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i. Introduction.

The purpose of this article is to give a survey and some proofs of

known results concerning Bloch functions. The basic idea goes back to

Andre Bloch 6 ]. He considered the class F of functions holomorphlc

on the unit disc 9, with normalization f’ (0) i. The image of D

under f is considered as a Riemann surface W
f

f((C)). A schllcht

(unramlfled) disc in Wf is an open disc A c f such that there

exists a domain = 9 with f mapping one to one onto 4. We

denote the radius of the largest schllcht disc in f with center f(z)

as dr(Z). Let rf be the supremum of df(z) as z varies over

and set

b inf {rf f E F}.

Bloch showed that b was posltive.

During the period from 1925 through 1968 Bloch’s result motivated

works of various nature. One group of mathematicians considered the

generalizations of Bloch’s result to balls in and n. A group of

mathematicians calculated upper and lower bounds for b. A third group

concentrated on the function theoretic implications for the case of the

disc. The Bloch theorem has been an ingredient in supplying a proof of

the Picard theorem which avoids the use of the modular function. We will

not go into the generalizations for the n dimensional case but refer the

interested reader to the papers of S. Bochner 7 ], S. Takahashi 25

and K. Sakaguchl 20 ]. We will also not discuss the best bounds but only

refer to the papers of L. V. Ahlfors i ], L. V. Ahlfors and H. Grunsky

2 and M.H. Helns 13 ].
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In the period from 1969 to the present a Banach space B of

holomorphic functions called the "Bloch functions" has been studied.

Of course the requirement for membership in B is derived from the idea

of the Bloch theorem. Some progress has been made in studying the

functional analytic properties of B. The Banach space point of view has

allowed a somewhat broader viewpoint and consequently has given rise

to a new set of questions concerning the Bloch space.

This article will give a proof of the basic Bloch theorem. We

will follow a theme developed by W. Seidel and J. Walsh [24 and by

Ch. Pommerenke [17 ]. We will supply proofs of the major results and

outline proofs of other ideas when they are not central to our interests.

We have borrowed freely from the text material available (especially

M. Heins [13 ]). In many instances we have selected only partial results

from the journal articles quoted in the bibliography. The reader should

consult the original article if he desires a more complete exposition.

Finally, I wish to point out a few other results which will not be

included in this article but are extremely important to the overall

picture concerning Bloch functions. First, L. A. Harris [12] has obtained

a strong form of the Bloch theorem for holomorphic mappings from the unit

ball B, of a Banach space X into X. The second topic concerns the

thesis of R. Timoney. He has made a definitive study of Bloch functions

on bounded symmetric domains in n. This work is quite expansive and

deep and would require material from areas which are not considered in

the disc case.

2. The Theorem of Bloch.

Let Aut (D) denote the group of holomorphic automorphisms of D.

For a (C) we write a(Z) (z-a) (l-z) -I Aut(D). The inverse of
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a is S-a" It can be shown that for z

Let a (0,I) and denote A A the family of holomorphic functions
a

f D + D with normalization f(0) 0, f’(0) a. A is a nonempty

compact family. It contains the function

B(z) 0(z)’a(Z)"

For f A set

Uf sup {r f is univalent in Dr (Izl < r)}

and

P inf {Uf f c A}.

A calculation shows that B’ vanishes at a point of D, hence p < i.

Theorem (2.1). The number is positive. The number Uf if and

only if

f(z) lB(1)

where l is a constant of modulus one.

< I. Recalling the normalization ofProof. Fix f A and assume Uf
f we see that equation

a (f.(z))=z zk(z)

yields a function k, holomorphic in D and bounded by one. Hence, by (2.1)
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(2.2) f(z) Iz

Either f fails to be one to one on zl _< 0f or there exists

a z0, z01 0f and f’ (z0) 0. We will complete the proof by

assuming that there exists distinct points zI and z2, Zll z21 Of
and f(zl) f(z2) c. The other case is similar. The function

-i -i
(z) z2(Z)m(z)-- (c f(z)) zl

has removable singularities and is bounded by one in D. Hence,

2Im(0) l-< implying Ici_< Of Setting z--zI in (2.1) and using

the last inequality we have

Uf _> -"’a U

The functions x and a(X) have a common value at

-I
a
2

x0 a (I ) (0,I) and a(Z) _> x if 0 < x < x0.

Thus 0f _> a
-I (I-’ a

2 ). We note that B’(x0) 0. Thus p 0B.
The remaining uniqueness part of the theorem is handled by noting that

if Of p then Im(O)[ 1.

We proceed to a second necessary result. For r > 0 let

) {lwl < r}. To each f A let
r

f sup {r a domain nr --c D such

that 0 and f maps univalently onto D
r r r

and

s inf {f f A}.
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Theorem 2.2. The number s is positive, equaling

2 a-i 2
( -/Y-a)]

Equality holds for some f in A, f s, if and only if f(z) AB(Az)

for same constant , I1 i.

Proof: For any f A inequality (2.2) implies that for Izl r < i

(2.3)
a-rIf(z) -> mlCz) - (r) r (l--ar)

2
is a positive function on (0,a) and achieves a maximum value of 0

-i
at r 0(<a). Let be the component of f D02) containing zero. If

there is z (D \ D0) n then there exists a z*, z*l 0 and

f(z*) (C)02. By inequality (2.3) this is absurd. Hence _c D0. Using

(2.3) again and the open mapping property one sees that f maps the

boundary of into (lwl 02 and maps onto D Since f(z) 0

has only one solution in it follows by the argument principle that f

maps the (simply connected) domain univalently onto (C) 2- By definition

2 2 B’it follows that 0 < s. Since (0) B(0) 0 and (0) 0 we

observe that B cannot be univalent on any domain containing 0- Thus

2 2 2
0 < s < B < 0 and so s 0 The remaining uniqueness results follow

in a routine way by a close examination of when equality holds in (2.2)

We are finally in a position to prove Bloch’s theorem. The notation

is that used in the introduction.

Theorem (2.3). The number b is positive.
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Proof. Elementary considerations show that for f F, 0 < t < I and

-i -ig(z) f(tz) t we have r < rf t Thus it is sufficient to
g

consider those f F which are analytic on the closed disc (C). Let f

be so chosen and let lal <i be selected so that

>1.

Now form the function

g(z)
fo_a (z)

(fo _a) (0)

Note that g F and is analytic on 9 with

I
g {(fO_a)’(0) rf < rf

Further,

If ,y// -1./ zl -< lf’fa) (1- [al 2

and so

(1- lzl 2) g’(z) -< -Replacing g by h(z) g(z) g(0) and integrating we deduce

i i+ Izl =_ iIh(-){ -< og 1-Izl
Let t be fixed in (0,I) and normalize h as follows

St(z) h(tz)

()

’(0) 2ilL(t). The number L(t) aS
t

maps D / D, S(0) 0 and S
t

is in (0,I). Hence, S
t Aa. We apply Theorem (2.2) to S

t
and note
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FL(t) (),)-2-t 2)]
Since, rf > r we conclude

h
t

If one checks the value of this expression (preferably with a calculator)

I
at t one concludes r > 0.2.

The papers refered to in the introduction establish the bounds

_1 /--< b < 0 4724

We proceed to the paper of W. Seldel and J. Walsh [24]. They introduced

the expression dr(Z) d(z) as the radius of the largest schllcht disc in

f(D) with center f(z). In this paper they collect some known results

concerning dr(Z) and they prove several theorems about its growth. The

following two theorems are interesting and motivating.

Theorem (2.4). Let f be holomorphic and univalent in (C). Then for

d(z) < If’(-)l(l-lzl2)< 4 d(z).

Proof. Let z
0 E D be given. We prove first the right inequality. Form

the function

(z)
f _zo(Z) f(Zo)
f’ (z0) (1-’Iz012

where z E D. is a normalized univalent function and if f(D) then

omits the value
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-f(z0)
(f, (z0)) (i_i z01 2)

Applying the Koebe one-quarter theorem and choosing suitably on f(D)

we conclude that

d(zO)
(l-{z0{2)f’(z0)

1

To obtain the left inequality again let z
0

be fixed in D and form

a function (z) f _z0(Z). If f(z0) 0 (0)) then has an

inverse h mapping the disc I0 -I < d(z0) into 9 with h(0) 0.

The Schwarz lemma yields h’ (0) < (d(z0))-i and this completes the

proof.

Notice that the unlvalence of f is not used in the proof of the

left inequality and hence df(z) < If’ (z) (i zl 2) is valid for any

holomorphlc f. A second result of interest in that paper is the following.

Theorem (2.5). Let f be a bounded holomorphlc function on D,

If(z) < IlflI M. Then

1
d(z) < If’(z) (l-lz121 < [SM d(zll

Outline of proof. We have noted that the left inequality is valid. The

idea of the proof in the right inequality is to fix z
0

D and form the

function

f -z (z) f(z0)
z) 0

f’(z0)(l-lz012)
Then (z) 0 and l(z) < 2M

if, (z0) (l_Iz012)
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One can then normalize and apply a variant of Theorem (2.2) to con-

elude that covers the disc

If’(Zo) l(l-lZo 12)
8M

unlvalently. This in turn implies that f covers the disc

f (z0) 8M

If’(z0)
2 (l-lz012)

univalently. From this it follows that

I

If’(z0) (l-lz012) < [SM d(z0)
2

The next theorem is a statement of several equivalences. The term

Bloch function will be defined by any of these equivalent conditions. The

equivalence of (i) and (2) is in Seldel and Walsh 24 ]. The fifth

condition is due to Zygmund. The last is in Anderson and Rubel 4 ].

The conditions (3) and (4)were given by Pommerenke 17 ]. We recall a

few terms. A holomorphlc function f(z) (on D) is said to be finitely

normal if the family of functions

{f@(z) f(@(z)) f(@(0))

@ E Aut (D)}

is a normal family, where the constant infinity is not allowed as a limit.

A function g continuous on zl I is in the class , if the following

condition holds

Ig(e i(8+h)) 2g(e18) + g(ei(8-h)) 0(h)
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uniformly for all e [0,2) and h>O.

For f holomorphic in D, the absolute convex hull of the orbit

of f under Aut()) is defined as the family

n

{j=laj (foj)(z) n N, a.3 Aut(D),

n

aj with . aj] -< }.
1

Theorem (2.6). The following conditions on a function f holomorphic

in D are equivalent:

(i) sup {d(z) z (C)} < +

(2) sup {(l-lzl 2) If’(z)l z e }} < +

(3) f is finitely normal.

(4) there exists a constant > 0 and a univalent holomorphic g

on (C) such that

f(z) log g’(z)

(5) the primitive

g(z) f(t) dt
0

is in the disc algebra and g(eie) e ,.
(6) The absolute convex hull of f is a normal family on (C).

Proof: We know that (2) implies (i). Assume then d(z) < M for z e (C).

Form the functions and g

@(z) f (z) and-z
0
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* [z1+(1-I Zll )z]

(1-1Zll)’(zI)

where we have z0, zI E ) and for the moment we assume ’(zI) 0. The

function g is analytic with g’(0) i. It follows by Bloch’s theorem

that there exists * E @) such that dg(*) > b. Then with

* zI + (1 Zli){*

Note that if ’(zI) 0 the above inequality is still valid. Hence, for

all z E ) we have

i’(z) (1-1zl) < M/b.

Normalize by considering

(z) (z) (0) |
0
’(t) dr.

Fixing t E (0,i) and noting that

[@(z) < M__ log (l-t)
b

if Izl < t, we apply Theorem (2.5) to the function n(z) @(tz) to

conclude

2 2 2
t If’(Zo) ( -lZoI 8M

-<--(-log(l-t)) df(zo)

The maximum of the function (t) (-t2) (log(1-t))-I occurs when

log (l-t) t/2(l-t) (0<t<l) which is approximately to 072. Hence,

df (z0) > b (t0) If’ (zo) 12 (1-lZoi2) 2.

Assume that (2) holds and recall that a family {f@} defined and
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holomorphic on D is normal if for every compact K c D there exists a

positive number M(K) such that

< M(K)

f,

Thus for Aut(D) and K c D compact

If (z)l)= sup /l_f’((z))
i+ f, (z) 2) zK k(+I f, (z) 2

sup 1

zK (i-I zl 2

-i
For the converse let w D and choose (z) (z+w)(l+wz) There is a

positive number M(0) such that

< M(0)

l+if,(0) 12
for all Aut(D). Thus

(l-lwl 2) f’(w) IV’(0) llf’(4(0))1 < M(0).

The equivalence of (2) and (4) is dependent upon some results from the

theory of univalent functions. Let f(z) have the representation

log g’ (z), where g is univalent and > 0. It is known Ii

that for such g

g’ (z)
z D.

The expression (1-1zl 2) If’Cz) is then bounded by 6. If (2) holds

define > 0 by the equality



382 J.A. CIMA

-i
3 sup {(l-lzl2)If’(z)l z m}

and define g so that

g(z) exp f()., d
0

s

The definitions of g and e yields

g’(z) -This is sufficient to conclude that g is univalent.

The proof that (2) and (5) are equivalent requires a lemma.

Lemma (2.7). Let f be analytic in D with f"(z) 0((l-lzl)-l),
then f is continuous on D.

Proof. The growth condition on f" implies that f’(z) 0(log(l-lzl)).

An integration of f’ proves that f is a bounded holomorphic function

i8and has radial limits at each point of e e D. If

81, 82 e [0,2) and 0<p<l

r. {re 3 o_<r<l} j 1,2

e
i8

F3 { 81 _< 8 < 82
i8

F4 {e 81 < @ _< 82 }

the Cauchy integral theorem implies

f(ei82) f(eiSl) 1 f’ (6) d6

-FI u F2 u F3

Each of the integrals can be evaluated and there is a constant c > 0
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(independent of 8 i) such that

If(ei82) f(eiSl) -< c 102 -011 llog182 -8111
This completes the lemma.

Proof of the equivalence of (2) and (5). Assume (2) holds. Lemma (2.7)

implies that f is continuous on 9. Let l>h>0 be given and fixed. It

is convenient to assign a symbol to the difference expression

f(ei(8+h)) f(ei8) A f(8)

and to ignore the dependence of A on h. A is linear and homogeneous.

We are required to show

A
2

f(ei8) 0(h)

uniformly in 8, (as h/0). Fix t l-h and write

f(e18) f(e i8) f(tei8 + f(teiS).

An integration by parts yields that

e (l-r) f"(re i8) dr
t

i8 i8(l-t) e f’(te + f(ei8)- f(te i8)

The integral in this equality is 0(h), uniformly in 8. With

i8g(t,8) A(ei8 f’(te ))

i8f’(tei(8+h)) A(ei8) + e A(f (tei8))

i80(hllog h I) + e A(f’(te ))
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we can compute

A(f’(tei8) it Ih0 f,,(tei(8+s)ds 0 (i).

Hence, g(t,8) 0(I) and

A
2

f(eie) h A(g(t,8)) + 0(h) 0(h).

We need only show that

A2 f(tei8) 0(h)

Since,

A2 f(tei(8-h))
h (e+s) le (e+s)i t (_ei -e ) f’.tei( ds
0

h
i8 (e+s)

ei(e-s)+ i t e (f’(tei f’(t ))ds
0

+ i t _e
i8

e f’ (tei )ds
i(8-t) (e-s)

0

and the integrands of the first and third integrals are dominated by

c s flog h while that of the second is dominated by c s (h) -I

we conclude that A2 f(te1o) 0(h) uniformly in

Let us show that (5) implies (2). As usual P(r,8) is the Poisson kernel.

The partials

Po(r,0) -2r(l-r2) [sine (l-2r cosO + r2) -2]

Pee (r,e) 2r(l-r2)[2r(l+sin2o) cosO (l+r2)]
(l-2r cos 8 + r2) 3

have the following properties. The second derivative P is an even function
8e

of 8 and
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I Pe (r,t) dt 0
0 e

For r fixed in (0,i), Pee is zero on (0,H) only at the point s(e) s

which satisfies

cos s 2r

l+sin2s l+r
2

A computation shows that

Since f is in the disc algebra it has a representation

P(r,e-t) f(eIt) dtf(z) E -n

where z re Taking the partials and changing variables yields

fee (z) 2-- 0 Pee (r,t) {f(ei(e+t)) + f(ei(8-t)) }dt

i In P (r,t) {f(ei(e+t)) 2f(eie) + f(ei(e-t)) dt

The hypothesis f implies

If88(z) < A t IP (r t) dr.
0 ee

We compute the integral on the right

Is t P (r t) dt + t P88(r,t) dt
0 ee

s

-2s Pe’(r’s) + 2P(r,s) P(r,O) P(r,n)

The expression
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-2s P8 (r,s)
3

4r(1-r)
4(l-r)

and so there is a constant c so that

-i
0 < -2s Ps(r,s) _< c(1-r)

A similar inequality is valid for the P(r,s) term. Hence

(z) 0 ((-I zl )-)-

The Polsson integral representation for f implies

Ifs(z) < c(l-r2) llfll
0

2rsin t dt

(l-2r cos t + r2,

thus

fs(z) 0((l-lzl)-l).

An easy computation yields

-2 -2i8f"(z) r e {i fs(z) f88(z)}

O((l-r) -I)

This completes the equivalence of (2) with (5). We omit the proof for (6).

A perusal of these equivalences and a slight amount of study give

some insight into the size of the set of Bloch functions. We have observed

that the bounded holomorphic functions are Bloch functions. In general

there are no containment relationships between the classical Hardy spaces

HP(D) (0<p<=) and the set of Bloch functions. In fact one can construct

Bloch functions using gap series which are not of bounded characteristic.
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Although a BLoch function need not have angular (non-tangential) limits

almost everywhere on D ={I z i} one can prove using the Gross star

theorem (from the theory of cluster sets) that every Bloch function has

finite or infinite angular limits on an uncountably dense subset of D.

[. n
If f(z) a z is a Bloch function a straight forward estimate

n
n=0

yields

lanl _< c sup {(l-lzl 2) If’(z) z e D}

for n i, 2, 3, The following result will be useful in posing

some unanswered questions later in the paper.

Theorem (2.8). Let f(z) [ a. z
j be a Bloch function with radial

j=l J

limits almost everywhere on 2(C). Then a / O.
n

Proof. Integrating if (z)I 2

[. j21 ajl 2 r2j-2 i .2
f’ (rei8)I 2

j=l 2n 0

Choosing r (i- ) we can find a constant c > 0 so that
n-- j ajl < - (l-r)I f’(rneiS)l 2

n j-l 0 n

A known property of normal functions (see Lehto and Virtanen 15 ]) states

that if f is analytic in D with radial limit A at a point e

then f has angular limit A at . With e assume

lira f(rl) A. The discs
r+l

i
Cn {Iz rn I < (i- rn)}

lie in a fixed angle at and tend to as n / Apply the Cauchy formula



388 J.A. CIMA

I Cf Cz)-A) dz1
(-r)

Cn (Z-rn)

zc n-
n

Since the Integrand (l-m) If’ (rneiS) is uniformly bounded we may apply

the Lebesgue bounded convergence theorem to conclude.

n n

Thus a / 0.
n

3. The Banach space structure.

Theorem (2.6) implies that the set of Bloch functions B is a complex

vector space. It is possible to equip B with a norm in which it becomes

a Banach space. If f E B we can define

sup{ If’ (z) l(-lz] 2) z D)

The addition of the term If(O) is to account for the constant functions.

We prefer to work with the quantity sup{ If’ (z) (l-[zl 2)} M(f) and so

limit ourselves to functions holomorphic on D for which f(0) 0 and

B M(f)

Henceforth when norm considerations for Bloch functions are involved we

always assume this normalization is in force. There is a natural subspace

of B denoted as B0 and defined as
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It is straightforward to check that B0 is a closed subspace of B.

Also if f E B
0

and f (z) f(pz) then f tends f in B
0

as
P

Since each f can be uniformly approximated on D by polynomlals we
P

see that polynomlals are dense in B0. Thus B
0

is a separable closed

subspace of B. B is nonseparable as we can easily see by checking the

norms of (log(1-zeih) log(l-z) for h>0. There is one result which

is very useful and should be noted.

MCf) MCf )

for every E Aut(D). Although there is no natural inclusion relationship

between the Hardy spaces Hp and B(i.e. g(z) (log(l-z)) 2 HpE %c p<

yet g B) there are some other interesting containment relations. Let

us show for example that each holomorphlc function with finite Dirichlet

n
Integral is in B. Assume f(z) a z and

n=l n

If(z) 12dc(z) nl,l 2 < (R).

1

For each > 0 we may choose N so that the last square root is less

than
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Hnce

lira sup (1-r2) f’(z)[. <
rl

and fE B0.

For a second and less obvious example we consider an F E L2(D). Let

I(F) be the average of F over an interval I c D, III the measure

of I, and

I(F) F(0) dO

I

F is said to have bounded mean oscillation if

I

In the case of a function f in the Hardy space H2(D) this is equivalent

to being able to write f as the sum of two holomorphlc functions fl and

f2 for Which Re fl and Im f2 are bounded. This is a nontrlvlal

equlvalece and the reader might wish to refer to the notes of Sarason 21

for a comprehensive discussion of this topic. But if f is decomposed as

above

f(z) fl(z) + f2(z)

since fl and f2 are Bloch functions it follows that f is a Bloch

function. Thus BMOA (the space of analytic functions with bounded mean

oscillation) is a subspace of B.

We establish now the basic duality relationships. The fundamental

idea really begins with the paper of Rubel and Shields 18 ]. In that
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paper the following basic principle is confirmed. Loosely stated it

shows that the second dual of a Banach space of holomorphic functions

satisfying a "little oh" growth condition is isomorphic to the Banach

space of analytic functions satisfying the corresponding "big oh"

relationship.

Theorem (3.1). The inclusion mapping of B0 into B extends to an

isomorphism of B0** onto B.

We prove this theorem by a sequence of results. It is necessary to

introduce an auxiliary space I. I is the space of functions g holomorphic

on K, g(O) 0 and

I drde<(R)

The functions in I are the normalized holomorphic functions whose derivaties

H
Iare in the Bergman one space One checks that I c (D) and hence each

g E I has well deflmed boundary values

llm g (rei8) g(ei8)
r+l

a.e.

(ei8with g ) E L’ (D). The next lemma is crucial to the development.

Lemma (3.2). For f(z)

Hadamard convolution

and g(z) [ b z
n

n=1
n the

h(z) f,g(z) abz
n=l

n n

is in the disc algebra.
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Proof. The function h is analytic on D. We show that it is uniformly

continuous on D and so can be extended to a continuous function on V.
iOLet z re and /: D,

(l-r2) f’() (zg(z))’ e-i0d0dr
0 0

, anbnn-I
Also

] g(rei0) dOdr

0 0

< - g’ (tel0) dtdrd0

0 0 0

We find using this result

Ih(=)l -< c(sup (X-lz[2) If’(E)l ze D)llg[1I
-< llfllB’llgll x

Let points i’ 2 be given in D and observe

[h( 1) h(/:2) < c [I fll B [[ g1 2
where g(z) g(z). It is routine to check that as

lg-g:[[i o
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Hence, h is uniformly continuous on D.

Theorem (3.3). The spaces B and I* are isomorphic. The pairing is

given by f where

Proof. In the notation of Lemma (3.2) we have for f e B and g e I

I*<:)l fh()l i<f,,>l -< c II 11’11,11

Hence each f B can be identified with a in I*. Now assume

eI* n
and let a (zn) for n > I. The function f(z) [ a z

is analytic in D. Let 0 < P < 1 and select g I

g(z)-, b z"
1 n

anbnpn f>

But tends to g in I" and hence the analytic function f corresponds

to . It remains to prove that f is in B. The kernel

g(z) z (l-z)-2 is in I for fixed in . With z re
18

s..,., s= j< ’: (;,-’1:1 r) :l.-zi-2
d=

0 0

_< c ("l-I l:12) -i

Thus

f’(’:)l I<f, %>1 < ,: I1,11. (:.-I:12)-1
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and so f is in B.

The next theorem will be the last result we need. This result and

Theorem (3.3) will imedlately yield Theorem (3.1).

Theorem (3.4). The spaces 1 and B0* are isomorphic. The pairing is

given by / g, with

(f) <f,g>

for each f B0.

Proof. Let $ e B0* and form the holomorphic function g(z) . bnzn
n=l

(zn) -bn, n > i. For p (0,I) and f BO,

But for any f e B, f e B0 hence

SU >

Thus g I.

We have already observed that g induces a bounded linear functional

on B0.

We have already noted that for f(z) . a z B the mapping
n=l n

m B/

defined by

re(f) (an)
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is a one to one continuous linear mapping. It can also be shown if

(nk) is a strictly increasing sequence of positive integers with

nk+I/nk > 2, and (ak) E then the function

nkf(z) [ akz
k--i

is in B and lfll -< 4 If(an) If Hence, the mapp.n,

n /B

given by

2
k

E (ak) akz
k=l

is a (continuous) isomorphism onto its range. In particular the map

P B / B given by

2k

is a projection. Although this is not sufficient to conclude that B is

linearly isomorphic to Z one might anticipate this result. A denoue-

ment to the results of this nature was given by Shields and Williams 22 ].

Their work coupled with a result of Lindenstrauss and Pelczynskl 16

will show that indeed B is isomorphic to . They also obtain the result

that B
0 is isomorphic to co (sequences tending to zero) with the usual

sup norm (Shields and Williams, 22, 23 ]). Shields and Williams

establish a direct sum decomposition for LI(D) in terms of a copy of

and a complemented subspace. One can then apply the result of Lindenstrauss

and Pelczynski on bounded projects to prove that [ is isomorphic to E 1.
Thus

I*-- B.
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We prefer to use the notation of Shields and Williams and simply identify

otational connections necessary. To begin they choose positive continuous

functions $ and $ on [0,1) with $(r) / 0 as r / 1 and

1
(r)dr (R).<

0

The space A(D) consists of holomorphic functions f on D. Three other

spaces are denoted by

A A() =- {f A(D) sup {If(z) (Iz[) z D} (R)}

where o is normalized Lebesgue measure on D. We make the obvious

identifications and isomorphic correspondences

and Letting M(D) denote the Banach space of complex-valued,

bounded Borel measures on D (with variation norm) and C0(D) the

Banach space of continuous functions on such that each f CO(D)
A
1

vanishes on ) we define some isometrics For f A, g we

define

T=of f, Tlg g and Mg g do

Then T= is an isometry of A to L’(D) (T(R)IA0 A0 is an isometry of A0 to CO)

and
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TI is an isometry of AI to LI and M is an isumetry to M()). The

following netational pairing is used

(’g) I (z) () (I zl ) (I --I ) do (--)

I f(z)g()(l-izl 2) du(z)

D

with f A., g AI. For example if f and g are polynomials

n nf(z) a z and {(z) [ b z
n n

ab

(n+l) (n+2)

3
The pair {,#} is a normal pair with e

2
I-, k and a i.

Lemma (3.5). Let z, w D

K (z) -= 2(1-wz)-(3)
w

Then

(i) g(w) (Kw,g) all g AI

(2) f(,) (,K) a A(R)

(3) span {K w e D} is dense in AI and A
0w

(4) span {Kw; w D} is weak star dense in A.

Proof. This is just a computation and we limit ourselves to proving the

case of A1 in (3) and part (4). By the Hahn-Banach theorem it suffices

to show that if h L (D) and if

Kw(z) h(z) do(z)= 0

D
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for all w D, then h anihilates all of TI AI T AI. A calculation

yields

(n+l) (n+2)w
n znh() do (z)0 2n0

for all w D. Hence, h annihilates all polynomials. The polynomials

are dense in A
I

and thus span {Kw} is dense in AI.

For part (4) we recall that if on
(f) denotes the nth Cesaro

means of the partial sums of the Taylor series for f then

sup uncf) cre1o)l sup fCreiO)
00<2 0<0<2

Hence,

sup
0_<r<l

sup lonCf)(reie)l (l-r2)]0

If f A we apply the aSove inequality to conclude that

(l-r2) Un (f) (reiS) converges pointwlse and 5oundedly to (l-r2) f(reiS).
By the Lebesgue dom#inate convergence theorem we have

f(z) h() d(z)

for all h L’(D). Thus each f in A= is the weak star limit of a

sequence of polynomials.
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The LI(D) L(D) duality implies that each weak star continuous

functional on A is given by

Ce-[ z 12) fCz) h(l) (--)

LIwhere h (D). But as above if

I Kw(Z) h() (i- z 12 ) (z) o

then h annihilates polynomials and thus span {Kw} is weak star dense in

A

The next lemma is well known and the second follows by a calculation.

Lemma [3.6]. For 0 < r < i,

2Ell-felt[-2 dt 0 ((l-r) -I)
0

Lemma [3.7]. For m _> 2 and 0 _< 0 < i

i
(1-Or)-m dr 0 ((1-02)l-m).

0

Theorem 3.8. The transformation defined by

d. (z)

with e M(D), w D is a bounded operator mapping M(D) onto AI.
The transformation i -= Q]LI (D) is a bounded operator mapplnz LI(D) onto

A I. The operator T1 i is a bounded projection of LI(D) onto the

subspace TAI.

Proof. We consider only i the proof for is analogous. For
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f L (D)
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I ( I Kw() d(w)) (l-’z.2)’f(z)’d(z)

D

where we have used Lemmas 3.6 and 3.7. If if g,

Hence, i is a bounded projection from LI(D) onto AI.

Corollary 3.9. We have the following direct sum decomposition

(TA)
i {g L’(m) (f,g) O,

all f A}

Proof. We show that the null space of I(-TII) is (TmA)I. A

g e LI(D) is in the kernel of 1 if and only if

0 I ("-I zl 2 () zCz) d(z)

for all w e D. The finite linear combinations of K are weak star dense
w

in A (which s weak star closed) and hence g (TA)I.

Theorem 3.10. A1 is topologically isomorphic to i.
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Proof. Let {r be a strictly increasing sequence of positive numbers
n

with lim r I. Let A. denote the annulus
n 3

I -< J. Let R.3 LI(D) / LI(AJ )’ J 1,2,... be the natural projection

(restriction), with respect to Lebesgue measuz=_. The operator

401

defined by

R LI(8) + (L10% 1) LI(A 2) (R) LI(4 3

Rf (Rlf R2f

is an onto isometry.

A normal families argument shows that R.I.I is a compact operator.

Hence, if S is the unit ball in AI, then Rj S is a totally bounded

set in LI(Aj).
Consider E c a Lebesgue measurable set and d Lebesgue

measure on E... Further assume with out loss of generality that

O(E) i. For each n, let P be a partition of E into disjointn
n n 1

for each i. Assume thatmeasurable sets E1,...,E2n with B(E -2Pn+l refines Pn for each n. Now for f E LI(E,), define

p f
i fd Xgnn ii=l (E) n

E
i

n One can prove thatOf course XE is the characteristic of the set Ei-

Pn f + f in LI norm, uniformly on compact subsets of LI(E,). Each

P f is of the form
n

2
n

[ C
i X =P f-

i=I E n
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Cl
Cix --+

2n
is an isometry of the range of P onto One can check that

n i
2

P P and hence P is a projection.
n n n

There is for every given ej > 0 a projection pj pj(ej) of

LI <Aj) into itself is given so that IPjll < i, Pj LI <Aj) is isometric to
k.

some 13 for a suitable integer kj and

for every f S. It is now clear that the subspace X,

X (PI L1 (AI) P2 L1 (A2) *

of

LI(D) LI (A I) $ LI (A2)

is isometric to i"
The operator T R AI

/ X defined by

T(RI f’ R2 f’ (PI RI f’ P2 f’

satisfies

liT Rf

for f e S. Thus, if e > 0 is given we can choose the ej > 0 so that

1

for f AI.
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Since R is complemented in R LI
we claim that for > 0

sufficiently small T R AI is complemented in RLI and so in X. Let

us consider the general situation of a Banach space U with Y a corn-

plemented subspace of U. Then U y z and there is a projection P

I
on U with range P equal Y. We claim there is >n> 0 such that if

IlYll i, y E Y then

For if not vn
E Y, z e Z with

n

Thus

lPll/n -> IP(y
n Zn) ll i

and this is absurd. Now let T be an operator on Y into U which

satisfies

We claim that T(Y) is a complemented subspace of U. First, T is

invertlble as an operator on Y / T(Y). Next define T on all of U as

follows,

T(y) T(y) y e Y

T(z) z z Z.

Computations show T is linear on U and is one to-one. For if there

iS a Y0 Y’ flY011 i and Ty
0

Z
0

E Z, then



404 J.A. CIMA

2 < ITY0 Y011 iz0 Y011 <

Next if fly " z ll < 1 then

llzll < flY zll + IIP(y z)ll < i + IIPII < M

Similarly, lYll < M if flY zll I. Hence,

This establishes the claim that T R AI is complemented in R LI. But

it is known that an inflnite-dlmensional complemented subspace of
1

is isomorphic to i and since T is an isomorphism we find that AI

is isomorphic to i"

There are other results of interest which are known in regard to the

Banach space structure. Anderson and Shields 5 have characterized

the multipliers from B into
p

in the following sense. If A and

B are two vector spaces of sequences the multipliers from A to B,

denoted (A,B) are defined as

(A,B) ={%= {% {%nan E B for
n

every {an} E A}

2n +iFor I {k k < 2
n

n 0,i,2,... and i , 8 denote
n

by (e,8) the set of sequences {ak} (k a I) for which

n=0

and

kl n=0
,8 (o:(R))
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These are Banach spaces when they are given the obvious norm. Anderson

and Shields prove that

/ (22_-p, p) 1p2
(B’P) t (’P) 2<p_

Questions of rotundity of the unit ball have also been investigated.

Examples of extreme points in the unit ball of B0 are nz ha2, and

other powers of Blaschke factors, suitably normed e.g.

(3.z)
Isl<l

No other examples of extreme points are known. A characterization of the

extreme points of the unit ball of B
0

is given in Cima and Wogen 8 ].

We are considering functions f in B
0 with lfll- i. Let

Lf {z D Jf’(z) ( _izl ’)

Theorem 3.11. Let f be in the unit ball of B0. Then f is an extreme point

if and only Lf is an infinite set.

A second result is also noteworthy in this regard.

Theorem 3.12. If f is an extreme point of the unit ball of B0, then

there are simple closed pairwise disjoint analytic curves YI’ 72’’’ "’Yk
with k > i and points wI, w2, wj with J >_ 0 so that

k

Lf ( yi U {Wl, w2, wj}
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There are other examples of extreme points of the unit ball in B.

(l+z)The function log is an example and scalar multiplies of singular

inner functions corresponding to a point mass on D are also examples.

The observation that

M(f) sup {If’(z) (l-lzl 2

M (fo)

for every a Aut(D) leads one to consider the isometrics of B
0

and B.

In particular the extreme points of the unit ball are permuted under an

onto isometry. The process of composing a (Aut(D) with f ( B or B
0

is a composition operator on the space. We write

C# B
0
+ B0 (or B + B)

and this is defined as

C(f) (z) f (z)

In 9 Cima and Wogen have proven the following results.

Theorem 3.13. If S B
0
/ B

0 is an isometry, then

(Sf) (z) lf((z)) %f((0))

where % ( D and $ (Aut(D).

Corollary 3.14. Every isometry of B
0 is onto.

Theorem 3.15. If S B / B is an onto isometry, then there is a holo-

morphic automorphism $ and a ( D such that

(Sf) (z) A(f((z))) %f((0)).
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We conclude with the following interesting result of Rubel and Timoney

19 ]. A linear space X of analytic functions is said to be Mobius-

invariant if f X and every Mobius transformation #, fo# ( X.

A real valued function p X / [0,) is said to be a Mobius-invarlant

semi-norm on X if p(f #) p(f) for every Mobius transformation

# of D and every f X. A non-zero linear functional L on X is

said to be decent if

sup {If(z) z K}

for all f X, for some M > 0 and same compact subset K of (C).

Theorem [3.16]. Let X be a Mobius-invariant linear space of analytic

functions on the unit disc and let p be a Moblus-lnvarlant semlnorm

on X. If there exists a decent linear functional L on X continuous

with respect to p, then X c B and there exists a constant A > 0

such that

pB(f) < A p(f)

for all f X. In this theorem pB(f) is the seminorm given by

pB(f) =- Sup (l-lzlm) If’(z)l so tht PB(C) 0 c . We observe that
zD

PB (f) Sup {l(fo)’(0)l Aut(D)}

This motivates the following lemma.

Lemma [3.17]. For each n < I, the expression

pn(f) Sup {I (f)n(0)l Aut(D)}
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defined on analytic functions, is a semlnorm equivalent to the Bloch

Proof. We follow Rubel and Timoney and consider the case n 3. The general

case requires more bookkeeping but is similar. Let

-a(Z) (z+a) (l+z) -I and observe that

(f _a)(3)(0) f(3)(a) (1-1zl 2) 6 f" (a) (1-1al 2) 2 a /

(21--) ett36f’ (a)(l-[zl 2) 2 Choose a and observe that

1 I2II 2 )(3) (0) d(}
9 /. 12lI- a (fo b_a --eff 0
9 f’ (0)

f’ (a) de1

Taking absolute values we find

If’(0) < () P3 (f)

If is in Aut((C)) we apply thls last inequallty to obtaln

Sup {[(foe)’(0) Aut(D)} _< () p3(f)

Hence, PB (f) -< P3 (f)"

For the converse we apply the Cauchy integral theorem

1 [ 2n f,()f"(z) - J 2 d0

0 (-z)

2 An easy computation shows that if (0) z

l(fo+)" (0) < c PB (f) + If"(z) Cl-lz12) 2

< c (PB (f) + sup f’ () (-ll 2))

< c PB (f)
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A similar estimate will show that f"’ (z) also satisfies such an

inequality. Hence, there is a constant c such that

P3 (f) -< c PB (f)

Proof of the Theorem.

Let (X, p) satisfy the hypothesis of the theorem and let L be a

linear functional satisfying

L(f) _< p (f)

and

Sup {[f(z)l z K cc D}

for all f X, A > O.

By the Hahn-Banach Theorem L extends to a continuous linear

functional (denoted again as L) on H() (all holomorphlc functions

on D) and the inequality for L on K remains valid. It is well

known that L can be identified with a function g(z) [ b Z-n

n-Ne0 n

(bN + 0) holomorphic in [zl > r, r < i, in the following way

L(f) -- f(z) g(z) d__z
z

Let (z) e z be a rotation and change variables to deduce

L(f )I i f ilz dzf(z) g(e ) -- -<p (f)

An application of Fubini’s theorem produces the following equality
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iN 1 i
2

e f(z) g(eiz) dz fN-7 b (0).

This implies

p(f) > IbNl IfN(0)

and replacing f by f and taking the supremum we obtain

pN(f) Sup {}(f )N(0)I Aut(D)} < I.blN p(f)

If N > 0 we apply the lemma (3.17) to produce the result. If N 0

we conclude X c and that p dominates the supremum norm II II
The sup norm dominates PB and Hc B. This conclude the proof of the

theorem.

4. Open questions.

Of course the older question of getting a sharp estimate for b is

viable. Let us define subspaces of B as follows

L {f B f has radial limits a.e. on

and

M {f(z) [. a E B lira a 0}.
i=n

n n

We know that if f E L then the Taylor coefficients of f tend to zero

(Theorem 2.8). Hence, L c M. But M is closed in B. For if {fk} c M

is a Cauehy sequence and fk, f in B we recall that

fan(f) an(fk) < c lf-fkllB
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lanCf)l = lf-fkl B + lanCfk)l

and lira a (f) 0. The following inclusions have been pointed outn

( HpH c__ BMOA_c B n ) =_ M c__ L
i

It would be a useful result to describe the Bloch closure of H

or BMOA in L. A question raised by D. Campbell amd the author is

the following. Produce a function f B n(l Hp) which is not in BMOA.

In answer to a question posed by the author R. Timoney has produced

a function f B such that f has radial limit values in L (D)

but f UHp. Are there any natural conditions which can be placed on a
0<p

Bloch function f so that if f has radial limits in LP(D) then

f HP?
Several questions remain concerning the structure of the unit

ball in BO. Namely, is each extreme point of the unit ball of B
0

of

the form (3.1)? What is the closed convex hull of the set of functions

given by (3.1)?

As a final question, we consider an oral communication of D. Sarason.

There are singular functions S*(z) in B0. This is not an obvious

result but follows by some work of H. Shapiro and an application of the

Zgymund criteria for B0. Hence, for a D \ K, where K has capacity

zero, the functions

s*(z)

l-a s*(z)

are Blaschke products in B
0 (Frostman). Give an explicit construction

for B by designating its zeros
@
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ERRATA

On pages 15 and 16:

On page 15, line 3(b)

on page 16, lines 3, 4:

On page 16, line 4:

On page 33, line 6:

Replace f by g

Replace g by s

Replace g by s

i8Replace A2 f(e by

A2[f(ei8) f(tei8)]

The direct sum is taken in the i
norm.


