of these functions is written LI(K\G/K) it is a closed subalgebra of the

Banach algebra LI(G). In general, that subalgebra is not commutative we say

that (G,K) is a Gelfand pair if LI(K\G/K) is commutative. This is obviously the

case when G itself is commutative; but the importance of the notion stems from

Gelfand’s theorem: Let o" G / G be an involutiv automorphism of the locally compact

unimodular group G, and let K be the closed subgroup of elements of G invariant

by o Suppose that i K is compact 2 each x e G can be written in at least

-I
one way as x=yz with o(y)=y and o(z)=z Then (G,K) is a Gelfand pair.

A trivial case of Gelfand pair consists in a commutative locally compact group

G and the compact subgroup K reduced to the neutral element e. Before exhibiting

examples of non commutative groups G to which Gelfand’s theorem applies, let us

show how harmonic analysis (i.e. the theory of commutative locally compact groups)
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generalizes to Gelfand pairs.

Applying the general theory of commutative Banach algebras, one first looks

for the characters of the commutative algebra LI(K\G/K) they can be written

in a unique manner.

(3) f+ (f) fGf (x) (x) dmG (x)

where the complex function is uniformly continuous (both left and right)

such that l(x) < (e)=l and (tx)=(xt)=(x) for tK and xG. These functions

are called the (zonal) spherical functions for the Gelfand pair (G,K) for any

such function, the complex conjugate L and the function V(x)=(x-l) are also sphe-

rical functions. If G is commutative and K={e}, spherical functions are the

characters of G, continuous homomorphisms of G into the group U of complex numbers

of absolute value i. The following properties generalize those of characters of

commutative locally compact groups

I) For bounded continuous functions on G, invariant by left and right translations

by elements of K, the following are equivalent

a) is a spherical function

b) fK(xty)dmK(t)=(x)(y)for x,y in G (mK is the Haar measure on K with total mass

i)

c) (e)=l and f,=If for some scalar IfC for all f(K\G/K)(when G is

commutative and K={e} equation b) becomes (xy)=(x)(y) and in c)

If= fGf (t)w(t)dmG(t)).
II) The set S(G/K) of spherical functions is locally compact for the compact-open

topology, which coincides on that set with the weak* topology of L(G) (when is

identified with the character of LI(K\G/K)). The mapping (,x)+(x) of

GS(G/K) into C is continuous, and every compact subset of S(G/K) is equicontinuous.

(When G is commutative and K={e} S(G/K) is the dua_l group of G but of course

in general S(G/K) has no group structure)
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III) To each function feLl(G) is associated its Fourier transform, which is a

function on the space S(G/K) defined by

(4) f + fgf (x) (x-l) dmG (x)

it is continuous and tends to 0 at infinity. Furthermore, if f,g are any two

functions in LI(K\G/K) one has

(5) lf()l < fGlf(x) IdmG(X)=Nl(f) for all eS(G/K)

(6) (f,g)= f. g
IV) An important notion in the theory of representations of locally compact

groups is that of functions of positive type they are (complex valued) bounded

continuous functions x+ p(x) on the group G, such that, for any finite subset

{Sl,S2,...,sn} in G, one has

(7) E p(s.Isk --jk> 0
j,k

for all systems {I, 2 n} of complex numbers. An equivalent condition is

that for any function geE(G) one has

(8) fG p(x)(*g)x)dmG(x) > 0

It is immediate to verify that for a locally compact commutative group G, the

characters of G are functions of positive type. But for a Gelfand pair (G,K)

it is not true in general that spherical functions are functions of positive type;

one is thus led to consider in S(G/K) the closed subspace Z(G/K) of spherical

functions of positive type it is on that space that one obtains the most

interesting results and in particular the closest generalization of commutative

harmonic analysis.

V) In the first place, for a function of positive type p on a non discrete group

G the sesquilinear form

(9) (h,g)- O(,g) (x) p (x) dmG (x)
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L
I

defines on (G) a structure of preHilbert space, which, by passage to quotient

and completion, yields a Hilbert space Ep the left translation by an element

sG extends to a unitary transformation U(s) of E s U(s) is then a unitary
p

representation of G into E and there is in E a vector x such that
p p o

(i0) p(s)=(U(s).x .Ixo) for all sG
o

In particular, if (G,K) is a Gelfand pair, and m a spherical function of

positive type for (G,K) there is in this manner a unitary representation U

of G in a Hilbert space E associated to m a remarkable property is that U

is irreducible and that its restriction to K contains exactly once the trivial

representation of K furthermore, conversely, every irreducible unitary re-

presentation of G in a Hilbert space, the restriction of which to K contains (at

least once) the trivial representation of K, is equivalent to one and only one

representation U for a function meZ(G/K)

VI) The concept of function of positive type is a special case of the notion

of complex measure of positive type on G it is defined by the condition that,

for any ge(G) one has

(Ii) fG(,g) (x)d(x) 0

and therefore the functions of positive type p are those such that p.mG is a

measure of positive type. The same construction as in V) (with U replacing p.mG)
yielHs again a Hilbert space E in which one considers the closed subspace H, the

closure of the image of (K\G/K) If (K\G/K) / H is the natural mapping

one may write for f,g i(K\G/K) (f,g)=V (f).(g) and V is a continuous

homomorphism of the commutative algebra (K\G/K) into the algebra (H) of

continuous endomorphisms of H To this homomorphism one may apply a fundamental

theorem of spectral theory, known as the Plancherel-Godement theorem: it shows that,

on the locally compact space Z(G/K) there is a unique positive measure such

that, for every function g(K\G/K) the cotransformg- of g belongs to
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L2(A) and for any two functions f,g of (K\G/K) one has

(12) (h,g)= -’g(h()dA()
and H is naturally isomorphic to L2(VA) One says that V is the Plancherel

transform of the measure of positive type. For instance, it is easily seen

that the Dirac measure e at the neutral element e of G is a measure of positive

A
type; its Plancherel transform e is written m

Z
and called the canonical measure

e

on Z(G/K); for V=ee
relation (12) gives

(13) fGg(X)h--TdmG(x)= fzg(m)h(m)dmZ(m)
If G is commutative and K={e} mZ is the Haar measure on the dual associated

with mG and (13) is the usual Plamcherel formula. Relation (13) shows that

the Fourier transform f+f extends to an isomorphism of the Hilbert space

L2(K\G/FO (the closure of (K\G/K) in L2(G)) onto the Hilbert space L2(Z(G/K),mz),

the generalization of the well-known isomorphism of L2(G) onto L2() in the

commutative case.

For any spherical function Z(G/K) of positive type m.mG
is a measure of

positive type and its Planeherel transform

(14) (.mG)-
the Dirac measure on Z(G/K) at the point

Finally, it may be shown that any bounded measure on G is a linear combinatiom

of measures of positive type and therefore its Plancherel transform is defined

Afurthermore has a density with respect to the canonical measure m
Z

which is

continuous and bounded and written it is given by the formula

() (m)ffi fGm(x-l)d(x)()

which extends to bounded measures the definition (4) of the Fourier transform. When

G is commutative and K={e} relation (15) is written

(16) ,(): /G<X,x---(x)
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and for a bounded measure on G relatlon (12) is written

(17) fG(g,h) (x)d(x)= fg()h()v()dm()
(generalized Plancherel theorem)

VII) When G is a unlmodular connected Lie group it may be shown that spherical

functions corresponding to a Gelfand pair (G,K) are of class C and are e.lgenvectors

of al__l differential operators which are Invarlant under left translations by elements

of G and right translations by elements of K. On semlslmple Lie groups this

implies that spherical functions are analytic, because among these invariant

operators there are always in that case elliptic ones.

The fundamental examples of spherical functions: There are three main types

of Gelfand pairs (G,K) with noncommutative groups G, each giving rise to spherical

functions among which are many of the "special functions" of Analysis.

A) G is a linear semlsimple compact connected Lie group then for any involutive

automorphism of G the conditions of Gelfand’s theorem are satisfied; all these

automorphisms have been explicitlx determined by E. Cartan. In this case, all

spherical functions are of positive type and the space S(G/K) is discrete.

The most interesting example is given by the group G=S0(n+I) of rotations in

the Euclidean space R
n+l

and the subgroup K=SO(n) G/K is identified with the

sphere S K being the subgroup which leaves invariant the first vector e of the---n o

canonical basis of Rn+l As G is compact L2(G) is an algebra (for the convolution

product) and so is the closure L2(K\G/K) of (K\G/K) in L2(G) which is therefore

coutative by Gelfand’s theorem. The functions of L2(K\G/K) can be identified to

the functions in L2(S_n) which only depend on one variable namely the angle of

the variable vector xS with the vector e
O

For n > 2 the space L2(S_.n splits into a Hilbert sum of finite dimensional

subspaces Em(m=0,1 stable under the action of G E is exactly the space
m

of the restrictions to S of the harmonic polynomials which are homogeneous of
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degree m and the subrepresentation of G into E is irreducible. Each E con-
m m

talns exactly one spherical function if one writes (x)=G
mm m ,n+l

(cs e) the

G are the Gegenbauer polynomials (the Legendre polynomials for n=2)
m,n+l

they satisfy the differential equation

(18) (l-z2)y"-nzy ’+m(m+n-l)y=0
B) G is a linear non compact connected semisimple Lie group with finite center,

and K is a maximal compact subgroup of G there is then an involutive automor-

phlsm s of G for which K is the group of fixed points and which satisfies the

conditions of Gelfand’s theorem. A typical example is given by G=S_L(n,R) ,K=SO(n)

is then the involutive automorphism x+tx__-I (contragredient matrix).

It may be shown that one may write G--SK where S is a closed solvable sub-

group wasawa decomposition). Suppose we know a continuous homomorphlsm e: S+C

then one extends to a continuous function on G by taking e(st)-e(s) for sS

tK and one easily checks that the function

(19) (x)= fK(tx) dmK(t
verifies the functional equation

(20) (x)(y)= fK(xty) minK(t)
and therefore is a spherical function if it is bounded (solutions of (20) may

be called generalized spherical functions). A deep theorem of Harlsh-Chandra

proves that all generalized spherical functions relative to the Gelfand pair

(G,K) are given by formula (19) and in addition determines explicitly all

homomorphlsms e by a detailed study of the Lie algebra of G.

The simpliest example consists in the pair G=S_L(2,) K=S__O(2) one has then

G=KS=SK where S is the sivable grup f trlangular matricesC a-bi) wlth a > 0’
a bthe decomposition being unique. It is easily shown that the matrices X__--( c d

of a

double class relative to K are those for which the number Tr(t.)=a2+b2+c2+d2
has

a given value 2v with v e i. The functions of C(K\G/K) are therefore the functions
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f((a2+b2+c2+d2))1 where f is continuous on the half-llne [i,. One then finds

for the generalized spherical functions

2z

(21) P (v)=2 (v+ /v’2-f cos,

where 0 is any complex number they are the Legendre functions of index 0

and the corresponding functional equation (20) is

2

(22) P0 (oh t)P0 (ch u)= P0 (ch t ch u+sh t sh u cos )d

(t,u arbitrary real numbers)

C) The third case consists of a unimodular group G containing a normal commuta-

tive group A with no elements of order 2, and a (non normal) compa_ct subgroup K

such that the mapping (t,s)-+ts is a diffeomorphism of the manifold KxA onto G

-i
one then checks that tsI-ts is an involution having the properties required

in Gelfand’s theorem, so that (G,K) is a Gelfand pair. One then starts from a

continuous homomorphism e A + C and for x=ts with tK,sA, one defines

(23) re(x) ]Ke (usu-l) dmK (u)

It is easily verified that m satisfies the functional equation (20) and is

thus a generalized spherical function furthermore, it can be shown that al__l

generalized spherical functions are obtained in this manner.

The typical example here is the group G of isometries of the Euclidean plane

R
2
preserving orientation it can be identified with the group of matrices

ose sine x

1sne cose0 Yl
acting by multiplication on vectors of R_

2
represented by column vectors

The normal subgroup A is here the group of translations (corresponding to matrices

with e=0) and K the group of rotations (corresponding to x=y=O). The
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homogeneous space G/K is here identified with R2, and the double classes KsK

are identified with the orbits of K in R2 x2+y2-r2i.e. the circles continuous

functions on K\G/K are thus identified with functions ((x2+y2) I/2) where $
,

is continuous on the interval [0,+ m[ The continuous homomorphlsms A / C

are here the exponenti&l| (x,F)(A+BF) with , arbitrary complex numbers.

Formula (23) therefore identifies here the solutions of (20) to the continuous

functions on [0,+ =[ given by

2W
i(24) $(r)=2 I exp(r(A cos$ + sinS))d$

o
When one takes A=0,=i one gets the Bessel function J which is boundedo

hence gives a spherical function.
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