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ABSTRACT. Let X be a completely regular, Hausdorff space and let R

be the set of points in X which do not possess compact neighborhoods. Assume

R is compact. If X has a compactification with a countable remainder, then

so does the quotient X/R, and a countable compactificatlon of X/R implies

one for X-R. A characterization of when X/R has a compactification with

a countable remainder is obtained. Examples show that the above implications

cannot be reversed.
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i INTRODUCTION.

Let X be a completely regular, Hausdorff topological space. The question

of characterizing when X has a Hausdorff compactification X, where

uX- X is countably infinite, has been answered for the locally compact case

by Magill [2] and for the case when uX 8X by Okuyama [4] (where 8X is

the Stone-Cech compactification of X). In case X is an arbitrary completely

regular space, no such characterization has been given. The purpose of this

paper is to contribute results toward such a characterization.

Let R be the set of points in X which do not possess compact neighbor-

hoods. Then for all compactifications uX of X, R Cl0ux(OUX X) X. (See [5].)

Herein we observe that for compact R, a necessary condition for X to have

a countable compactification is that X/R have one. The main theorem of this

paper characterizes when X/R has a countable compactification.

2. CRARACTER!ZAT!ON OF e,(X/R_).

Throughout this paper all compactifications are Hausdorff compactifications.

Let N denote the natural numbers. If R is a compact, non-empty subset of

a completely regular space X and if X has a coutable compactification yX,

then a countable compactification of X/R can be obtained from yX by iden-

tifying R to a single point. It is readily verified that the resulting space

is Hausdorff.

If e(X/R) is a countable compactification of X/R, then (X/R) is also

a countable compactification of X- R. Thus, we have the following:

THEOREM i. If X is completely regular and R is compact, then each of

the following conditions implies the next:

(A) X has a countable compactification;

(B) X/R has a countable compactification;
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(C) X- R has a countable compactiflcation.

Examples will be provided to show that none of these implications can be

reversed.

If R is non-compact, then (A) no longer implies (C) as in Theorem I.

Let X be the unit disc in the standard plane with a countable dense subset

removed from the boundary. The remaining boundary points constitute R. Then,

clearly, X has a countable compactification but X- R, the open disc, has

no countable compactification.

Let Y (SX- X) R.

THEOREM 2. Let X be a completely regular Hausdorff space with R compact

and non-empty. Then the following are equivalent:

(A) X/R has a countable compactification.

’B) R is a G6-set in Y and components of R are components of Y.

PROOF. (A) implies (B). Take {Pnln e N} y(X/R) X/R, where y(X/R)

is a countable compactificatlon of X/R, and let t0 be the canonical mapping

of X into y(X/R). Then to has an extension t which maps 8X onto

y(X/R). We first show that t carries 8X- X onto y(X/R) X/R. Since the

restriction of t to X- R is a homeomorphism and X- R is dense in 8X

and in y(X/R), t carries Y onto [y(X/R) X/R] {r}, where r t[R]

(cf. Lemma 6.11 [i]). If x e R and y e-SX- X, then since R is compact

there exists a compact neighborhood N
R

of R in 8X such that y NR.

Set N NR X. Since R_ N, t0[N] is a neighborhood of t(x) r in X/R.

Thus, there is a neighborhood G in (X/R) for which t0[N G X/R. If

N is any neighborhood of y in 8X, choose z e N (X N). Then
Y Y

t(z) S and it follows from the continuity of t that t(x) t(y). Hence

t[SX X] y(X/R) X/R.
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Next, let Kn t-l(pn), for each n E ,N. Evidently, BX- X =U {Knln N).

Since each K is compact, the sets Y K are open in Y andn n

R-{Y Knln N}. Thus m is a G-set in Y.

Let C be a component of R and let C be a component of Y, where
i

C_ CI. If C CI, choose x E CI C. Now there exists a continuous InJectlon

f of {Pn N} {r} into the real numbers. (See [3]). But f t CI must be

connected and not a singleton, since t[R] # t(x). This contradicts the fact

that the image of f is countable Thus, C Cl, so that components of R

are components of Y.

(B) implies (A). First we show that there exist sets {Unln E N} which

are clopen in Y such that {Unln E N} R. Note that Y is compact. Let

{Vnln E N} be open subsets of Y satisfying {Vnln N} R. For each

n e N, set Kn Y- Vn. We assume that each Kn @. Let (x,r) e Kn x R.

Since x and r are in distinct quasi-components of Y, there exists a

clopen neighborhood Wn(x,r) of r in Y, where x Wn(x,r). Now

{Wn(x,r) r R} is an open covering of R so that a finite subfamily

(Wn(x,ri) li l, .,p(x)} covers R. Take Wn(X)={Wn(x,ri) li l,...,p(x)}.

Thus W (x) is a clopen subset of Y R Wn(X), and x $ W (x) Since
n n

{Y Wn(X)Ix Kn} is an open cover of , there is a finite subcover

( Wn(xs)lJ ,...,q(,)).

For each n E N, let Un {Wn(xj)lJ l,...,q(n)}. Then each Un

Let C1 Y UI, and for n > i, take Cn [Y {Uili l,...,n}]

{Cili l,...,n- i}. Then each Cn is a clopen subset of Y and BX- X

Let c- be the equivalence relation in 8X which identifies each Cn to

a point and R to a point. The projection of SX onto 8X/e is denoted by H.
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For each n e N, consider the point H[Cn] in 8X/,#. Now (Cn,Y- Cn)

is a partition of Y into disjoint open sets. Thus, Cn and Y Cn can be

separated by open sets U and V in 8X. Evidently, H[U] and H[V] are

disjoint open subsets of 8X/,. This shows that H[Cn] can be separated from

any other point of 8X/v. Since points of 8X- Y have compact X- neigh-

borhoods in 8X- Y, it follows that 8X/,%J is a compact Hausdorff space.

It remains to show that X/R can be embedded in 8X/-- in the desired

manner. Let i be the natural embedding of X in 8X and let p be the

projection of X onto X/R. Since i is relation preserving, a continuous

mapping J of X/R into 8X/r, is induced such that J p H i. It

follows that J is also a closed mapping, hence an embedding of X/R into

8X/,%2 as desired. This completes the proof.

In [2] Magill shows that a locally compact space X has a countable

compactification if and only if 8X- X has infinitely many components. As

an application of the proof of Theorem 2, the following is proven.

COROLLARY 3. Let X be completely regular with R compact. If X has

a countable compactification, then 8X- X has infinitely many components.

PROOF. Let t be a continuous mapping of 8X onto a(X/R) which carries

8X X onto a(X/R) X/R. Since the subspace K (u(X/R) X/R) {t(R)}

is compact and countable, it contains an open countable discrete subspace.

Since a(X/R) X/R contains infinitely many components of K, Y must contain

infinitely many components.

The converse of Corollary 3 is false when X is not locally compact.

Example (A) shows that X/R can have a countable compactification, so that

8X- X has infinitely many components, but X has no countable compactifica-

tion. Example (A) also shows that condition (B) of Theorem i is not sufficient

to insure that X has a countable compactification when R is compact.
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EXAMPLE (A). Let S be the closed unit square in R2, I be the unit

interval, L0 I x {0}, and, for n e N, L I x {n}. For X S n Ln’n

it is clear that X is not rim compact, xd hence does not have a countable

compactlfication (cf. [6]). Furthermore, R L0 and S is a compactification

of X. The existence of a continuous surJection from 8X onto S which leaves

X fixed and which carries 8X- X onto S- X guarantees that condition (B)

of Theorem 2 is satisfied. Hence X/R has a countable compactification.

The following example shows that for R non-empty and compact the imli-

cation of (C) by (B) of Theorem i cannot be reversed. It suffices to exhibit

X, with R a singleton, where X- R has a countable compactification but X

does not.

EXAMPLE (B). In the plane R2 take

-n
X [{(x,y) l-i < x < i; i < y < i}{(i,01}1 {(n-- 01In e N}. Then

R (i,0)}. Since X is not rim compact, it has no countable compactlflcation.

However, a countable compactlfication for X- R is obtained by adjoining the

points (, 0), for each n e N, and taking the one-polnt compactlfication

of the resulting space.
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