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ABSTRACT. A short and simple proof is given that osculatory interpolation by
trigonometric polynomials is always possible.
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It is an elementary fact that if 2n + i points 8j wth- < 80 < 81 <...< 82n (].)
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are given, then there exists an element f of T the class of trigonometric
n

polynomials of degree <_n;

n
ik8

f (ei@) I ake
kz-n

(2)

so that f(eiSj) w. for j 0,1,...,2n, where Wo,Wl,...,w2n is any given

sequence of complex numbers. A proof (in the real case) is given in Example 5

on page 38 of Davis’ book [i], and on page 53, Problem 13 asks, somewhat

enigmatically, "Discuss the possibility of osculatory trigonometric interpolation."

In this note, we give a simple proof of a theorem that answers this problem and

a bit more.

THEOREM. Given two sets of n complex numbers, Wl’’’’’Wn and Wl,’... ,wn,’
there exists a trigonometric polynomial f of the form 2), with a

0
0, so that

iej iejf(e w. and f’(e w for j 1,2,...,n.

REMARK. The osculatory case is where all the w. 0. Our theorem amounts

to letting the @ coalesce in pairs. Our proof depends on a trick that does not
J

seem to cover more general kinds of coalescence, for which there is surely a

corresponding result. The lemma we use to prove the theorem sheds a little light

on the problem considered in [2-4] about the number of vanishing coefficients in

the square of a polynomial.

PROOF OF THE THEOREM. Let I0 be the subclass of T where a 0, so that
n n 0

TO is a vector space of dimension 2n, and consider the 2n linear functionals
n

consisting of point evaluations of elements of TO at the e and also of
n

point evaluations of their first derivative at the e j l,...,n. By standard

considerations of linear algebra it is enough to prove that these functionals are

linearly independent, or equivalently, that if f 6 TO and if f(e 3) f’(e =0

for j l,...,n, then f O. Let us suppose we have such an f.
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i0
Now writing z e for z on the unit circle T {[z i}, we have

2n
n

z f(z)= P(z)= [ bk,
k

kO

where P(z) is an algebraic polynomial of degree 2m wose coefficien b of

degree n satisfies b 0. Since the roots of P are at the distinct points
n

e and are all double roots, we see that P is the square of a polynomial Q

of degree n with n roots on the unit circle. The next lemma then settles the

question.

LEMMA. Let Q be a polynomial of degree m wit.h n roots on the unit

circle. Then the middle coefficient b of Q2(z) does mot vanish.
n

PROOF. Let

n
Q(z) =Z (z-e

j=l

so that

nq2(z - (z_eiOj (l-e 1.n i0j z
n j=l J-i
j=l

Hence, on {Izl 1}, we have

q2(z)IQ(z) 2
A

n
z

where

n -iOjA=--- (-e ).
j=l

Now integrate both sides of (3) around T with respect to the measure dO/2

(dz)/(2iz) to get
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Ab f IQ(z) 2 dz
n 2izT

Since [A I, we see that b # 0.
n
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