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ABSTRACT. Inequalities between certain functlonals on the space of bounded

real sequences are considered. Such inequalities being analogues of the

classical theorem of Knopp on the core of a sequence. Also, a result is given

on infinite matrices of bounded linear operators acting on bounded sequences in

a Banach space.
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i INTRODUCTION.

For a real sequence x (xk) we write

(x) lim inf xk, L(x) lim sup Xk,
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xI
+ x

2
+ + x

ky(x) lira inf

xI
+ x

2
+ + x

kY (x) lira sup

w(x) inf {L(x + z) z bs},

sup lxll sup

p(x) lira sup Ix l, q(x) lira inf Ix l.
In the definition of w we use bs to denote the space of all ’bounded

series’ more precisely:

n
bs {z SUPn IkE=l <

If A (ank) is an infinite matrix of real, or complex, numbers, we write

Ax (lankxk),

where all sums are from k 1 to k --=, unless otherwise indicated.

Let X be a Banach space with norm lxll and let B(X) be the Banach space

of bounded linear operators on X into X with the usual operator norm. The space

of bounded X-valued sequences is denoted by (X), with lxll supnllnll, for

each x e ,(X). By c(X) we denote the space of convergent X-valued sequences.

If G and H are real functionals on (X), and M > 0 is a real number, then

G < MH means that G(x) < MH(x) for all x (X).

In connection with a real matrix A, we shall write, for example, LA < L

to mean that Ax exists for all x (R) and that L(Ax) < L(x) for all

x (R).

Devi [I] refers to the result that: "LA < L if and only if A is regular

and almost positive", as Knopp’s core theorem, and refers to Cooke [2] for

the proof. Strictly speaking the result as stated does not seem to be given
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by Cooke, though the ingredients for a proof are there. In Section 2 below we

indicate, for completeness, a brief proof of the result.

Using Knopp’s core theorem, Devi [I] proves that LA _< w if and only if A

is strongly regular and almost positive. To say that A is strongly regular

is to say that A is regular and

Zlank-an,k+ll / 0 (n + ).

In Section 2 we prove that LA < y is impossible, and that LA < is

impossible. Also, necessary and sufficient conditions are given for pA < q.

In Section 3 we give a theorem involving pA for bounded sequences from

X, and infinite matrices (Ank) from B(X).

2. REAL BOUNDED SEQUENCES.

We first give exact conditions for LA _< L, as mentioned in Section I.

THEOREM I. LA < L if and only if A is regular and

(2.1)

PROOF. For the necessity, let x c(R). Then (x) L(x) lira x and

L(A(-x)) _< L(-x), whence

lira x < (Ax) < L(Ax.) _< L(x) lira xn n

and so Ax c(R) with lim (Ax)
n

lira Xn, which implies A is regular. By the

Silverman-Toeplitz theorem, see e.g. Maddox [3], p.165, it follows that

H lira SUPn .lakl < -, (2.2)

Zank -+ 1 (n -+ =o), (2.3)
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+ 0 (n / , each fixed k).ank (2.4)

From (2.2), (2.4), e.g. Agnew [4], there exists y E (R) such that

I and L(Ay) H. Hence, by (2.3),

I <_ lira infn llankl < lira SUPn llankl < L(y) < IYll < I,

which implies (2. I).

For the sufficiency, let x E (R), A be regular and let (2.1) hold. If

m > I then

lankxk < lxll - lankl + (sup xk)
k<m k-m

Applying the operator lira lira sup we obtain L(Ax) < L(x), which completes
m n

the proof.

THEOREM 2. We have, o__n m (R),

<y<Y_<w<L_< S< I1.11.

PROOF. By Theorem I, letting A be the (C,l) matrix, we have < A,

i.e. < y. It is trivial that y < Y.

Now take x (R) and z b s. Then

k kI Ir. x. Z (xi
+ z + e_Kk i=l I k i=l i

where lira k O. Taking lira suPk in (2.5), and applying Theorem 1 with

A (C,I), we get Y(x) _< L(x + z), whence Y < w by the definition of w.

Since e (0,0,0,...) bs it is immediate that w < L, and the remaining

inequalities are trivial.
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The facts that LA < y, and LA _< are impossible are special cases of

the following result.

THEOREM 3. Let B be any regular almost positive matrix. Then there is

no matrix A such that LA < B.

PROOF. Suppose, if possible, there exists such an A. Theorem 1 implies

LB < L, and so LA < B < LB _< L, whence A is regular.

By the theorem of Steinhaus, see e.g. Cooke [2], p.75, there exists

z E =(R) such that (Az) < L(Az). Since LA < LB we have (Bz) < (Az), and

so

(Bz) < L(Az) < (Bz),

a contradiction. This proves the theorem.

The statement prior to Theorem 3 follows on taking B to be either the

(C,I) matrix, or the unit matrix.

THEOREM 4. The following are equivalent:

pA < q, (2.6)

A maps bounded sequence.s..i..n.to nul.l sequences, (2.7)

r. lank / O (n / =).

PROOF. The equivalence of (2.7) and (2.8) is well-known, see e.g.

Maddox [3], p.169. We shall prove that (2.6) is equivalent to (2.8).

If (2.8) holds then, for all x E E (R),

im sup
n lZankXk =0,
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which implies (2.6). Conversely, let (2.6) hold. Then 7.ankXk is bounded on

the Banach space (R) whence SUPnT. lank < by the Banach-Steinhaus theorem.

Also, choosing x
k I, x O otherwise, we must have (2 4)n

Suppose, if possible, that lira SUPn 7.1ank d > O. Choose m(1) > I

such that ..lam(1)ll < d/IO and

IZIam(1)kl d < d/IO.

Define k(1) I and choose k(2) > 2 + k(1) such that

lam(1)kl < d/IO.
k(2)

Next choose m(2) > m(1) such that

k(2)
7. lam(m)kl < d/IO, Ila(m)kl d < d/IO,
I

and choose k(3) > 2 + k(2) such that

lam(2)kl < d/IO.
k(3)

Proceeding inductively we now define a sequence x by

x
k sgn am(r) k for k(r) < k < k(r+l), r z I,

x
k

0 for k k(r+l), r _> O.

Then lxll _< I and lira inf IXkl O, so (2.6) implies

p (/Ix) O. (2.9)

But for m m(r), with r > I, we have
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lamkxk > l llamk d/5,

where l I denotes a sum over k(r) < k < k(r+l). Also, we have

r.llamk d < 3d/lO,

and so

r.amkxk > d 3dllO diS d12. (2.10)

Since (2.10) holds for infinitely many m it follows that

p(Ax) _> d/2. (2.11)

But (2.11) contradicts (2.9), so d O, and the proof is complete.

3. BOUNDED SEQUENCES IN A BANACH SPACE.

Define, for each x (xk) e (X),

G(X) lim sup

H(x) inf {G(x+z) z e bs(X)},

where
n

bs(X) {z SUPnllk__EI Zkl < =}.

Thus G and H many be regarded as the Banach space analogues of p and w which

appeared earlier.

By GA _< MH we mean that G(Ax) < MH(x) for all x e (X), where

Ax (EAnkXk),

with Ank e B(X).
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It is clear that bs(X) (X), and that 0 -< H(x) < G(x) < for all

x (x).

Also, since -x e bs(X) whenever x e bs(X) we have that

H(x) O on bs(X).

In the following theorem we need the ideas of the group norm of a

sequence (Bk) from B(X), see e.g. Lorentz and Macphail [5]:

n

]](Bk)]! sup[[ E BkXk]
k--1

where the supremum is over n > 1 and x
k

in the closed unit sphere of X.

We write

R (Anm, A
n

...)
nm ,m+l

for the mth tail of the nth row of A (Ank). Also, we define

AAnk Ank-An,k+l, and

R (A AA
n

...).
nm ,m’ ,m+l

We now prove

THEOREM 5. Let M z O. Then GA < MH if and only if

Ank -O (n / =, each k), (2.12)

[IRnlI < and IRnmIl +0 (m / % each n), (2.13)

limm lim SUPn lRnmll <M, (2.14)

limm lim SUPn [IARnm[[ 0 (2.15)

PROOF. We remark that, in (2.12), the convergence refers to the topology
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of pointwise convergence.

For the sufficiency, let x E (X), and z E bs(X). By Maddox r6, THEOREM I]

the conditions (2.12), (2.13), (2.14) imply GA _< MG, whence GA(x+z) _< MG(x+z)

and so

G(Ax) < MG(x+z) + G(Az). (2.16)

Now

r r-I
Y. LA-kZk A s + Y. AAnknr r Sk’

k=l k=l
(2.17)

where s
k

z I
+ z

2
+ + zk. Since lAnrSrll -< IAnrll lSrll’ and since

s e (X), it follows from (2.13) and (2.17) that, for each n,

EAnkzk IAAnks
k (2.18)

By Maddox [6, COROLLARY to THEOREM I], the conditions (2.12) (2.15)

imply that AA =(X)_ / c (X), where c (X) denotes the null X-valued sequences.o o

Hence from (2.18) we have G(Az) O, whence (2.16) yields G(Ax) < MG(x+z). It

follows that G(Ax) -< MH(x), which proves the sufficiency.

For the necessity, if GA < MH then GA _< MG so that (2.12) (2.14) hold

by Maddox [6, THEOREM I].

Now take any y e (X) and define xI YI’ x2 Y2-Yl so that

xI
+ x

2
+ + Xn Yn"

Thus x b s(X) and

ZAnkXk EAAnkYk.



614 I.J. MADDOX

Hence G(AAy) G(Ax) _< MH(x) O, since H(x) O on (X). Consequently,

G(AAy) O on (X) which implies AA (X) + c (X), whence (2.15) holds by
o

[6, COROLLARY TO THEOREM I]. This proves the theorem.
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