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ABSTRACT. Relationship between existence of solutions for certain classes of

nonlinear boundary value problems and the smallest or the largest eigenvalue of

the corresponding linear problem is obtained. Behavior of the solutions, as the

parameter increases, is also studied.
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I. INTRODUCTION.

Equations of the form

y"(x) + p(x) y(x) + %q(x) yn(x) 0

where % is a parameter and n is a positive integer, arise in many physical problems,

for examples, in linear (n i) and nonlinear (n
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[i, 2, 3, 4], and in nuclear energy distribution [5, 6]. In these problems, the

parameter has physical significance, such as the energy level or the stiffness

factor of the system under consideration.

In this work, relationship between existence of solutions for classes of

nonlinear boundary value problems with equations of the form (1.1) and the smallest

or the largest eigenvalue of the corresponding linear problem is obtained. The

case of the coefficient q(x) being a negative constant has been investigated in

[7]. Conditions on the coefficients of the equation, under which the solution

remains bounded as the parameter increases, are obtained.

2. EXISTENCE OF SOLUTIONS FOR NONLINEAR BOUNDRY VALUE PROBLEMS AND EIGENVALUE

OF CORRESPONDING LINEAR PROBLEMS.

In this section, relationship between existence of solutions for equations of

the form (i. i) with zero boundary conditions and the smallest or largest eigenvalue

of the corresponding linear problem is obtained. The analysis used here is similar

to that in [7]. It would be assumed that the functions p(x) and q(x) are in the

class C[0,1].

In the first two theorems, the nonlinear boundary value problem

y"(x) + p(x) y(x) q(x) yn(x) 0

y(O) o y() o

and the corresponding linear eigenvalue problem

z"(x) +p(x) z(x) Xq(x) z(x) 0 (2.3)

z(O) o z() o (2.4)

are considered.

THEOREM 2.1. If (I) p(x) > 0 and (2) q(x) > 0, then (2.1) and (2.2) has a

positive solution if and only if the largest eigenvalue of (2.3) and (2.4) is

positive.
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PROOF. Suppose (2.1) and (2.2) has a positive solution. To show that the

largest elgenvalue X
1

of (2.3) and (2.4) is positive, let z I
be a corresponding

elgenfunctlon of (2.3) and (2.4) satisfying z I # 0 for 0 < x < I [8]. Multiplying

(2.1) by Zl, (2.3) by y and subtracting the equations, we get

y"zl yz q(x)ynzl + Xlq(x)yz I
0 (2.5)

Integration of (2.5) from 0 to 1 and the boundary conditions (2.2) and (2.4) lead to

therefore,

I I
-] q(x)ynzl dx + I S q(x)yz

0 0 1
dx= 0

i
2" q(x)ynzl dx
0

i 1. q (x) yz I dx
0

and i is positive.

Suppose now that the largest elgenvalue of (2.3) and (2.4) is positive. Note

first that if y is positive and M denotes its maximum, then

I

y < M < R
n-I

where

R max
p(x)

xe[0, I] q(x)

To apply an existence theorem for nonlinear elgenvalue problems in [9], equa-

tion (2.1) is written in the form

Ly F(x, y)

where

Ly -y" + a(x)y, a(x) > 0,

n
F(x, y) [p(x) +a(x)]y- q(x)y

To show that a positive solution of (2.1) and (2.2) exists, we must find curves
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u(x), v(x) such that

0 < u(x) < v(x), for all x e (0, I),

v(O) > O, v(1) > O, Lv > F(x, v),

u(0) < 0, u(1) < 0, Lu < F(x, u),

and a(x) must be chosen so that F(x, y) is a monotonic increasing function of y for

all (x, y) in the set

s-- {(x,y) o <_ x-< , u(x) _< y_< v(x)}.

Let I

v(x) Rn-I

then

n
Lv F(x, v) a(x)v [p(x) + a(x)]v + q(x) v

n-I
v[q(x)v p(x)]

Rn-1 [q(x)R p(x)]

>_ 0

and v satisfies all the requirements.

Let

u(x) z l(x)

,,here z, (x s normalized such that

n-1
0 < Zl(X) ’’l and

then

R
n-I

z (x) < for x e (0, i),

Lu -zy + a(x) z
1

p(x) z -X I q(x) z + a(x) z

[p(x) + a(x)]z I I q(x) z

n
< [p(x) + a(x)]zl q(x) Zl

F(x, u).



SOLUTIONS OF NONLINEAR OSCILLATORS 497

From the fact that

8F n-Ip(x) + a(x) q(x)ny
8Y

F(x, y) is increasing in y in S if

a(x) > q(x)nyn-I p (x)

so choose

a(x) > Q n R- P0

where

Q max q(x), P0 min p(x)
x e [0, I] x e [0, I]

By [9], the nonlinear problem (2.1) and (2.2) has at least one solution in S.

THEOREM 2.2. (I) If p(x) > 0, (2) q(x) > 0 aqd (3) n is odd, then (2.1)

and (2.2) has a negative solution if and oly if the largest eigenvalue of (2.3)

and (2.4) is positive.

PROOF. Suppose (2.1) and (2.2) has a negative solution. Then as in the proof

of Theorem 2.1, it can be shown that if %1 is the largest eigenvalue of (2.3) and

(2.4) and Zl is a corresponding eigenfunction, then

I
S q(x) yn Zl
0

dE

1
q(x) y Zl

0
dx

and since n is odd, %1 is positive.

Conversely, suppose that the largest eigenvalue of (2.3) and (2.4) is positive.

Note first that if y is negative and m denotes its minimum at say x0, then

y" -P(X0) m + q(x0)m
n

> 0
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n P(Xo)
m mq(xo)

n-1 P(Xo)
m <

q(Xo)

Since (n- I) is even,

and so

1

(x0)j
<mSy

I

-R <y

To apply the existence theorem in [ 9], equation (2.1) is written in a form as

in the proof of Theorem 2.1. To show that a negative solution of (2.1) and (2.2)

exists, this time we must find curves u(x), v(x) such that

u(x) _< v(x) < 0, for x (0, I),

v(0) --0, v(1) --0, Lv >_ F(x, v),

u(O) < O, u(1) _< O, Lu-< F(x, u)

and a(x) must be chosen so that F(x, y) is a monotonic increasing function of y for

all (x, y) in the set

s ={(x, y) 0_< x< 1, u(x) -< y< v(x)}

Let I

u(x) R

then

Lu F(x, u) a(x)u [p(x) + a(x)]u + q(x) u
n

n-I
u[ q (x) u p (x) ]

I

R
n-I [q(x) R- p(x)]

<0
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and u satisfies all the requirements.

Let

v(x) z l(x)

where z l(x) is normalized such that

I I
n-I n-I

-I < z l(x) < 0 and R <zl(x), for x s (0, i)

then

n
-1 q(x) z

1
>-q(x) z

1

and so

Lv [p(x) + a(x)]z I I q(x) z I
n> [p(x) + a(x)] z

1
q(x) z

1

F(x, v)

From the fact that

3__[ n- I
3y

p(x) + a(x) q(x)n y

F(x, y) is increasing in y in S if

n-Ia(x) _> q(x)ny p(x)

<QnR-Po,,

so let

a(x) >- Q n R- P0

It follows from [9] that the nonlinear problem (2.1) and (2.2) has at least

one solution in S.

In the next Theorem, the nonlinear problem

y"(x) + p(x)y + q(x) yn 0 (2.6)
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y(0) y(1) 0 (2.7)

and the corresponding linear eigenvalue problem

z"(x) + p(x) z + Xq(x) z 0

z(0) z(1) 0 (2.9)

are considered.

THEOREM 2.3. If (i) p(x) > 0, (2) q(x) > 0 and (3) n is even, then (2.6) and

(2.7) has a negative solution if and only if the smallest eigenvalue of (2.8) and

(2.9) is negative.

PROOF. Let

y(x) -Y(x), then

-Y"(x) p(x)Y + q(x) [-Y(x)]n 0

snd so Y(x) satisfies

Y"(x) + p(x) Y(x) q(x) yn(x) 0 (2.10)

Y(0) 1, Y(1) 0 (2.11)

By Theorem 2.1, (2.10) and (2.11) has a positive solution Y if and only if the

iargest eigenvalue of (2.3) and (2.4) is positive, and hence if and only if the

smallest eigeLvalue of (2.8) and (2.9) is negative. The conclusion of the theorem

now follows.

3. BOUNDEDNESS OF THE SOLUTION AS THE PARAMETER INCREASES.

In this section, boundedness of the solution of

y"(x) + p(x)y + Xq(x)y
n

0 (3.1)

y(O) 0 (3.2)

as the parameter I increases, is studied. It would be assumed that the functions

p(x) and q(x) are in the class CI[0, i].



SOLUTIONS OF NONLINEAR OSCILLATORS 501

THEOREM 3.1. If (I) p(x) > 0, p’(x) < 0, (2) q(x) > 0, q’(x) < 0, (3) n is

y,(0)
is bounded as X / =, then y is bounded as I / =.odd or y > 0 and (4)

PROOF. Multiplication of (3.1) by y’ and integration of the resulting equation

over [0, x] lead to

x 2 x x 2 n+l x x n+l

2- 2
Z- Y _Z___ds 0,2 + p(s) S p’(s) ds + kq(s)

n + I -k.[ q (s)
n + I0 0 0 0 0

[0 2,2 y2
x

2 yn+l 2 l q’ (s)yn+l ds y’ (0).y (x) + p(x) (x) P’(s)y2ds +n-- q(x) (x) n-
0

Therefore,

2 q(x) yn+l(x) < y,2(0),
n+l

n+l n + I y’2(0)
y (x) <_ 2 lq (x)

and the conclusion follows.

THEOREM 3.2. If (I) p(x) > 0, p’(x) > O, (2) q(x) > 0, q’(x) < 0, (3) n is

odd or y > 0 and (4) y’(0) is bounded as / , then y is bounded as / =.

PROOF. As in Theorem 3.1, equation (3.1) is multiplied by y’ and the result-

ing equation integrated over [0, x], obtaining

x
y2p(x)y2(x) < y,2(0) +S P’(s) ds

0

x
P(x)y2(x) < y’2(0)+ p(s)y2 Pp’((:)) ds

and by Gronwall’ s inequality [ I0],

2 x
p(x)y2(x) < y’ (0) exp

p’(s)

0
p(s) ds

y,2(O p(x)
p(o)

therefore,
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and the result follows.

2 y’2(O)
y (x)

p (0)
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