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ABSTRACT. Linear multistep methods are considered which have a stability region

S and are D-stable on the whole boundary 3S < S of S. Error estimates are derived
which hold uniformly for the class of initial value problems Y' = AY + B(t), t > O,
Y(0) = YO, with normal matrix A satisfying the spectral condition Sp(AtA) < S, At
time step, Sp(A) spectrum of A. Because of this property, the result can be
applied to semidiscrete systems arising in the Galerkin approximation of parabolic
problems. Using known results of the Ritz theory in elliptic boundary value
problems error bounds for Galerkin multistep procedures are then obtained in this
way.
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1. INTRODUCTION.

If a linear parabolic initial boundary value problem is descretized in the
space dimensions by the finite element method then the resulting semidiscrete
problem is an initial value problem for a system of ordinary differential equa-
tions:

M(Ax)Ut + K(&x)U = P(t), t >0, U(O) = U n

o’
see e.g. Strang and Fix [19]. In the nomenclature of matrix structural analysis,

P(t) is the external load vector, M(Ax) the mass matrix, and K(Ax) the stiffness

matrix; cf. e.g. Bathe and Wilson [2] and Przemieniecki [15]. In the present com-
munication both matrices are supposed to be independent of the time t, real sym-

metric and positive definite. They depend together with their dimension on the

small parameter Ax which is, in general, the maximum diameter of all elements in

the finite element subspace; see e.g. [2, 15, 19]. The condition number of M(Ax),
-1/2

cond (M(Ax)) = MO, 1A~
-1/2

2 depends not on Ax but for L(Ax) = M(Ax)

K(Ax)M(Lx) we find cond(L(Ax)) ~ l/Axj with j = 2 or j = 4 respectively if
the elliptic operator £ in the analytic problem is of order two or four, cf.e.g.
Strang and Fix [19, ch. 5]. These properties follow in a natural way since the
finite-dimensional operator L must be an approximation to the analytical operator
L . As a consequence the problem (1) becomes very stiff if a small mesh width Ax
is chosen.

Linear multistep methods were frequently proposed for the solution of stiff
problems, cf. e.g. Lambert [10]. Their application to systems of the form (1)
was studied for instance by Descloux [5], Zlamal [23, 24], and Gekeler [6, 7].
Apart from the drawback to need a special starting procedure, (one-stage) multi-
step methods have two advantageous properties in comparison with multistage
(one-step) methods (i.e. Runge-Kutta methods etc.):

- The order of the discretization error is not negatively affected if the

mesh width Ax becomes small.
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- The linear system of equations to be solved in every time step of an impli-
cit multistep method has the simple form (M(Ax) + kAtK(Ax))Y = C, At time
step.

The aim of this paper is to show that the stability of linear multistep
approximations to (1), too, remains unaffected by the space discretization if
the below defined spectral condition is satisfied. This condition implies no
restriction of the relation between At and Ax if the multistep method is
Ao-stable (definition below).

In the last section we apply our estimates to Galerkin multistep discreti-
zations of parabolic initial boundary problems and show that the order of con-
sistence is the order of convergence in this class of numerical approximations.
The results improve some of our error bounds derived in [6] where exponential
stability was not yet obtained.

An other goal of the present contribution was to obtain error estimates in
a form which is applicable to multistep methods in systems of second order. In
a subsequent paper we use our results and consider Galerkin multistep discreti-
zations of hyperbolic initial boundary value problems. The error estimates de-
duced there correspond to a high degree to those established here for parabolic

problems.

2. UNIFORM STABILITY,

To introduce linear multistep methods let

_ k k-K _ k k-k >
p(;) = ZK=OaKC ’ ao > 0’ G(C) = ZK=OBK; ’ BO 0;

be two real polynomials without common roots (including zero). Let At be a small
increment of time t, Yn = Y(nAt), and let the shift operator T be defined by
(TY) (t) = Y(t+At), ™ = TTK-I. Then a linear k-step method <p,0> for the initial

value problem
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Y' = AY + B(t), t > 0, Y(0) = YO’ (2)
is formally defined by
p(T)Vn = AtAo(T)Vn + Ato(T)Bn, n=20,1,... . (3)

Here the starting values V ""’Vk—l are assumed to be known. If we apply the
scheme <p,0> to (1) then we obtain
M(Ax)p(T)Vn + AtK(Ax)o(T)Vn = Atc(T)Pn, n=0,l,... . 3"
By the linearity of the multistep method this relation is equivalent to (3) if
we set A = - L(Ax) and replace M(Ax)]/zvn by Vn again.
DEFINITION 1. (Cf. Stetter [17, Def. 4.1.7], Lambert [10, ch. 2].)
Let O < § be a fixed constant and O < At < §. A linear multistep method <p,0>
is consistent if there exists a positive integer q called the order of <p,0>
such that the truncation error (or defect)
d<p’o>(At,w)(t) = p(T)w(t) - Ata(T)w'(t)
satisfies

la (At,w) ()] <xaed*! |

<p,0>
for all w € q;+l(m), where K depends on t, §, and w but not on At.

A method <p,0> is consistent if and only if the following conditions are
fulfilled:

p(1) =0, p'(1) =ao(1) , (4)

see e.g. Lambert [10, p.30]. The following estimation of the truncation error
is due to Dahlquist [4, ch.4]; see also Lambert [10, § 3.3].

LEMMA 1. 1If the linear multistep method <p,0> is consistent of order q
then

Ild (At, W) () | < « max P w D oy acdt!
<p, 0> c téTér+kAt ’
for all W € Cq;](R), where Ko depends on the data of <p,0> but not on t, At, W,
R

and the norm.

Let now & be the complex plane extended by the point [ = « in the usual

way, let
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m(g,n) = p(g) - no(@), m(E,®) = a(z),

be the characteristic polynomial of the method <p,0> and let Sp(A) be the spec-—
trum of the matrix A. As well-known, the concept of absolute stability plays a
fundamental role in the numerical solution of stiff differential equations. How-
ever, there exists no method <p,0> of order q > 2 which is A-stable in the sense
of Dahlquist, see e.g. Stetter [17, Def. 2.3.13, Th. 4.6.6]. Therefore Odeh and
Liniger [13] weakened the requirement of A-stability in the following way.

DEFINITION 2. A method <p,0> is AG-stable if G # ¢ and

neEce ¢ implies [CV[ < 1 for all roots Z, of m(z,n) .

A method <p,0> is said to be D-stable if no root of the polynomial m(Z,0) = p(Z)
has modulus greater than one and every root with modulus one is simple. It is
strongly D-stable if it is D-stable and = 1 is the only root of p(Z) with mo-
dulus one. In a D-stable method <p,0> the roots Cv of p(Z) with modulus one are
called essential roots of p(Z), the quantity Xy = 0(§v)/(CvD'(Cv)) associated
with an essential root Cv of p(g) is called the growth parameter of gv . A
D-stable and consistent method <p,0> is AG-stable if all Rer >0, cf. e.g. [17,
Th. 4.6.4) . Especially, every consistent and strongly D-stable method <p,0> is
AG—stable with G including the negative real line in a neighborhood of the ori-
gin since the essential root g, = 1 has the growth parameter Xy = 1.

If a method <p,0> is AG—stable then the numerical approximation of (2) ob-
tained by (3) is exponentially stable for every fixed matrix A and fixed time
step At if Sp(AtA) € G, cf. e.g. [17, Th. 4.6.3]. But in the present communica-
tion we consider an entire class of initial value problems (2) thus Sp(AtA) can
be arbitrary close to the whole boundary 9G of G where - by a continuity argu-
ment - roots of w(Z,n) can have modulus one. (Moreover, if we admit an arbitrary
small At then G must contain the negative real line in a neighborhood of the
origin, i.e., O € 3G.) Therefore we must require that <p,0> is D-stable on 3G -

and not only in the origin. The next definition was also used by Nevanlinna [12].
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DEFINITION 3. The stability region S of a method <p,0> consists of those
n € & for which all roots of m(z,n) satisfy lgvl < | and those of modulus one are
simple.

Obviously, an AG-stable method <p,0> has the stability region S = G. With
this notation the below needed spactral condition can now be written as follows.

DEFINITION 4. The method <p,0> , At, and the matrix A fulfil the spectral
condition if

(1) <p,0> has a stability region S # @.

(ii) S is closed in §.

(iii)  Sp(AtA) < s.

A method <p,0> is called Ao-stable if it is AG-stable with G containing the
open negative real line R_. Thus, for instance, <p,0> fulfils the first two con-
ditions of Def. 4 with § = ﬁ_ if it is Ao-stable, D-stable in the origin and in
C = © the latter meaning that all roots of 0(Z) have modulus not greater than one
and those of modulus one are simple.

We now consider the Frobenius matrix Fﬂ(n) associated with the characteris-
tic polynomial m(z,n) = p(g) - no(g) = Z§=OYK(n)ck'K, Yo(M # 0O,

0 1

F.() = 0

0 1

-%megm..............-%me#m

For a matrix A with regular v,(A) = a
0 (0}

if in F"(n) the scalar n is replaced by the matrix A. The following lemma repre-

I - BOA the block matrix F“(A) is obtained

sents the basic tool of this paper. It was proved in an entirely different way

by Zlamal [23, p. 355] for Ao-stable methods which are D-stable in L = O and

LEMMA 2. Let <p,0> be a multistep method with stability region S. If S is
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closed then

= sup "Fﬂ(n)n" < »

0,00 nesSUPre
Il -1l denoting the Euclidean norm (spectral norm).

PROOF. (i) By assumption there exists for every fixed n € S a lub-norm
"'llnsuch that "Fﬂ(”)"u < 1, see e.g. Stoer and Bulirsch [18, Th. 6.8.2]. Hence
“Fﬂ(n)nﬂn < 1, and by the norm equivalence theorem (cf. e.g. Ortega and
Rheinboldt [14, Th. 2.2.1]) we obtain

IE < cmIF M <ec(m) <o

where c(n) depends only on n and the dimension k. Therefore the assertion follows
for every fixed n € S.

(11) The matrix Fﬂ(n) has the characteristic polynomial m(Z,n),
i.e., the eigenvalues of Fﬂ(n) are the roots of m(Z,n). Hence the eigenvalues of
Fﬂ(n) are the branches of the algebraic variety Z defined by m(g,n) = O. This
algebraic variety has the unique finite pole at n = ao/ BO > 0 which cannot lie
in S. Moreover, a simple calculation shows that  can have only a finite set ¥
of exceptional points or branching points n*, i.e., points in the complex plane
where some eigenvalues coalesce or - in other words - where Fn(n*) has multiple
eigenvalues. Now, we have by (i) that c(n*) < @ for every n*€S N € but by con-
struction of the norm N-Iln (cf. [18] and the explicit Jordan decomposition of
Fﬂ(n) given below) we find limn*n*c(n) = o for n*€ S N €. Thus we must prove the
assertion of the lemma for mn = n* in a separated way. For simplicity we show
the boundedness of HFn(n)nH near n* here only for a finite n* in which the alge-
braic variety { has only one confluenting cycle of branches. The assertion is
proved analogeously if n* = © € S replacing 1/n by n since in this case the
method <p,0> must be implicit, i.e., Bo * 0.

(iii) Consider a fixed n*€SN¥. By assumption all confluenting

branches cv(n) - where without loss of generality v = 1,...,m < k - satisfy
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|Cv(n)| < 1 in a small disc & with center n*. By Kato [8, 2.1.7] we may write
gy,M in ® as a Puiseux series,

g,(m = Z:=o<!>u[w\)(n—n"‘)]/m]n > V=l,...,m, (5)

where ¢0 = C,(ﬂ*) = ... = Cm(n*) and w = exp{2mi/m} . V(&) Z:;O¢UEU represents

an analytic function in & with lw(E)I < 1 in a sufficiently small disc ® with
center O and radius 6. Hence we can estimate the coefficients ¢(n)

u
as the coefficients of W(E)n by Cauchy's estimate (see Ahlfors [1, p. 981),

of ¢ (m"

l¢én)l < maxgeazlw(g)nlleu n::oo o, u = O,... & (6)

(iv) By the norm equivalence theorem it suffices to show that the
elements fg?)(n) of Fﬂ(n)n are uniformly bounded in a neighborhood of n* with
exception of n*. Let F“(n) = Q(n)Z(n)Q(n)_1 be the Jordan canonical decomposi-
tion. Then, for n € €, Q(n) is the matrix of the column eigenvectors of Fn(n),

and it has the form

t;] EEEEEE Ck

Q=i R I IO TR S I ¢))
k-1 k-1
Cl ...... e Ck

where the argument n is omitted. Consequently, using Cramer's rule we obtain
after some simple calculations

£ ) = der (@ m)/decam) ®)
Here Qi?)(n) is obtained from Q(n) by replacing the jth row by

@, ™ ™ )
The denominator of (8) satisfies by (7) 1imn+n*det(Q(n)) = 0 with exactly the
rate of convergence m(m—1)/2m = (m-1)/2 since by assumption exactly m roots Cv
coalesce in n¥*. (We assume that ¢] # 0 in (5) otherwise the proof follows in a
slightly modified way.)
(v) By (6) and (9) the assertion of the lemma is now proved for

n > n* when we show that the numerator in (8) converges to zero at the same rate
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as the denominator. To this aim we set briefly Qv = wv(n - n*)]/m then, substitu-

ting (5), det(Qi?)(n)) can be written in the form

2
ger@P m) = o((n - mry (M /my

@1 0 @D 0@ (n)
+ det(( zo o vel,..., T8 Q‘; mfjl(n), 0.7 m))
= 1=0

where HOén)(n)M < |1 by assumption for Vv = m+l,...,k , and

o™ - (@5 GD D)t

(n+1i-1)

-9 29,

with the notations of (iii). Accordingly, as a determinant is zero if two columns

coincide up to a scalar factor,

2
der@P m) = on - ax T

Wi, .. Hp (n) (n) (n) (n)
+ i N Q] Qm det((@u] oo o ®m+1(n),...,6k (n))) .
1° m
04y ‘(m-l) -1
ur#us,r*s

This proves the desired result since

m
! u 1M, /m _
Qllmgmm 0 - o Yy s en - o™/ 2,

if 0 < pl < (m—1)2-1 and . * Mg forr # s.

By means of Lemma 2 an error bound is now easily derived. The error E = Y -V
of the method (3) in the problem (2) fulfils the relation

p(T)En - AtAO(T)En = d<p,o>(At’A)n , n=0,1,..., (10)
by definition of the truncation error d<p 0>(At,Y) . Introducing the block vec-—

tors

T
B = (En—k+1""’En) ’
-1 T
(be, V) = (0,...,0,(agL = BoAtA) d_ (8E,Y) )",
the Jordan canonical decomposition of A, A = XAX_] , and the block diagonal ma-

<p o>

trix X = (X,...,X) we find that (10) is equivalent to
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E:n = gﬂ(AtA)gn_] + ~< Or>(At Y) n=k,...,
or
-1
E =Z{§"(AtA)§ E_ < 0>(At N, n=k,... . (11)

Therefore Lemma 2 immediately yields
THEOREM 1. If the matrix A is diagonable and the spectral condition is sa-
tisfied then
e I < 2 L IXIIX Iy (z uz e 25 ey oo BE,D 1)

It should be emphasized that this error bound holds uniformly for the class

of normal matrices A satisfying the spectral condition.

3. UNIFORM EXPONENTIAL STABILITY.

The regions Su < S of py-exponential stability considered in this section
are here introduced in a slight modification of Stetter [17, Def. 2.3.15 and
§ 4.6.2].

DEFINITION 4. A method <p,0> has the region of HL-exponential stability
SU’ U = 0, if the associated Frobenius matrix Fﬂ(n) satisfies spr(F"(n))<l -4y
for all n€ SU’ spr(F) denoting the spectral radius of F.

For two (m,m)-matrices P, Q we write P < Q if WHPW < wHQW holds for all
weeh, W= 7. The following matrix theorem of Kreiss [9] is quoted here in a
somewhat shortened form using a modification of Widlund [20].

KREISS' MATRIX THEOREM. Let ¥ denote a family of real or complex (k,k)-

matrices. Then the following statements are equivalent:
. E, = sup,..Sup NF < @
(i) 1 FE¥ "néN
(ii) There is a constant 52 > 0 depending only on EI and the dimension k,
and for every matrix F € ¥ a positive definite hermitean matrix H with

-1

2 I<SHS<E

2 (I identity)

such that

FIHF < (1+spr(F))H/2 .
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As already used, we have Fﬂ(AtA) = XF"(AtA)X_] for every diagonable matrix

_ -1 . _ n, _ n
= XAX =~ with regular aOI BoAtA and, moreover, HFN(AtA) ] maxléKékHF“(AtAK)

is true. Hence the following corollary is an immediate consequence of Lemma 2
and the Kreiss' Matrix Theorem.
COROLLARY. Let the matrix A be diagonable and let the spectral condition

be satisfied. If Sp(AtA) < Sp then there is a constant 52 depending only on

E<p o> and the dimension k, and for every Fﬂ(AtA) a positive definite hermitean
, ~

matrix H such that

and

r e o H I @ew <01 20 D!
Let now IlE "2
~n H

left by H]/ZXf] we obtain

= E:(X-])HHX-]En then, multiplying the error equations (11) from

HEJ <HF(M$W +HQDO¢AQDJM, n=k,...,

and

g/ 2xiT e < el < =/ 20X N IEN (1L ) Euclidean norm) .

Accordingly, a recursive estimation by means of the Corollary yields
THEOREM 2. Let the matrix A be diagonable and the spectral condition be
satisfied. If Sp(AtA) < SU’ u =0, then

- -1 - k-1 -
IlYn—Vn||<:2||x|| X ||[exp{ (u/bt)nAe}L _ Iy -V I

+ Z —K&XP {-@u/At) (n-v)At }lld<p 0>(At,Y)\)H] ,
and
_ (q+1) q+l
Itd <p G>(At Y) < (a I B AtA)~ HK Iy Il At ,
IHYle = maxoétévAt“Y(t)" , if <p,0> is of order q.

The next lemma shows that for a fixed matrix A the exponential growing fac-
tor u/At can be estimated more exactly.

LEMMA 3. 1If the growth parameters Xie of a D-stable method <p,0> satisfy
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Re x,. > 0 and if all eigenvalues AU of the matrix A satisfy lu < -a < O then,
for At sufficiently small,
2 1 >
u/At amanReXK/S 0.

PROOF. For simplicity let Ler K = 1,...,i, i < k, be the essential roots
of the polynomial p(Z) and let gK(n) be the corresponding roots of m(g,n),

CK(n) - CK, N + 0 . Then there exists a non-empty interval such that
spr(F (N) = max o .| CK(n)I ,8,<n<o0, 8 <o0. (13)

But ¢ (n) = CK[I XNt d(nz)] as follows by substituting this expansion in
m(Z,n) = 0. Therefore, IQK(n)I2 =1+ 2Rexn + d(ln]z) and there is a non-

empty interval such that
lg (] <1+ (Rexn/2), k = 1,...,i, 8, <n<0, 8 <0, (14)
since Re)(K > 0 by assumption. By (13) and (14) we obtain

spr(F (M) <1 + nmin]éKéi(RexK/Z), max{dl,éz} <n<o,
and thus

<1 - .
spr(Fﬂ(Atlu)) 1 Atamln]éKéi(RexK/Z) ,
for Ata < max{lﬁlf, ]52!} . Now the assertion follows because we can set here

w=1I1r- maxléuémspr(Fﬂ(Atku))]/4 .

4. GALERKIN MULTISTEP PROCEDURES IN PARABOLIC PROBLEMS,

To be brief we first list up some necessary notations: Q C RP bounded
domain;

/2

HEN = (S 2. .11, IDOf(x)Izdx)I , s €N, Sobolev norm with the standard
s Q O—Icl—s
multi-index notation;
Cg(Q) set of real-valued functions f € Cm(Q) with compact support in ;
WS(Q) closure of C:(Q) with respect to "'"s;
WS(Q) closure of Cm(Q) with respect to H-"S;

% < w(Q) closed subspace with sS ) c¥;
0
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a:d x> (u,v) > a(u,v) € R symmetric bilinear form over 'Jﬂsatisfying
0<0LIIv||2S < a(v,v) for all 0 + v € { ;
(f,g) = éf(x)g(x)dx .

Then, following Schultz [16], see also Strang and Fix [19, ch. 7],
Mitchell and Wait [11, § 6.3], a large class of parabolic initial boundary
value problems with homogeneous boundary conditions can be written in the weak
form

(%%(-,t),v) + a(u(e,t),v) = (b(+,t),v) for all veH, t>0, s

(u(-,0) - bo,v) =0 for all v €. 4
Let ¥ < A be a finite-dimensional subspace which is defined by an explicitely
known set of basis functions SpsevesSy - The Galerkin approximation to the so-
lution u(-,t) of (15) is a function uG(-,t) € ¥ which satisfies (15) for all
v G:f. Accordingly, substituting in (15)

g (6, t) = U s, s = (5,(0),...55 (), V(D) ERD
we obtain a system-of the form (1) where, as well-known,

m

M= ((Sp’sv))u,v=1’

_ m
K = (a(su,s\)))u,\)=1 . (16)

The Galerkin multistep approximation uA(-,nAt) = uA(-)ne‘ f, n=k,..., to the
problem (15) is given by
0 G,t) = VO s , ot = nle, a7

and

P (ay () s, + BEO(Daluy () ,8)) = BEO(D) (B(+) 55 ), .
u=1l,...,m n=x%k,...,

where uA(-) are assumed to be known. It is easily shown that (17)

ERRRELT S
and (18) are equivalent to (3') and (16).

An estimation of u - u, usually needs the Ritz projection up € F of u de-

fined by
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a(u(e,t) = ug(e,t),v)= 0 for allveYP, t >0,
see e.g. Strang and Fix [19, § 7.2]. Hence we estimate the error u - uy via the
decomposition

Uy, = (u-uR)+ (uR—uA) (19)

directly. However, it is not the aim of the present contribution to discuss the
vast field of error bounds in the Ritz theory of elliptic boundary value prob-
lems. Therefore we make the following assumption on the bilinear form a, the
boundary of §}, and the subspacef, cf. Ciarlet [3, Th. 3.2.5), Strang and Fix
[19, Th. 3.7], Schultz [16], and Zlamal [21, 22].

ASSUMPTION A. The Ritz projection ER € ¥ of the solution U of the elliptic
boundary value problem

a(u,v) = (f,v) for all v € &
satisfies for a fixed 1 €N
I - Gl < kgax’ 1N

where KR depends not on the sufficiently smooth right side f and the small para-
meter Ax.

Under Assumption A we obtain in case the solution u of the parabolic prob-
lem (15) is sufficiently smooth

TuCe,t) = up(e,0) lly < kpxt a0l t>o0,

since u(+,t) can be viewed as the solution of the elliptic problem

a(u(e,t),v) = (b(+,t) - ut(-,t),v) for all v € ¥,

u, = du/dt . Further, let

m
(uR uA)(x,t) = Zu=l€u(t)su(x), t = nAt ,
then, writing E(t) = Mllz(el(t),...,em(t))T we obtain
ll(uR - uA)(-,t)II0 =lE(t)l, t = nAt, ll+ll Euclid norm. (20)
In order to deduce an estimation of Up T ouy we first observe that by (18) and

Def. 1
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p(T)((u - uA)(')n,s ) + Ato(T)a((u - uA)(')n’Su)
= gy 5 (BE,u()) ,8)
or, by definition of the Ritz projection,

P(T) (g = wp) () p8)) + Aeo(Mal(ug = u) () ,s)
(Bt,u(-) 8)) + p(D) (g = W)() )

<p o>
H=1,...,m, n=0,1,...

This relation is equivalent to

p@mn+Aﬂuﬂmn=Dn, n=0,1,..., (21)

- 1/2 =1/2 . . m
where L=M KM with the notations of (16), and the vector Dn € R has
the form
-1/2 T

Dy =M Y s, (¥ s )
with

¥, o= d g s (Btul)) + p(D (u-w) () €U

Hence, using the Wo—projection of ‘l’n onto ¥ it is easily shown that
IIDnll < Ild<p’0>(At,u(~))n + p(T)(uR-u)(-)nllo
If the method <p,0> is consistent then p(Z) has the root z =1, i.e.,

p(L) =p(g)(z - 1) . Accordingly,
"D(T)(UR‘U)(')nHO = 18T (T - B (g =w) () 1y

< k At max ll(uR-u)t(-,t:)Il0
nAtét4(n+k)At
and
Ip I < lid (At,u()) Il + k At max fu=uy), o), .
n <p,0> no 044 (n+k)At Rt 0
But (u—uR)t u, - (ut)R as (u ) = (u )R in the present case of a time~homo-

geneous bilinear form a. We therefore obtain under Assumption A

1
il Dn" < |ld (At,u(-))nll0 + KpKRAtAx I

<p,0> (22)

tl"1,n+k ?

Illullll,n = maxo‘i_ti_ﬂAtllu(-,t:)lI1 » since u  can be viewed as solution of an el-
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liptic problem, too.

Finally we can apply Theorem 2 to the error equation (21) and estimate the
defect Dn by (22). Then, by means of (20) we obtain an error bound for the second
term on the right side of (19). We summarize our result in the following theorem.

THEOREM 3. 1If the spectral condition is satisfied and

Sp(AtM—I/ZKM-l/Z

)ES,, > 0, then
Nug()y = up ()l < 2, (exp L= (u/AdnAe } B (g (), = uy () Mg
+ 10 _ exp { ~(u/bt) (a=v)ae }ID 1)

If the solution u of (15) is sufficiently smooth, Assumption A is fulfilled,

and the method <p,0> is consistent of order q then

=1 q+l q+1 q+l
<
HPvH % (KcAt a* "u/dt "'0 v

b

1
+ KpKRAtAx IHutlﬂl,v)
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