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ABSTRACT. Sufficient conditions have been found to ensure that all oscillatory

solutions of

(r(t)y’(t))’ + a(t)y(t-(t)) f(t)

are slowly oscillating. This behaviour is further linked to nonoscillation.
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i. INTRODUCTION.

In studying the asymptotic nature of oscillatory solutions of the equation

(r(t)y’(t))’ +a(t)y(t-(t)) f(t), (i)

this author in [9, Theo. 2] showed that a nontrivial oscillatory solution y(t)

of (i) satisfies lim y(t) o if f la(t)Idt < f if(t)Jdt < and f t < .
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In theorem 4 in [9], it was observed that Idt lead to slowly oscillating

solutions which do not approach zero as t / .
In this work, we give sufficient conditions which cause all oscillatory

solutions of the equation

(r(t)y’(t))’ + a(t)h(y(g(t))) f(t) (2)

to oscillate slowly.

Even though voluminous lirature exists about various types of oscillatory

and nonoscillatory criteria for such equations, the asymptotic nature of oscillatory

solutions of these equations has not been so extensively studied. For a good

literature study of related results Graef [i] and Graef and Spike [2] have in-

cluded an exhaustive reference list. The work of Travis [ll] (c.f[8]) shows that

common techniques found for ordinary differential equations fail on retarded

differential equations even when the retardations are small. For oscillation

criteria see T. Kusano and H. Onose [4] and this author [7].

2. ASSUMPTIONS AND DEFINITIONS

The entire study in this work is subject to the following assumptions:

(i) a(t), r(t), f(t), h(t) and g(t) are cO(R), where R is the real line,

(ii) r(t) > o, g(t) > o, g’(t) > o

(iii) g(t) < t and g(t) / as t -
(iv) h is odd, sign (h(t)) sign(t) and there exists positive constants ,m

such that o < < h(t) < m on some positive half llne.
t

In order to reckon the half line we shall assume that it would mean for

t > tO for some positive tO tO will be referred to without further mention.

All functions considered are real valued.

We call a function H(t) C0[t0,) oscillatory if H(t) has arbitrarily

large zeros in [t0, otherwise we call it nonoscillatory. In order to be more

precise we shall use the term "solution" only for those nontrivial solutions (of

equations under consideration) which can be extended continuously for t > t0.
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We define a function Hl(t g C0[t0,oo to be slowly oscillating if Hi(t
is oscillatory and the set: ZHI {Y0 x0 Y0 > x0 Y0 and x

0
are

consecutive zeros of Hl(t) x0 > to }

is unbounded. If ZHI is bounded, HI is called "moderately oscillating".

3. ON SLOW OSCILLATION

Theorem 4 in [9] states that moderately oscillatory solutions of (i) approach

zero if fla(t) Idt < and If(t) Idt < . Our next Theorem gives sufficient

conditions for all oscillatory solutions of (2) to be slowly oscillating.

a2(t)
THEOREM (i). Suppose a(t) al(t) + a2(t) where al(t) > o and a.l(t)

is bounded for large t. Further suppose that

If(t) > o Then all oscillatory solutions y(t)rlj,f(t),dt < and lim inf altt-o
of equation (2) satisfy

lira sup ly(t) > O (3)

and

y(t) is slowly oscillating. (4)

PROOF. Let y(t) be an oscillatory solution of (2). Rewriting (2) we

have

(ry’)’
+ h(y(g(t))) + a2(t) h(y(g(t))) f(t)

a
I
(t) al(t) al(t

a2(t)
Suppose to the contrary that lira y(t) o. Since a1() is bounded and

t-o

h(x) / o as x / o we get that

(i + a2(t)/al(t)) h(y(g(t))) / o as t / Since

lira inf (If(t) / al(t)) > o (t) reveals that y’(t) assumes a constant
t-o

(5)
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sign making y(t) nonoscillatory. This contradiction shows that

sup lyit) > o
t-o

Now

f la(t)Idt < fal(t)dt + f la2(t)ldn
T T T

f
T

al(t)dt +
al(t) al(t)dt

<

since a2 (t)

al(t)
is bounded as t / and f If(t) Idt < By Theorem

T

4 of this author [9], y(t) is slowly oscillating. The proof is now complete.

EXAMPLE (i). Consider the equation.

5 iy"(t) + A-._ y(t)
t3/2

t > o

5Here al(t) a(t) All conditions of Theorem 3 are satisfied. Hence

(6)

all oscillatory solutions of (6) are slowly oscillating and satisfy

lira sup ly(t)l > o In fact y(t) (1 + 2 sin(%nt)) is one such
t-o

solution.

EXAMPLE (2). Let y(t) be a solution of

y"(t) + i + 2 sin t 2 Cos t

t3 y(t )= + t4 t > (7)

Taking al(t) i/t3 a2(t) 2 sin t / t3 we find that all conditions of

this theorem are satisfied. Hence either y(t) is nonoscillatory or slowly

oscillating with no limit at

Example i suggests the following theorem:

THEOREM (2). Suppose a(t) al(t) + a2(t) where al(t) > o and

a2(t) / al(t) is bounded for large t Further suppose that
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If(t)[dt < and ]f(..t.)l / as t / Let y(t) be an oscillatorya()
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solution of (2) Then y(t) is slowly oscillating and lira sup ]y(t)]
t-o

PROOF. We only need to show that lim sup ly(t)] Suppose to the

contrary that y(t) is bounded. Then (5) immediately reveals that

(rY’)’/al(t) / as t /

Since al(t > o, ]y’(t) l> o eventually. This forces y(t) to be

nonoscillatory, a contradiction. This proves the theorem.

EXAMPLE (3). The equation

y’’ (t) +
5

+ 6 sin.(%nt) 1 6
y(t) + in(Zn t) + 2 sin2<n t (8)

t > O

satisfies all conditions of Theorem 2 by choosing aI and a2 as

al(t) and a2(t 6 sin Int) This equation has
4t2 t4

yt) / i + 2 sin

as an oscillatory solution satisfying the conclusion of this theorem.

Our next theorem gives conditions for boundedness of all moderately oscillating

solutions of equation 2. It is well known that if a(t) al(t) + a2(_t

where al(t) / L > o as t / alt) is of bounded variation and

f la (t)Idt < then all solutions of

y"(t) + a(t)y(t) o

are bounded with bounded derivatives. See Cesari [3, p.85]. It is not true

for retarded equations

y"(t) + a(t)h(y(g(t))) o

as the following example shows.

(9)

(IO)
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EXAMPLE (4). The equation

y" + 2e/2y(t -/2) o (ii)

has y(t) et sin t as a solution. However our next theorem gives the partial

result. We prove it in more generality for equation 2.

THEOREM (3). Suppose a(t) al(t) + a2(t) where al(t) / L > o as t

f lam(t) Idt < and J’ If(t) Idt < Further suppose that there exists a

such that L + )t < (4-))/c2m where for any oscillatory solution y of (31)

sup x2 Xl Y(X2) Y(Xl)= o y(x) o, xe(xl, x2) <

then y(t) is bounded.

PROOF. Let T be large enough so that for t > T al(t) < L + % Let

T be large enough so that g(T1) > T and y(TI) o

la2(t) Idt < /2 and f If(t) dt < /2
T

Suppose to the contrary that lira sup ly(t) Then there is a

TI’ > T2 > TI such that Y(T2) o and PI max ly(t) T <_ t < T v I.Y(T ’)I > %.

smallest closed interval containing TI’. It is clear that T2 < Xl,

(12)

and

lY(g(t) < MI

for te [Xl, x2]. Let Xog[xl, x2] such that MI lY(XO) Since

(13)

xo
MI -jXOy ’(t)dt f y’(t)dt

xI x2

we have
x2

2Ml < f lY’(t) Idt
Xl
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x2f lY’(t) 11/21y
xI

4MI < f dt f y’(t) y’(t)dt

by Schwarz’s inequality. Integrating by parts and using (2) we get

4 < (x2 Xl) y(t)a(t)h(y(g(t)))dt- f y(t)f(t)dt
xI xI _

From (14) we have

x2 x2
4 < f a(t) h(y(g(t)))

y(g(t))
y(g(t))dt + f

xI xI

(14)

since x2 xI < e This yields in view of (12) and (13)

x2x2 2 f If(t4 < m (al(t) + la2(t) l)dt +xI X1

(15)

which gives

x2 a x2
4 _< e2m(L + %) + m f la2(t) Idt + -- f If(t)

xI "’i xI

or

4 < a2m(L + %) + %

x x2
mf 2

since ii < i la2(_t) Idt < %/2 and f If(t) Idt <_ l/2
x I xI

(16)

(17)

This contradiction, in (17) completes the proof.

REMARK. Coming back to example (4) we see that for the solution

y et sin t L 2e/2,m 1 f(t) o and a2(t) o Thus

far any > o, 2m (L + ) 2(2 e/2 + ) > 4 ,/satisfying the

conclusion of the theorem.
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EXAMPLE (5). The equation

y"(t) + 2 e-3n/2y(t -) o

has y e-t sin t as a solution. Here
-3z

L e---Z e-4"7 m l

Therefore for % .01

m2(L + %) 2(e-4"7 + .01) < 4 once again, satisfying this theorem.

(18)
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